Ökopedologie der Tropen und Subtropen

Research interests

Long-term Goal: to contribute to our understanding of how natural (e.g. forest, grassland) and managed (e.g. agricultural, agroforestry, pasture, tree plantation) ecosystems are affected by global change processes (e.g. changes in temperature and rainfall regimes, increases in nutrient depositions, and land-use change).
As today's environmental problems can only be investigated and solved through interdisciplinary approaches, my group collaborates with scientists in other disciplines.

SoilviewCentral hypothesis: spatial and/or temporal imbalances in fluxes of nutrients in ecosystems are the major causes of environmental problems and unsustainability of land uses.

Research Foci:

  • Impact of global change processes (e.g. increases in nutrient depositions, land-use change, changes in temperature and rainfall regimes) on soil nutrient cycling processes and net primary productivity
  • Carbon, nitrogen and nutrient fluxes in tropical ecosystems
  • Ecosystem functions of agroforestry systems
  • Soil-atmosphere exchange of trace gases (N2O, NO, CH4, CO2)
  • Canopy soil and epiphytes in tropical ecosystems: trace gas exchange and nitrogen cycling
  • Biogeochemistry of deeply-weathered tropical soils
  • Interaction between vegetation species diversity, soil nutrient availability, and nutrient cycling processes


  • Natural gradients are used to obtain a better understanding of the functioning of ecosystems at a landscape scale: chronosequences of deforestation and afforestation, toposequences, and gradients of nutrient and climatic conditions.
  • Ecosystem-scale experiments are used for prognostic analyses of climate- and nutrient-change effects on ecosystem processes: throughfall exclusion and nutrient addition.