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Proofs have two aspects: (i) they ensure the truth of what is claimed, and
(ii) they may have computational content. In this short course we deal with
the latter (mainly via examples), in sections

• Constructive logic
• List reversal
• Maximal scoring segment

The main points are how to uncover the (possibly hidden) computational
content, and how one can use “decorations” to optimize it.

Introduction

In this introduction we deal with the basics of formalizing proofs and, via
the Curry-Howard correspondence, analysing their computational structure.

Minimal logic is a system of rules for deriving logical formulas based just
on the two symbols → (implication) and ∀ (for all). Each symbol has two
rules: an introduction rule (→+, ∀+) and an elimination rule (→−, ∀−).
The rules for implication are

[A]

|M
B →+

A→ B

|M
A→ B

| N
A →−B

and the rules for universal quantification are

|M
A ∀+x∀xA

|M
∀xA(x) r

∀−
A(r)

These are Gentzen’s (1935) Natural Deduction rules. Gentzen’s idea was
that natural deduction rules do indeed reflect the ways in which we construct
logical arguments.

Notice that subderivations of the premises of rules are labelled M,N . In
order to avoid obvious invalid derivations (for example Px → ∀xPx), the
rule ∀+x with conclusion ∀xA is subject to the following (eigen-)variable
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condition: the derivation M of the premise A should not contain any open
(undischarged) assumptions having x as a free variable.

It is clear that derivations need to be started off somewhere, so in addition
we need to introduce assumptions and – as in the implication introduction
– allow some assumptions to be closed or discharged in the course of a
derivation. The notation for a discharged assumption A is [A].

Here is a simple example. Assume A,B are formulas and x /∈ FV(A), the
set of variables free in A.

[∀x(A→ B)] x
∀−A→ B A →−B ∀+x∀xB →+

A→ ∀xB →+
∀x(A→ B)→ A→ ∀xB

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ B)).

It is possible that a derivation makes an unnecessary “detour” – an elimi-
nation immediately following an introduction – and we may want to remove
it. This can be done for implication via

[A]

|M
B →+

A→ B

| N
A →−B

reduces to

| N
A
|M
B

and for universal quantification via

|M(x)

A(x)
∀+x∀xA(x) r

∀−
A(r)

reduces to
|M(r)

A(r)

Clearly the tree structure of logical derivations of any complexity at all
becomes quite cumbersome, and the availability of some alternative rep-
resentation therefore becomes increasingly important, especially when we
wish to operate on derivations. The Curry-Howard correspondence provides
a neat, computationally inspired alternative. The underlying idea is that if
we have a derivation M(x) of A(x) then any means of (universally) binding
the x should then represent a derivation of ∀xA(x). The notation chosen
for binding the x is λxM(x), denoting the function x 7→M(x). On the side
of → a derivation M of B from some assumptions A, each of which must
now in addition have a label u, is then represented as λuM(u), denoting the
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function u 7→ M(u). This requires the labelling of assumptions so that all
assumptions discharged by an application of →+ must have the same label.
For example the unnecessary detour via → will thus be represented as

(λuM(u))N reduces to M(N).

Similarly the unnecessary detour via ∀ will be represented as

(λxM(x))r reduces to M(r).

These reductions are instances of what, in lambda calculus terms, is known
as beta reduction and we write

(λuM(u))N 7→β M(N),

(λxM(x))r 7→β M(r).

The lambda calculus provides an abstract setting for representing and
computing functions and beta reduction is the main computational mecha-
nism. Now there comes one further detail: we want to be able to move back
and forth from derivations to lambda representations of them and back again
from lambda terms to derivations. For this reason it is necessary to assign
to each lambda term a “type”, which will be the formula whose proof it rep-
resents. The formula type will be written as a superscript. In detail then,
the first beta reduction example above now becomes

(λuM(uA)B)A→BNA 7→β M(NA)B.

In summary, the Curry-Howard correspondence is completely described by
the Table 1 below.

Suppose that we have extended minimal logic with axioms introducing
the existential quantifier:

∃+ : ∀x(A→ ∃xA), ∃− : ∃xA→ ∀x(A→ B)→ B (x not free in B).

These now allow us to make computationally meaningful derivations. The
underlying principle is this: suppose one has a derivation of a closed formula
∃xA(x) resulting from an existential introduction axiom ∃+, i.e., the deriva-

tion (written as a Curry-Howard term) is of the form ∃+ruA(r). Then r (the
computational content) is a witness for the existential quantifier, and it may
be read off immediately. Of course the derivation may not end with an exis-
tential introduction. However, the process of normalization will beta-reduce
the derivation term into one in which ∃+ is the final operator to be applied.
In general normalization is the process of computing out a lambda term, un-
til no further beta reductions can be made. In other words, normalization
reduces away all unnecessary detours.

Now suppose that the formula ∃xA(x) is not closed, say it has one free
variable z. By instantiating z we obtain again a closed formula depending
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Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

on the instantiated value. Extracting a witnessing term from a normalized
derivation term, as above, then provides a witness depending on the instan-
tiated value. However, to bring out the uniformity involved in this process
requires a new method, realizability.

In the course we will study such computational aspects of proofs, with
an emphasis on optimizing of their computational content via “decoration”.
This will include some cases studies, done with our proof assistant Minlog1.

1www.minlog-system.de
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1. Constructive logic

We bring out the constructive content of logic, particularly in regard to
the relationship between minimal and classical logic. It seems that the latter
is most appropriately viewed as a subsystem of the former.

1.1. Basics. Negation and the classical (or weak) existential quantifier are
defined by

¬A := (A→ ⊥),

∃̃xA := ¬∀x¬A.

Here ⊥ is just a propositional variable; we do not require any properties of
it. If we leave the realm of pure logic and have say the natural numbers
available, then alternatively we can use the “arithmetical falsity” F defined
by 0 = 1.

The following can easily be derived in (minimal) logic:

A→ ¬¬A,
¬¬¬A→ ¬A.

However, ¬¬A→ A is in general not derivable. Derivations for the following
formulas are left as exercises.

(A→ B)→ ¬B → ¬A,
¬(A→ B)→ ¬B,

¬¬(A→ B)→ ¬¬A→ ¬¬B,
(⊥ → B)→ (¬¬A→ ¬¬B)→ ¬¬(A→ B),

¬¬∀xA→ ∀x¬¬A.

Recall that the (constructive, or strong) existential quantifier is provided
by means of the axioms

∃+ : ∀x(A→ ∃xA), ∃− : ∃xA→ ∀x(A→ B)→ B (x not free in B),

and that these allow us to make computationally meaningful derivations.
According to Kolmogorov (1932) a formula can be seen as a problem, and
its proof as providing a solution to this problem, in the following sense:

(i) p proves ∃x∈DA(x) if and only if p is a pair (d, q) with d ∈ D and q a
proof of A(d);

(ii) p proves A → B if and only if p is a construction transforming any
proof q of A into a proof p(q) of B;

(iii) p proves ∀x∈DA(x) if and only if p is a construction such that for all
d ∈ D, p(d) proves A(d).
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We call a formula computationally relevant (c.r.) if it has a strictly posi-
tive occurrence of an existential quantifier; “strictly positive” means never
on the left hand side on an implication. Other formulas are called non-
computational (n.c.)

To be able to express dependence on and independence of such parameters
we split each of our logical connectives →,∀ into two variants, a “computa-
tional” one →c,∀c and a “non-computational” one →nc,∀nc. This distinc-
tion (for the universal quantifier) is due to Berger (1993, 2005). Similar (but
somewhat less flexible) concepts in the literature are

• the Set / Prop distinction in Coq, see Bertot and Castéran (2004,
Ch.3);
• irrelevant type theory (dot notation in Agda), see Abel and Scherer

(2012);
• propositional truncation in homotopy type theory, see Univalent

Foundations Program (2013, Ch.3), and
• bracket types, see Awodey and Bauer (2004).

One can view this “decoration” of →,∀ as turning our (minimal) logic into
a “computational logic”, which is able to express dependence on and inde-
pendence of parameters. The rules for →nc,∀nc are similar to the ones for
→c, ∀c: we only need to restrict the introduction rules (→nc)+, (∀nc)+ to
situations where the (assumption or object) variable bound by this rule is
not “used computationally”. It can be defined by requiring that the bound
variable has no trace in the “extracted term” of the derivation (see below).
For readability we usually write →,∀ for →c, ∀c.

We refine the distinction between computationally relevant (c.r.) and non-
computational (n.c.) formulas by providing a type. To indicate that there
is no computational content we introduce a “nulltype” symbol ◦ and extend
the use of ρ→ σ and ρ× σ by

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦,
(ρ× ◦) := ρ, (◦ × σ) := σ, (◦ × ◦) := ◦.

The type τ(A) of a formula A is defined by

τ(∃xρA) := ρ× τ(A),

τ(A→ B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀xρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A).

For every c.r. formula A we define an n.c. formula z r A with z a variable
of type τ(A):

(d, z) r ∃xA(x) := z r A(d),
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z r (A→ B) :=

{
∀w(w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r (A→nc B) := A→ z r B

z r ∀xA := ∀x(zx r A)

z r ∀ncx A := ∀x(z r A).

Finally, for a derivation M of a c.r. formula A we define its extracted term
et(M), of type τ(A). It will be a term in our underlying term language. This
definition is relative to a fixed assignment of object variables to assumption
variables: to every assumption variable uA for a c.r. formula A we assign
an object variable zu of type τ(A). For derivations MA with A n.c. let
et(MA) := ε. Otherwise

et(uA) := zτ(A)u (z
τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxρM
A)∀xA) := λρxet(M),

et((M∀xA(x)r)A(r)) := et(M)r,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

It remains to define extracted terms for the axioms. If for instance our
theory refers to natural numbers or lists of natural numbers, the extracted
term of the induction axiom is the recursion operator R for this data type.
For this to work it is necessary to the universally quantify the parameters
of the induction axiom by ∀nc.

Theorem (Soundness). Let M be a derivation of a c.r. formula A from as-
sumptions ui : Ci (i < n). Then we can derive et(M) r A from assumptions
zui r Ci in case Ci is c.r. and Ci otherwise.

The proof is by induction on M .
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2. List reversal

This is an example of “program development by proof transformation”.
The standard proof of list reversal has as its computational content a qua-
dratic algorithm. A certain “decoration algorithm” (see Schwichtenberg and
Wainer (2012, Sec. 7.5)) applied to the formalization of this proof transforms
a universal quantifier ∀v1 into a “non-computational” one ∀ncv1 . The new proof
has as its content the well-known linear algorithm for list reversal, using an
accumulator.

2.1. Existence proof. We first give an informal weak existence proof for
list reversal. Write vw for the result v ∗w of appending the list w to the list
v, vx for the result v ∗ x: of appending the one element list x: to the list v,
and xv for the result x :: v of constructing a list by writing an element x in
front of a list v, and omit the parentheses in R(v, w) for (typographically)
simple arguments. Assume

InitR: R([], []),

GenR: ∀v,w,x(Rvw → R(vx, xw)).

We view R as a predicate variable without computational content. The
reader should not be confused: of course these formulas involving R do
express how a computation of the reverted list should proceed. But the
predicate R itself only represents the graph of the list reversal function.

Let us now prove

(1) ∀v∃̃wRvw ( := ∀v(∀w(Rvw → ⊥)→ ⊥)).

Fix R, v and assume InitR, GenR and the “false” assumption u : ∀w¬Rvw;
we need to derive a contradiction. To this end we prove that all initial
segments of v are non-revertible, which contradicts InitR. More precisely,
from u and GenR we prove

∀v2A(v2) with A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)

by induction on v2. For v2 = [] this follows from u0 : v1 [] = v and our
(“false”) assumption u. For the step case, assume u1 : v1(xv2) = v, fix w
and assume further u2 : Rv1w. We must derive a contradiction. We use the
induction hypotheses with v1x and xw to obtain the desidered contradiction.
This requires us to prove (i) (v1x)v2 = v and (ii) R(v1x, xw). But (i) follows
from u1 using properties of the append function, and (ii) follows from u2
using GenR.

Our goal now is to machine extract computational content from this proof,
which requires full formalization, and in particular to identify all axioms and
lemmas used. Certainly induction and existence introduction ∃+ will show
up, but also dealing with equalities needs some attention. We have the
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generally available (n.c.) Leibniz equality =d with axioms v =d v and the
(c.r.) compatibility axiom

CompatRev : ∀ncv,w(v =d w → Xw → Xv).

In addition for “finitary” data types like natural numbers or lists of natural
numbers we have the decidable equality as a binary boolean valued function
defined by certain equations used as “computation rules”. In case of the
natural numers these are

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).

One can prove easily that Leibniz equality implies decidable equality:

EqToEqD: ∀v,w(v = w → v =d w).

This lemma will show up in our formalization, but since it is n.c. it will not
influence the extracted term.

The proof term is displayed in Figure 1.

M :=λR,vλuInitRλuGenRλ
∀w¬Rvw
u (

Indv2,A(v2)vRvMBaseMStep [] Truth[] v=v [] uInitR)

with

MBase := λv1λ
v1[]=v
u0 (

CompatRev { v | ∀w¬Rvw }Rv v1 v (EqToEqD v1vu0)u),

MStep := λx,v2λ
A(v2)
u0 λv1λ

v1(xv2)=v
u1 λwλ

Rv1w
u2 (

u0(v1x)u1(xw)(uGenRv1wxu2)).

Figure 1. Proof term for list reversal

We now have a proof M of ∀v∃̃wRvw from InitR: D1 and GenR: D2, with
D1 := R([], []) and D2 := ∀v,w,x(Rvw → R(vx, xw)). Replace ⊥ throughout

by ∃wRvw. The end formula ∃̃wRvw := ¬∀w¬Rvw := ∀w(Rvw → ⊥) → ⊥
is turned into ∀w(Rvw → ∃wRvw) → ∃wRvw. Since its premise is an
instance of existence introduction we obtain a derivation M∃ of ∃wRvw.
The term neterm extracted in Minlog from a formalization of the proof
above is

[R,v](Rec list nat=>list nat=>list nat=>list nat)v([v0,v1]v1)

([x,v0,g,v1,v2]g(v1++x:)(x::v2)) (Nil nat) (Nil nat)
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with g a variable for binary functions on lists. In fact, the underlying algo-
rithm defines an auxiliary function h by

h([], v1, v2) := v2, h(xv, v1, v2) := h(v, v1x, xv2)

and gives the result by applying h to the original list and twice [].
Notice that the second argument of h is not needed. However, its presence

makes the algorithm quadratic rather than linear, because in each recursion
step v1x is computed, and the list append function is defined by recursion
on its first argument.

One may see that the source of this problem is the use of ∀v1 rather than
∀ncv1 in the proof (by induction on v2) of the formula A(v2) := ∀v1(v1v2 =
v → ∀w¬Rv1w)). In fact, v1 is not used computationally in this proof.

It will turn out that a certain decoration algorithm is able to automatically
detect and repair this point. It returns a decorated version of the proof,
where ∀ncv1 occurs. This makes the corresponding algorithm linear.

2.2. Decoration algorithm. The sequent Seq(M) of a proof M consists
of its context and end formula. The proof pattern P(M) of a proof M is
the result of marking in c.r. parts of M (i.e., not above a n.c. formula) all
occurrences of implications and universal quantifiers as non-computational,
except the “uninstantiated” formulas of axioms and theorems. For instance,
the induction axiom for N consists of the uninstantiated formula ∀n(X0→
∀n(Xn → X(Sn)) → XnN) with a predicate variable X and a predicate
substitution X 7→ {x | A(x) }. Notice that a proof pattern in most cases is
not a correct proof, because at axioms formulas may not fit.

We say that a formula D extends C if D is obtained from C by changing
some (possibly zero) of its occurrences of non-computational implications
and universal quantifiers into their computational variants → and ∀.

A proof N extends M if (i) N and M are the same up to variants of im-
plications and universal quantifiers in their formulas, and (ii) every formula
in c.r. parts of M is extended by the corresponding one in N . Every proof
M whose proof pattern P(M) is U is called a decoration of U .

In the sequel we assume that every axiom has the property that for every
extension of its formula we can find a further extension which is an instance
of an axiom, and which is the least one under all further extensions that
are instances of axioms. This property clearly holds for axioms whose unin-
stantiated formula only has → and ∀, for instance induction. However, in
∀n(A(0) → ∀n(A(n) → A(Sn)) → A(nN)) the given extension of the four
A’s might be different. One needs to pick their “least upper bound” as
further extension.
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CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w
∃+ R v

∀w¬∃Rvw
∀w¬∃Rv1w →+u1

v1 [] = v → ∀w¬∃Rv1w
∀v1(v1 [] = v → ∀w¬∃Rv1w) (= A([]))

Figure 2. Base derivation MB

Theorem (Dedoration algorithm). Under the assumption above, for every
proof pattern U and every extension of its sequent Seq(U) we can find a
decoration M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and
(b) M∞ is optimal in the sense that any other decoration M of U whose

sequent Seq(M) extends the given extension of Seq(U) has the property
that M also extends M∞.

The proof is by induction on derivations.

2.3. Decoration of the list reversal proof. We present our proof in
more detail, particularly by writing proof trees with formulas. Recall that
we essentially use list induction. The full derivation M is obtained from

Ind v R v
A([])→ ∀x,v2(A(v2)→ A(xv2))→ A(v))

|MB

A([])

∀x,v2(A(v2)→ A(xv2))→ A(v)

|MS

∀x,v2(A(v2)→ A(xv2))

∀v1(v1v = v → ∀w¬∃Rv1w) (= A(v))

by applying it to [], Truth, [] and InitR and finally introducing ∀v. Here

Ind: ∀ncv,R∀w(A([])→ ∀x,v2(A(v2)→ A(xv2))→ A(w)),

A(v2) := ∀v1(v1v2 = v → ∀w¬∃Rv1w),

¬∃B := B → ∃wRvw.
The end formula then is ∀v∃wRvw. We have used the base derivation MB

in Figure 2 with N1 involving EqToEqD: ∀v,w(v = w → v =d w), and

CompatRev : ∀ncR,v,v1,v2(v1 =d v2 → ∀w¬∃Rv2w → ∀w¬∃Rv1w)

∃+ : ∀ncR,v∀w¬∃Rvw.
We have also used the step derivation MS in Figure 3 with N2 involving the
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[u0 : A(v2)] v1x

(v1x)v2=v → ∀w¬∃R(v1x,w) [u1 : v1(xv2)=v]

∀w¬∃R(v1x,w) xw

¬∃R(v1x, xw)

[u2 : Rv1w]

| N2

R(v1x, xw)

∃wRvw →+u2
¬∃Rv1w
∀w¬∃Rv1w →+u1

v1(xv2) = v → ∀w¬∃Rv1w
∀v1(v1(xv2)=v → ∀w¬∃Rv1w) (=A(xv2)) →+u0

A(v2)→ A(xv2)

∀x,v2(A(v2)→ A(xv2))

Figure 3. Step derivation MS

assumption GenR: ∀v,w,x(Rvw → R(vx, xw)).
We now apply the decoration algorithm. Notice that the sequent or our

derivation consists of the context

InitR: R([], []) GenR: ∀v,w,x(Rvw → R(vx, xw))

and the end formula ∀v∃wRvw. Among the axioms used, the only ones in
c.r. parts are list induction, CompatRev and ∃+. If we now form the proof
pattern as defined above, we obtain a clash at the list induction axiom.
Recall that it is given by its uninstantiated formula

∀v(X([])→ ∀x,v2(X(v2)→ X(xv2))→ X(v))

and the predicate substitution X 7→ { v | A(v) }. When forming the proof

pattern, A(v2) is changed into Â(v2) := ∀ncv1(v1v2 = v → ∀ncw ¬∃Rv1w), but
the uninstantiated formula is not touched. The clash then consists in the
fact that the conclusion of the decorated induction axiom

∀ncv,R∀w(Â([])→ ∀x,v2(Â(v2)→ Â(xv2))→ Â(w)),

is a proper extension of what is in the proof pattern:

∀ncv,R,w(Â([])→nc ∀ncx,v2(Â(v2)→nc Â(xv2))→nc Â(w)).

The decoration algorithm now replaces the latter by the former. Similarly
in MB the conclusions of the decorated axioms CompatRev and ∃+

∀ncR,v,v1,v2(v1 =d v2 → ∀ncw ¬∃Rv2w → ∀ncw ¬∃Rv1w)

∀ncR,v∀w(Rvw → ∃wRvw)
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CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w
∃+ R v

∀w¬∃Rvw
∀w¬∃Rv1w →+u1

v1 [] = v → ∀w¬∃Rv1w
∀ncv1(v1 [] = v → ∀w¬∃Rv1w) (= A′([]))

Figure 4. Base derivation M ′B

are proper extensions of what is in the proof pattern

∀ncR,v,v1,v2(v1 =d v2 → ∀ncw ¬∃Rv2w →nc ∀ncw ¬∃Rv1w)

∀ncR,v,w(Rvw → ∃wRvw)

and the decoration algorithm replaces the latter by the former. But now
the end formula ∀w¬∃Rvw of the ∃+-derivation is a proper extension of the
premise of the conclusion ∀ncw ¬∃Rv2w → ∀ncw ¬∃Rv1w) of the CompatRev-
derivation. This requires us to go back into the CompatRev-derivation and
change the predicate substitution X 7→ { v | Â(v) } to X 7→ { v | A′(v) }
with A′(v2) := ∀ncv1(v1v2 = v → ∀w¬∃Rv1w). Thus we obtain the derivation
in Figure 4.

But now we have a clash where M ′B is used:

Ind v R v

Â([])→ ∀x,v2(Â(v2)→ Â(xv2))→ Â(v)

|M ′B
A′([])

∀x,v2(Â(v2)→nc Â(xv2))→nc Â(v)

Thus we have to go again into the left hand derivation and change the
predicate substitution X 7→ { v | Â(v) } used in the induction axiom into
X 7→ { v | A′(v) }. This gives us ∀x,v2(A′(v2)→ A′(xv2))→ A′(v).

Now the next clash appears where we used MS : we have to change
P(MS) with end formula ∀ncx,v2(Â(v2) →nc Â(xv2)) into a derivation M ′S of
∀x,v2(A′(v2)→ A′(xv2)). But this is easy, since no c.r. axioms are involved:
just change ∀ncx , ∀ncw everywhere into ∀x, ∀w.
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Finally we obtain

Ind v R v
A′([])→ ∀x,v2(A′(v2)→ A′(xv2))→ A′(v))

|M ′B
A′([])

∀x,v2(A′(v2)→ A′(xv2))→ A′(v)

|M ′S
∀x,v2(A′(v2)→ A′(xv2))

∀ncv1(v1v = v → ∀w¬∃Rv1w) (= A′(v))

Applying this it to [], Truth, [] and InitR and finally introducing ∀v gives us
a decorated derivation of formula ∀v∃wRvw. The difference is that induction
is now used w.r.t. the formula A′(v2) := ∀ncv1(v1v2 = v → ∀w¬∃Rv1w) with
∀ncv1 rather than ∀v1 .

The extracted term neterm then is

[R,v](Rec list nat=>list nat=>list nat)v([v0]v0)

([x,v0,f,v1]f(x::v1))(Nil nat)

with f a variable for unary functions on lists. To run this algorithm one has
to normalize the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))

The returned value is the reverted list 4::3::2::1:. This time, the under-
lying algorithm defines an auxiliary function g by

g([], w) := w, g(x :: v, w) := g(v, x :: w)

and gives the result by applying g to the original list and []. In conclusion,
we have obtained (by machine extraction from an automated decoration of
a weak existence proof) the standard linear algorithm for list reversal, with
its use of an accumulator.

3. Maximal scoring segment

The final example is due to Bates and Constable (1985), and deals with
the “maximal scoring segment” (MSS) problem. Let X be a set with a linear
ordering ≤, and consider an infinite sequence f : N → X of elements of X.
Assume further that we have a function M : (N → X) → N → N → X
such that M(f, i, k) “measures” the segment f(i), . . . , f(k). The task is to
find a segment determined by i ≤ k ≤ n such that its measure is maximal.
To simplify the formalization let us consider M and f fixed and define
seg(i, k) := M(f, i, k).

Such a problem appears e.g. in computational biology, when one wants
to compute regions with high G,C content in DNA. Let

X := {G,C,A, T},
g : N→ X (gene),
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f : N→ Z, f(i) :=

{
1 if g(i) ∈ {G,C},
−1 if g(i) ∈ {A, T},

seg(i, k) = f(i) + · · ·+ f(k).

Of course we can simply solve this problem by trying all possibilities;
these are O(n2) many. The first proof to be given below corresponds to
this general claim. Then we will show that for a more concrete problem
with the sum xi + · · · + xk as measure the proof can be simplified, using
monotonicity of the sum at an appropriate place. From this simplified proof
one can extract a better algorithm, which is linear rather than quadratic.
Our goal is to achieve this effect by decoration.

We provide two lemmata proving the existence of a maximal end segment
for n+ 1. The first one is

L : ∀n∃j≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

Its proof introduces an auxiliary variable m and proceeds by induction on
m, with n a parameter:

∀ncn ∀m≤n+1∃j≤n+1∀j′≤m(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

The second one is

LMon : ∀ncn (ESn → Mon→ ∃j≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1))).

It has as additional assumptions the existence ESn of a maximal end segment
for n

ESn : ∃j≤n∀j′≤n(seg(j′, n) ≤ seg(j, n))

and the assumption Mon of monotonicity of seg

Mon : seg(i, k) ≤ seg(j, k)→ seg(i, k + 1) ≤ seg(j, k + 1).

The proof proceeds by cases on seg(j, n+ 1) ≤ seg(n+ 1, n+ 1). If ≤ holds,
take n+ 1, else the previous j.

We now prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

MaxSegMon : ∀n(∃i≤k≤n∀i′≤k′≤n(seg(i′, k′) ≤ seg(i, k)) ∧d

∃j≤n∀j′≤n(seg(j′, n) ≤ seg(j, n)))

In the step, we compare the maximal segment i, k for n with the maximal
end segment j, n+ 1 provided separately. If ≤ holds, take the new i, k to be
j, n+ 1. Else take the old i, k.

Depending on how the existence of a maximal end segment was proved,
we obtain a quadratic or a linear algorithm. If we consider the first proof
involving induction on the auxiliary variable m, we obtain a quadratic al-
gorithm. The reason is that the computational content of L involves an
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additional recursion, since L was proved by induction on m. The two nested
recursions then give a quadratic algorithm.

Now how could the better proof be found by decoration? We have

L : ∀n∃j≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)),

LMon : ∀ncn (ESn → Mon→ ∃j≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1))).

The decoration algorithm arrives at L with

∃j≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

LMon fits as well, its assumptions ESn and Mon are in the context, and it has
the less extended ∀ncn rather than ∀n, hence is preferred.
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