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Abstract
1. So-called fairy circles (FCs) comprise a spatially periodic gap pattern in arid 

grasslands of Namibia and north-west Western Australia. This pattern has been 
explained with scale-dependent ecohydrological feedbacks and the reaction-
diffusion, or Turing mechanism, used in process-based models that are rooted in 
physics and pattern-formation theory. However, a detailed ecological test of the 
validity of the modelled processes is still lacking.

2. Here, we test in a spinifex-grassland ecosystem of Western Australia the presence 
of spatial feedbacks at multiple scales. Drone-based multispectral analysis and 
spatially explicit statistics were used to test if grass vitality within five 1-ha plots 
depends on the pattern of FCs that are thought to be a critical extra source of 
water for the surrounding matrix vegetation. We then examined if high- and low-
vitality grasses show scale-dependent feedbacks being indicative of facilitation 
or competition. Additionally, we assessed facilitation of grass plants for different 
successional stages after fire at fine scales in 1-m2 quadrats. Finally, we placed soil 
moisture sensors under bare soil inside the FC gap and under plants at increasing 
distances from the FC to test if there is evidence for the ‘infiltration feedback’ as 
used in theoretical modelling.

3. We found that high-vitality grasses were systematically more strongly associated 
with FCs than low-vitality grasses. High-vitality grasses also had highly aggre-
gated patterns at short scales being evidence of positive feedbacks while negative 
feedbacks occurred at larger scales. Within 1-m2 quadrats, grass cover and mutual 
facilitation of plants was greater near the FC edge than further away in the matrix. 
Soil moisture after rainfall was lowest inside the FC with its weathered surface 
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1  | INTRODUC TION

Spatially periodic plant patterns in drylands such as vegetation spots 
at the transition to bare-soil desert, stripes of trees and grasses 
or vegetation gaps have attracted the attention of scientists for 
many decades. The fascination about such highly ordered distri-
butions was, and is, induced by inspecting aerial imagery because 
the invariable spatial periodicity of such regular patterns is only 
visible from a bird's-eye view. Examples include tree bands such 
as ‘tiger bush’ (Boaler & Hodge, 1962; Lefever & Lejeune, 1997), 
banded grass patterns (Worrall, 1959) and shrubland gaps (Barbier, 
Couteron, Lefever, Deblauwe, & Lejeune, 2008) in arid Africa, 
tree stripes (Dunkerley, 2002; Saco, Willgoose, & Hancock, 2007) 
and banded grass (Dunkerley & Brown, 1999) in Australia or many 
other gap, stripe, labyrinth and spot patterns from water-limited 
environments around the globe (Deblauwe, Barbier, Couteron, 
Lejeune, & Bogaert, 2008). These well-known vegetation patterns 
are thought to emerge primarily due to short-range positive ecohy-
drological biomass-water feedbacks and resultant long-range water 
depletion, and the forming morphologies follow specific rules of pat-
tern-formation theory (Borgogno, D'Odorico, Laio, & Ridolfi, 2009; 
Couteron & Lejeune, 2001; Deblauwe, Couteron, Lejeune, Bogaert, 
& Barbier, 2011; Meron, 2012, 2016; Meron et al., 2019; Meron, 
Gilad, von Hardenberg, Shachak, & Zarmi, 2004).

One of the most striking vegetation patterns are the so-called 
‘fairy circles’ which occur in the arid grasslands of Namibia (van 
Rooyen, Theron, van Rooyen, Jankowitz, & Matthews, 2004) and east 
of Newman in north-west Western Australia (Getzin et al., 2016). In 
these largely homogeneous sandy or clayish habitats, where only 
one or two grass species predominate, the fairy circles have diam-
eters of typically 4–10 m and they have an identical spatial signa-
ture. This signature is characterized by each fairy circle having on  
average six nearest neighbours that are located at approximately  
the same distance from the focal circle, leading to a hexagonal grid. 
The fairy circles are thus spatially periodic and constitute probably the 
most regularly distributed vegetation gaps that are currently known 

from arid environments (Getzin, Yizhaq, Cramer, & Tschinkel, 2019; 
Getzin, Yizhaq, Munoz-Rojas, Wiegand, & Erickson, 2019). It is ob-
vious that such exceptionally ordered patterns can only result from 
strong interactive processes, because in the absence of interaction, 
the probability of creating order in a noisy environment is very un-
likely (Saha & Galic, 2018).

Fairy circles (FCs) are subject to an ongoing controversy about 
their origin (Sahagian, 2017). More recent theories have focused on 
vegetation self-organization and argued that FCs are an emergent 
vegetation phenomenon that reflects a population-level response 
to aridity stress where ecohydrological biomass-water feedbacks 
lead to strictly geometric patterns (Cramer & Barger, 2013; Cramer, 
Barger, & Tschinkel, 2017; Getzin et al., 2015a,b; 2016; Getzin, 
Yizhaq, Cramer, et al., 2019; Ravi, Wang, Kaseke, Buynevich, & 
Marais, 2017; Zelnik, Meron, & Bel, 2015). The periodically ordered 
pattern is thus an expression that there is not enough water to sus-
tain uniform vegetation coverage at the landscape scale and the dis-
tinct, so-called ‘wavelength’ of the gap pattern reflects the spatial 
scale at which water is most limiting to the plants (Meron, 2016).

One point of criticism, however, is that the support of this 
hypothesis was mainly rooted in physics and mathematical mod-
elling of pattern formation while there are currently too little 
field-based studies to verify the validity of such models (Vlieghe 
& Picker, 2019). Indeed, there is a strong imbalance between the 
theoretical vegetation models, their a priori assumptions and the 
scarcity of empirical proof that the modelled processes are correct 
from an ecological point of view. This imbalance can be attributed 
to the fact that the recognition of periodically ordered vegetation 
in drylands has primarily drawn the interest of physicists to repli-
cate the observed patterns via partial-differential equation mod-
elling (Klausmeier, 1999; Lefever & Lejeune, 1997; Rietkerk et al., 
2002; von Hardenberg, Meron, Shachak, & Zarmi, 2001; Yizhaq & 
Bel, 2016). Very few such studies in arid environments, however, 
have empirically linked measured processes and ecological proper-
ties in the field with the theoretical modelling of the assumed eco-
hydrological feedbacks and resultant vegetation self-organization. 

crust but highest under grass at the gap edge, and then declined towards the ma-
trix, which confirms the infiltration feedback.

4. Synthesis. The study shows that FCs are a critical extra source of water for the 
dryland vegetation, as predicted by theoretical modelling. The grasses act as ‘eco-
system engineers’ that modify their hostile, abiotic environment, leading to veg-
etation self-organization. Overall, our ecological findings highlight the validity of 
the scale-dependent feedbacks that are central to explain this emergent grassland 
pattern via the reaction-diffusion or Turing-instability mechanism.
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These include studies of vegetation gaps in African shrublands 
(Barbier et al., 2008) or ring formation in Israelian desert plants 
(Yizhaq, Stavi, Swet, Zaady, & Katra, 2019). With a similar empirical 
approach, other studies from moister climates include, for exam-
ple, peatlands in Siberia (Eppinga et al., 2008; Eppinga, de Ruiter, 
Wassen, & Rietkerk, 2009).

With regard to the FCs, the major empirical support for the 
vegetation models currently comes from analyses of higher-level 
components and so-called coarse-graining, hence from aggregating 
finer-scale processes or patterns to larger-scale summaries (Newman, 
Kennedy, Falk, & McKenzie, 2019). For example, the modelled FC 
patterns have been statistically matched with FC snap-shot patterns 
in aerial imagery (Getzin et al., 2015a, 2016) or the rainfall-dependent  
appearance and disappearance of FCs, as observed in satellite im-
ages, has been well replicated with dynamic modelling (Zelnik et al., 
2015). In context with pattern-oriented modelling (Grimm et al., 
2005; Wiegand, Saltz, Ward, & Levin, 2008), these vegetation mod-
els that are based on theoretically assumed processes of plant com-
petition for soil water have, in principle, the ability to replicate the 
coarse-grained FC spatial structure. Similar successful matching 
of modelled and real-world patterns has also been demonstrated 
for completely different systems such as the Everglades in Florida 
(Acharya, Kaplan, Casey, Cohen, & Jawitz, 2015) or Mediterranean 
seagrass meadows (Ruiz-Reynés et al., 2017).

This successful matching, however, is not a verification that 
the modelled processes and mechanisms of plant self-organiza-
tion are indeed right and happening in the real world to cause the 
observed patterns (Borgogno et al., 2009). Within a framework of  
pattern-process inference, these coarse-graining methods are mainly 
useful to identify unlikely processes for the cause of the pattern and 
to narrow down the most plausible working hypotheses (Getzin, 
Yizhaq, Cramer, et al., 2019; McIntire & Fajardo, 2009; Schurr, 
Bossdorf, Milton, & Schumacher, 2004). Consequently, if the exten-
sive achievements of the mathematical process-based models are 
to find greater acceptance in ecology, then it is necessary not only 
to reconstruct the higher-level structures but also to demonstrate 
true evidence of the validity of the modelled lower-level processes 
assumed a priori. This can be achieved with more fine-grained and 
detailed ecological analyses in the field, including experimental test-
ing (Tschinkel, 2015), plant- and soil-related ecohydrological mea-
surements (Cramer et al., 2017; Getzin et al., 2016; Ravi et al., 2017) 
and high-resolution vegetation mapping employing modern drones 
(Getzin, Wiegand, & Schoening, 2012; Getzin, Yizhaq, Munoz-Rojas, 
et al., 2019).

Process-based FC vegetation models use nonlinear partial- 
differential equations to reconstruct the periodic FC ordering via 
so-called Turing-like instabilities, also called Turing mechanisms, 
and principles of pattern-formation theory (Borgogno et al., 2009; 
Meron, 2012, 2015; Turing, 1952). This Turing mechanism is also 
known as reaction-diffusion mechanism or activator-inhibitor prin-
ciple, and a key to forming spatially periodic Turing patterns is the 
presence of positive and negative feedback interaction at differ-
ent spatial scales (Figure 1a; Rietkerk & van de Koppel, 2008). In 

context with modelling self-organized vegetation patterns in dry-
lands, ecohydrological feedback loops with positive short-range 
plant interaction (facilitation) but negative long-range inhibition 
(competition) are central to explain the periodically ordered FCs 
(Figure S1; Getzin et al., 2016; Meron, 2018; Tlidi, Lefever, & 
Vladimirov, 2008). Such models generally predict two uniform sta-
ble states—uniform vegetation under high precipitation and bare-
soil desert at lowest rainfall. Between these two stable states, 
periodically ordered states such as FCs, vegetation spots, stripes 
and labyrinths can form and the various proportions of bare soil 
are an expression that there is not enough water to sustain a con-
tinuous or uniform vegetation layer (Figure 1b–d; Meron, 2018). 
Fundamental to these processes is that various modes of water 
transport are capable of inducing pattern-forming feedbacks in 
water-limited vegetation (Meron, 2012, 2016) so that resource 
concentration leads to self-organized patchiness and a local aggre-
gation of biomass (Rietkerk, Dekker, de Ruiter, & van de Koppel, 
2004).

For Namibian FCs, which form primarily on deep aeolian sands, 
the mode of soil-water diffusion towards spatially confined grass 
roots has been identified as the dominant feedback mechanism to 
model the FCs (Zelnik et al., 2015). For Australian FCs, which form as 
hard weathered clay crusts, overland-water flow and an ‘infiltration 
feedback’ have been successfully used to model the process of local 
water uptake by the spinifex grasses of the genus Triodia (Figure 1e, 
Figure S1; Getzin et al., 2016). Here, the a priori assumption is that 
the roots of the Triodia plants induce an infiltration contrast and 
thereby trigger the positive short-range feedback loop where more 
vital and larger plants gain more water and thus have a dispropor-
tionally greater benefit than weaker neighbouring plants (Figure 1f). 
Irrespective of the differences between these proposed feedback 
mechanisms in Namibia and Australia, it is assumed that the emer-
gent FCs contribute a critical extra source of water for the surround-
ing matrix grasses that grow between the FCs and that the most vital 
grasses should therefore grow around the FC perimeters. By forming 
periodic vegetation-gap patterns, the grasses benefit from the ad-
ditional water resource provided by the FCs, and thereby keep the 
ecosystem functional at precipitation values lower than those re-
quired for uniform vegetation (Meron, 2018). In this way, the grasses 
act as ‘ecosystem engineers’ because their cooperative action mod-
ifies the abiotic environment, they redistribute resources and they 
facilitate the growth of their own species in their canopy neighbour-
hood (Borgogno et al., 2009; Gilad, von Hardenberg, Provenzale, 
Shachak, & Meron, 2004).

Despite the intriguing periodic vegetation patterns in global 
drylands, there are still only very few studies where field-based 
data have been directly linked to the theoretical modelling of  
reaction-diffusion processes and the a priori assumed feedback 
mechanisms (Barbier et al., 2008; Dunkerley, 2018; Yizhaq et al., 
2019). This current lack of bridging between ecology and physics 
is no surprise given that most of the papers dealing with such peri-
odic dryland vegetation are based on modelling, but there is a gap 
between the relative mathematical simplicity of the models and 
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the complexity of the real world (Kondo & Miura, 2010). Moreover, 
while the reaction-diffusion mechanism is now widely accepted 
for Turing patterns at the subcellular or cellular levels (e.g. pig-
mentation in zebrafish), for the organismal level such as dryland 
vegetation, empirical evidence is still rare (Saha & Galic, 2018). 
So far, there is mostly no conclusive experimental evidence sug-
gesting that the organized spatial configurations of vegetation ob-
served in nature do emerge from Turing-like dynamics (Borgogno 
et al., 2009).

Besides the aforementioned field studies, empirical support for 
the validity of Turing dynamics does partially also exist with regard 
to fairy circles. For example, in Namibia it has been demonstrated 
that the deep aeolian sands form a hydraulically connected edaphic 
environment where water is highly mobile and may laterally flow 
more than seven metres within a short time (Cramer et al., 2017). 
These scales of horizontal water movement equal biomass gradients 

where the strongest and most vital grasses can be found around the 
FCs while less vital grasses grow metres away from the FCs. The high 
mobility of water in deep aeolian sand therefore justifies using fast 
soil-water diffusion as the specific feedback mechanism to model 
the Namibian FCs (Zelnik et al., 2015).

For the Australian FCs, fieldwork has demonstrated that water 
infiltration in unvegetated soil inside the FCs is significantly lower 
than in soils between the surrounding matrix vegetation. Preliminary 
experimental testing has also shown that despite the flatness of the 
landscape, excess surface water moves from the FCs towards the 
matrix due to strongly reduced infiltration within the FC, which re-
sulted in using the infiltration feedback as the specific mechanism to 
model the Australian FCs (Figure 1e; Getzin et al., 2016). Based on 
more than 150 soil excavations it has also been demonstrated that 
these FCs have no causal link to termite activity but that their high 
clay contents and soil compaction results from mechanical abiotic 

F I G U R E  1   Modelling the fairy circles of Australia based on principles of pattern-formation theory. A short-distance positive feedback 
and a long-distance negative feedback is central to generate a Turing pattern (a, after Rietkerk & van de Koppel, 2008). A bifurcation diagram 
(b), used for modelling the Australian FCs and visual agreement of modelled (c) and real-world (d) patterns of Triodia plants. The black and 
red solid lines in the diagram (b) show stable bare soil and uniform vegetation, respectively, and the blue and green lines show two examples 
of periodic vegetation patterns that the system can take on (details in Getzin et al., 2016). The model is based on a specific pattern-forming 
feedback, which is overland-water flow due to infiltration contrast (e). This modelled mechanism leads to lowest soil moisture inside the FC 
but highest soil moisture and the most vigorous plant growth at the FC edge, which then declines towards the matrix (f, after Palmer, 2016; 
see also Figure S1)
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weathering in this climatically harsh environment (Getzin, Yizhaq, 
Munoz-Rojas, et al., 2019). These findings are so far in support of 
the modelled infiltration contrast, but they do not yet constitute a 
detailed ecological test of the validity of the model assumptions and 
associated feedback mechanisms. Indeed, identification and ver-
ification of the specific dynamics of the reaction-diffusion system 
is critical to showing the applicability of the Turing mechanism to 
the formation of a given pattern (Kondo & Miura, 2010). Therefore, 
we need to test specific model assumptions such as (a) the land-
scape-scale function of the FC pattern as a critical extra source of 
water for the matrix vegetation, (b) the scale-dependent feedbacks 
of vegetation interaction and (c) the existence of the infiltration 
feedback. For this reason, we have undertaken a holistic ecological 
study in north-west Western Australia to test if the a priori assumed 
processes from physics and the modelled ecohydrological feedback 
mechanisms can be verified in the real world. We focused here only 
on the Australian FCs due to the considerable labour effort that is 
necessary to test those processes and secondary model predictions 
over longer time scales and large spatial scales. Here we tested the 
following hypotheses.

Hypothesis 1 According to the reaction-diffusion mechanism, the 
formation of a spatially structured mode, i.e. the periodically 
ordered FC pattern across the landscape, is not a random event 
but inherently linked to the demography and ecohydrological 
feedbacks of the grass population. Grasses of high vitality should 
show a stronger spatial association with the FCs than low-vitality 
grasses because the FCs are assumed to have a landscape-scale 
function as a critical extra source of water for the vegetation. We 
tested this model assumption by using high-resolution, multispec-
tral drone imagery and spatially explicit statistics, as well as clas-
sic landscape metrics.

Hypothesis 2 If the FCs result from positive and negative feedback in-
teractions of the grasses, then high-vitality grasses which primar-
ily exert positive feedbacks and facilitation should principally have 
strongly clustered distributions at short scales and increasingly 
merge at the FC gap edge to increase their benefit from higher 
water availability. In contrast, low-vitality grasses which suffer 
from a lack of water and negative feedbacks, should not have 
clustered but regular to random distributions at scales slightly 
larger than the positive feedback. This is because a poor water 
availability should not support a cooperative patch formation of 
clumped grasses but only the survival of scattered or segregated 
individuals that are more widely spaced. This model assumption 
is also tested using drone imagery and spatial statistics, as well 
as fine-scale mapping of post-fire grass recovery within sample 
quadrats placed at edge and matrix locations around FCs.

Hypothesis 3 If the pattern-forming processes based on the mod-
elled infiltration feedback are verifiable, there should be a high 
infiltration contrast between the bare soil of the FCs and under 
bordering plants at the FC periphery where root conduits aid in 
increased water infiltration. Most water should infiltrate under 
alive plants that directly border on the FC edge, less water should 

infiltrate further away in the matrix and least water in the interior 
of the hardened FC. This fundamental model assumption about 
the feedback mechanism was tested with the installation of a 
fully equipped weather station containing soil moisture and tem-
perature sensors.

2  | MATERIAL S AND METHODS

2.1 | Study area

The Australian FCs can be found in a small area near the min-
ing town of Newman in the Pilbara region of north-west Western 
Australia. They exist only within a radius of 10 km east to south of 
Ophthalmia Dam, which is fed by the Fortescue River upper catch-
ment (Getzin et al., 2016; Getzin, Yizhaq, Munoz-Rojas, et al., 2019). 
This landscape is very flat and mono-specifically dominated by 
the spinifex grass Triodia basedowii E. Pritz. Soils on the flat plains 
are sandy, comprising Red Kandosols, Red Ferrosols and Leptic 
Rudosols (Isbell, 2002). The climate is arid with about 330 mm 
mean annual precipitation (MAP) over the period 1972–2018, and 
3,200–3,400 mm annual evaporation, representing an aridity index 
of c. 0.1. During the summer tropical cyclone season from November 
to April, exceptionally strong rainfall events may occur with rainfall 
exceeding 50 mm on one single day (Australian Government Bureau 
of Meteorology, 2018). Air temperatures during the summer cyclone 
season can be very high with daily maxima exceeding 45°C. Soil sur-
face temperatures in the upper centimetre on bare ground in FCs 
can reach 75°C, and mechanical weathering in these harsh condi-
tions leads to the formation of physical clay crusts with compacted 
and sealed surfaces, which hamper rain infiltration and cause run-
off water to flow on the surface (Getzin et al., 2016; Getzin, Yizhaq, 
Munoz-Rojas, et al., 2019). Recurrent natural fire events, which may 
be spatially patchy, burn these Triodia grasslands approximately 
every 15–30 years, thereby destroying the entire grass vegetation 
(Levin, Levental, & Morag, 2012; Muñoz-Rojas, Erickson, Martini, 
Dixon, & Merritt, 2016). Triodia basedowii regenerates entirely from 
seeds after fire (Grigg, Veneklaas, & Lambers, 2008).

2.2 | Drone survey

Between the 7th and 25th of July 2017, we undertook a drone (un-
manned aerial vehicle, UAV) survey where we mapped five FC plots 
with a Microdrone md4-1000 quadcopter (Figure 2a,b). Their loca-
tion has been described in Getzin, Yizhaq, Munoz-Rojas, et al. (2019) 
for four of these plots, named ‘FC-L1’, ‘FC-L2’, ‘FC-C2’, ‘FC-1’, and 
in Getzin et al. (2016) for the fifth plot, named ‘FC-C5’ (Table S1; 
Figure S2a). The plots FC-L1, FC-L2 and FC-C5 represent typical cli-
max stages of long unburnt Triodia grasslands (i.e. >15 years since 
fire). These plots, however, experienced a severe fire during the year 
after the survey, on 6th of April 2018, which burnt the entire grass 
layer. The plot FC-C2 burnt in early November 2014, thus at the time 
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of the survey, the recovering vegetation was 2 years and 8 months 
old for plot FC-C2. Plot FC-1 burnt sometime between 2005 and 
2012. According to plant size, this plot has an estimated post-fire 
age of about 10 years.

In order to achieve ultra-high resolution mapping of 1 cm/pixel 
with the 24-megapixel photo camera SONY NEX-7, plot sizes were 
limited to 200 m × 200 m, flying altitude was 40 m above ground, 
flying speed was 3 m/s and 420 RGB images were taken with 85% 
forward and 70% sideward overlap (Figure 2c; Figure S2b). These 
images were used as visual backup but were not further analysed.

The same plots were then mapped with the multispectral camera 
Tetracam Mini MCA-6, which has 1.3-megapixel sensors for each 
of the six channels with bandpass filters of 550, 670, 710, 780, 900 
and 950 nanometres respectively. Unlike the photo camera with a 
wide-angle lens, the Tetracam has a tele lens, which required a flying 
altitude 100 m above ground to cover the 200 m × 200 m plots with 
one continuous flight. At a flying speed of 3 m/s, 250 photos were 
taken with 85% forward, 70% sideward overlap and a resolution of 
6 cm/pixel (Figure 2d).

2.3 | Preparation of drone data

OneButton software (www.icaros.us) was used to stitch the RGB 
photos and the multispectral images into geo-referenced ortho-
photos. The RGB photos were directly fed into the software. The 
multispectral images from raw Tetracam files were at first converted 
into multipage TIFF images with the software PixelWrench 2 and 
then stitched together. Using OneButton software, we calculated 

the Normalized Difference Vegetation Index (NDVI) with the for-
mula NDVI = (NIR − Red)/(NIR + Red), based on the bandpass fil-
ters of 670 nm (Red) and 900 nm (NIR) respectively (Figure 2d). The 
obtained NDVI images were then inspected for the range of NDVI 
values being typical for bare soil, bare soil partly covered by dead 
lignified grasses and litter, low-vitality grasses, high-vitality grasses 
and woody vegetation such as shrubs and eucalypt trees that also 
occur in the FC plots. NDVI values >0.10 up to maximum values 
of 0.52 were classified as green leaves of shrubs and trees. Lowest 
NDVI values ranging from −0.37 to ≤−0.26 were identified as bare 
soil without litter coverage, while values ranging from −0.25 to 
≤−0.16 turned out to be bare soil-litter transitions where soil was 
partly covered with lignified remnants of dead Triodia grasses. The 
remaining NDVI values from −0.15 to 0.10 thus represent grasses 
of low and high vitality. For the five plots, the median NDVI value 
of this alive grass vegetation was on average −0.11, hence we used 
this threshold to classify low-vitality grasses as those having NDVI 
values from −0.15 to −0.11, while high-vitality grasses ranged from 
−0.10 to 0.10.

We then inspected the 200 m × 200 m NDVI images and se-
lected for each a 100 m × 100 m sub-window that was as much as 
possible devoid of shrub or tree aggregations given the study focus 
here was on the grasses. The 1-ha sub-windows thus represented 
the most homogeneous areas where grasses and FCs dominate. 
Unlike very young grasses that grow as separated individuals during 
the initial years, T. basedowii may form over time connected patches 
where individuals merge together and grow as one amalgamated 
unit, c. 1 m2 in size (Figure 2c). For this reason, the NDVI images 
were resampled, based on the average NDVI value, into a raster layer 

F I G U R E  2   Lifting off with the Microdrone md4-1000 quadcopter and the mounted multispectral camera Tetracam Mini MCA-6 (a). View 
from the drone over the arid Triodia grassland and the plot FC-L1 in Western Australia (b). Example of a drone-acquired RGB photo with scale bar 
(c) and a matched NDVI image (d) of Australian FCs in plot FC-C5, mapped in 2017 with the Microdrone md4-1000. In the colour palette of image 
(d), darker green shows woody shrubs and trees, yellowish-green indicates vital grasses while light-yellowish shows less vital grasses. Transitions 
between dead lignified grasses and litter towards bare soil, classified as ‘noise’, are indicated by very light-yellowish to brownish colours. 
Mechanical clay crusts of typical bare soil are indicated as brownish to reddish colours

(a) (b)

(c) (d)

http://www.icaros.us
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with 10,000 cells per hectare and grid cells of 1 m × 1 m resolu-
tion (Figure S2c), using QGIS-2.18 software (www.qgis.org). Finally, 
three NDVI classes for the 1 m2 grid cells with x,y-coordinates were 
used for spatial statistical analyses: bare-soil cells (−0.37 to ≤−0.26), 
low-vitality grasses (−0.15 to −0.11) and high-vitality grasses (−0.10 
to 0.10).

We then identified for the five 100 m × 100 m plots all FCs with 
a minimum threshold diameter of 2 m, using manual segmentation 
techniques as applied previously (Getzin et al., 2016; Getzin, Yizhaq, 
Munoz-Rojas, et al., 2019). Thus, for each FC we created with QGIS 
software one shapefile with geo-referenced information on the cir-
cle's x,y-coordinate and diameter. Smaller FCs were not considered 
because it is difficult to identify them as genuine FCs. The mean FC 
diameter in Australia is 4 m (Figure 2c), and it is these large FCs that 
are considered to function as an extra source of water for the sur-
rounding vegetation.

2.4 | Spatial statistical analysis

2.4.1 | Spatial association of grass vitality with 
FCs and with all bare-soil gaps

The FCs are thought to create a hydraulically connected landscape 
and thereby affect the vitality of the grasses not only on a local 
scale but also as a large-scale landscape pattern of water availabil-
ity (Cramer et al., 2017; Getzin et al., 2016; Tschinkel, 2015). We 
therefore used the Berman test (Berman, 1986) to investigate how 
far the density of low- and high-vitality grasses is associated with 
the spatially continuous covariate of water availability induced by 
run-off from the hardened FCs. To test the effect of this surrogate 
of water availability, the individual FC locations were converted 
into a kernel-smoothed covariate, using an Epanechnikov kernel 
with a radius of 5 m. Given that FCs in Australia have mean nearest-
neighbour distances of 10 m (Getzin et al., 2016), a kernel radius of 
5 m thus covers approximately the matrix vegetation half way to 
the neighbouring FC, and thereby the immediate area of the matrix 
vegetation that is most strongly affected by the nearest-neighbour 
FC (Figure S3).

In the Berman (1986) test, the observed distribution of the val-
ues Sobs of a spatial covariate Z at the grass data points x and the 
predicted distribution of the same covariate values Ssim, generated 
by 199 repeated simulations from the null model of complete spa-
tial randomness (CSR), are compared using the Z1 test statistic. Z1 
is computed based on the mean Sobs of the covariate values at all 
grass data points x: Z1 = (Sobs − μ)/σ where μ is the mean value of 
Ssim under the null model and σ2 the corresponding variance (Zhu, 
Getzin, Wiegand, Ren, & Ma, 2013). The null distribution of this 
test statistic is approximately the standard normal distribution. 
Based on this test statistic one can formulate the null and alter-
native hypotheses. H0: X is a stationary Poisson point process 
independent of Z1. H1: conditionally on Z1, the process X is an in-
homogeneous Poisson point process with intensity depending on 

the distance from Z1. We assessed significant deviation of the Z1 
scores from H0 at α = 0.05. Z1-values between −1.96 and 1.96 cor-
respond to a p-value >0.05 and encircle cases without significant 
departures of the null model. For each of the five FC plots, this test 
was done once only for the grid cells with low-vitality grasses and 
once only for the high-vitality grasses and then the Z1 scores were 
compared (Figure S3). Note that Z1 scores cannot attain positive 
values because the FC centre coordinates used to create the ker-
nel-smoothed covariate are bare-soil locations, primarily without 
either low- or high-vitality grasses.

While the Berman test accounts for the large-scale landscape 
pattern of water availability induced by FCs, we also studied the im-
mediate neighbourhood effect of all other bare-soil gaps on grass 
vitality, including small ones of just 1 m2. We applied landscape met-
rics to these discrete land-cover classes (Hesselbarth, Sciaini, With, 
Wiegand, & Nowosad, 2019), i.e. we calculated the full adjacency 
matrix based on rook's case, where four directions around cells are 
considered as neighbours. The adjacency matrix thus describes the 
configuration of the landscape in the form of a cell-wise count of 
all edges between the classes of bare soil, low-vitality grasses and 
high-vitality grasses.

2.4.2 | Spatial patterns assessed with univariate 
random labelling

Finally, we were interested if the spatial patterns of high-vitality 
grasses differ from the patterns of low-vitality grasses and if these 
patterns show aggregated (clustered) or segregated (regular) dis-
tributions that correspond to the modelled positive and negative 
feedbacks at small and larger scales (Figure 1a). To test this for-
mally, we applied the pair-correlation function (or short: g-function)  
and the null model of univariate random labelling (Wiegand &  
Moloney, 2004) once to the high-vitality and once to the low-vitality  
grasses. The g(r) is a neighbourhood-density function that describes 
clumping and regularity at a given radius r, using a standardized 
density. It is the expected density of points at a given distance r of 
an arbitrary point, divided by the intensity λ of the pattern (Stoyan 
& Stoyan, 1994). Under complete spatial randomness, CSR, g(r) = 1, 
aggregation is indicated by g(r) > 1, while regularity has values of 
g(r) < 1. The function can be extended to describe point patterns 
with two types of points (e.g. low-vitality grasses = pattern 1, high-
vitality grasses = pattern 2): the bivariate pair-correlation function 
g12(r) is the expected density of points of pattern 2 at distance r 
of an arbitrary point of pattern 1, divided by the intensity λ2 of  
pattern 2.

Under random thinning the g-functions are invariant, hence under 
the null model of random labelling g12(r) = g21(r) = g11(r) = g22(r). We 
used univariate random labelling as null model and the function 
g11(r) to explore if the low-vitality grasses (n1) are a random subset 
of the overall grass pattern, i.e. the combined pattern of low-vitality 
(n1) and high-vitality (n2) grasses. The same was done for the high- 
vitality grasses (n2), using the function g22(r). The test was applied by 

http://www.qgis.org
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computing the function g11(r) from the observed data, then randomly 
re-sampling sets of low-vitality grasses (or high-vitality grasses using 
g22(r), respectively) from the joined pattern of low-vitality and high- 
vitality grasses to generate the simulation envelopes. If the functions 
g11(r) or g22(r) show significant positive or negative deviations from the 
null model, this indicates that the low- or high-vitality grasses, respec-
tively, have an additional clustered or regular spatial structure, condi-
tional on the overall distribution of all grasses within the study plot. 
Univariate random labelling is an ideal null model to explore this ques-
tion because it also accounts for first-order heterogeneity, i.e. non-rel-
evant 1 m2 grid cells with land-cover classes of bare soil or of trees and 
shrubs do not affect the spatial outcome of the analysis. Therefore, 
the null model envelopes reflect the first-order properties and, unlike 
for a CSR null model, are not parallel to a value of g(r) = 1. The spatial 
correlation functions g11(r) and g22(r) were tested for significant de-
viations from the null model using the fifth-lowest and fifth-highest 
values of 199 Monte Carlo simulations for constructing approximately 
95% simulation envelopes (Baddeley et al., 2014). All spatial analyses 
were done in R-software using the packages ‘spatstat’ (Baddeley & 
Turner, 2005) and ‘landscape metrics’ (Hesselbarth et al., 2019), as well 
as in the software Programita (Wiegand & Moloney, 2004).

2.5 | Quadrat-based mapping of post-fire succession

On 28th and 29th March 2019, we ground-mapped the number 
of individual Triodia grass hummocks and their cover in 1 m × 1 m 
sample quadrats. Three neighbouring, edaphically similar plots 
that represent different post-fire ages were chosen to monitor 
how these hummock grasses change their number and cover over 
time (Table S1; Figure S4). For this purpose, we used the FC-C2 
plot because it burnt in early November 2014, hence its post-fire 
age was around 4.5 years in 2019. A new selected plot, named FC-
F1, was just 700 m north of the FC-C2 plot and it burnt 3.5 years 
prior to March 2019. Since the nearby drone-mapped plots FC-L1, 
FC-L2, and FC-C5 burnt in April 2018, we could not use them as 
reference for vegetation in a climax stage. Instead, we selected a 
third plot about 300 m north of FC-F1, named FC-F3, that burnt 
>15 years ago. Post-fire age was identified using the FireWatch 
(https://firew atch-pro.landg ate.wa.gov.au/) as in Muñoz-Rojas 
et al. (2016).

In each of the selected plots, 10 FCs that were connected along 
a transect were selected and the quadrat was placed at the north, 
west, south and east side of the peripheral vegetation, as well 
as at four neighbouring locations in the matrix vegetation, which 
were between 2 and 3 m away from the FC gap edge (Figure S4). 
The quadrat was subdivided into 10 cm × 10 cm subunits. For 
each quadrat, the number of individual, physically separated, 
grass plants per square metre was recorded (count), as well as 
their total crown cover within the square, which allowed to assess 
the cover precisely to 1%. The formula cover/count × 100 will 
thus attain a maximum value of 100 for a single large hummock 
grass occupying the full quadrat and it is therefore a measure of 

facilitation whereby small individual grasses merge together. To 
examine if cover and cover/count were significantly greater, and 
count smaller, at the edge of the FCs as compared to the matrix, 
the location effects between edge (N = 40) and matrix (N = 40), 
within the same post-fire age, were assessed with un-paired, one-
tailed t tests. The age effects between the three plots, within 
the same locations (N = 40), were first assessed with analysis of 
variance (ANOVA), to test if cover, count or cover/count differ 
significantly. Afterwards, post-hoc Tukey tests were applied to 
test if these grass properties at the same locations (N = 40) differ 
significantly between pairs of individual post-fire ages. All three 
types of test were done in R-software, using a significance level 
of 5%.

2.6 | Installing a weather station

During the drone survey in 2017, we also installed a HOBO RX3000 
Remote Monitoring Station with cellular network connectivity which 
is a solar-powered system that provides real-time access to the data 
from any web browser in the world. The purpose of setting up this data 
logger was to test if the FCs function as a source of water for the sur-
rounding grasses and if there is the modelled infiltration contrast that 
shows more water percolation under plants with roots at the FC edge 
as compared to bare soil in the FC interior. A typical FC with about 
5 m diameter was chosen in the climax vegetation of the plot FC-L2 
to install at a depth of 5 cm six soil moisture sensors (S-SMD-M005) 
to measure volumetric soil-water content (SWC in m3/m3). One sensor 
was placed under bare soil inside the FC gap, 1.2 m away from the pe-
ripheral target plant which also had a sensor (cf. Section 3, Figure 7a). 
Another sensor was installed also under bare soil inside the FC, but 
only 30 cm away from the gap edge with the target plant. Two sen-
sors were installed under alive and dead peripheral target plants, re-
spectively, that directly border on the gap edge. A fifth sensor was 
installed under an alive plant 1.8 m away from the FC gap edge in the 
matrix vegetation. A sixth sensor was placed next to that plant but 
under bare soil in the matrix which was 2.5 m away from the gap edge. 
Additionally, two temperature sensors were installed at 2 cm depth 
next to the soil moisture sensor 1.2 m inside the gap and under the 
alive peripheral plant respectively. Furthermore, air temperature (°C) 
was measured at the HOBO station about 2 m above ground. These 
data were continuously recorded every 10 min between 4 August 
2017 and 6 April 2018, when a strong fire interrupted the data logging 
in plot FC-L2. Nevertheless, the data recording represents the main 
dry and wet season.

3  | RESULTS

3.1 | Drone-based spatial analyses

The number of digitized FCs in the five 1-ha plots ranged between 
81 and 105 (Table 1). Their diameters ranged between 2.0 and 5.9 m, 

https://firewatch-pro.landgate.wa.gov.au/
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with an overall mean diameter of 3.8 m. Of all the 10,000 cells per 
hectare, the number of cells representing bare soil ranged between 
1,122 and 2,053 or 11.2% and 20.5% respectively. Generally, there 
were more low-vitality than high-vitality grasses in the plots, except 
for the very young plot FC-C2 where an opposite relation occurred. 
Approximately 50% of all cells were classified as either trees or 
shrubs with very high NDVI values or as ‘noise’, showing a transition 
from bare soil towards coverage with varying proportions of dead 
lignified grasses and litter.

The Berman tests showed consistent trends for all five plots. 
Low-vitality grasses always had lower Z1 scores and thus a lower 

spatial association with the 81–105 FCs than high-vitality grasses 
(Table 1; Figure 3a). The density of high-vitality grasses was 
therefore more positively affected by the distribution of FCs 
than the density of low-vitality grasses. These results were ro-
bust because they were the same when we used in an additional 
analysis not the median but the mean NDVI value (−0.10) of all 
five plots to differentiate between low- and high-vitality grasses 
(Figure S5a).

In contrast to the Berman test which focuses on the effect of FC 
gaps with diameters ≥2 m, if all bare-soil cells in a plot such as FCs 
and gaps up to a minimum size of 1 m2 are assessed via the adjacency 

FC-L1 FC-L2 FC-C2 FC-C5 FC-1

Plot properties from drone imagery

No. of FCs 105 81 81 92 87

Min Ø of FCs (m) 2.0 2.1 2.3 2.0 2.1

Mean Ø of FCs (m) 3.3 3.6 4.6 3.2 4.1

Max Ø of FCs (m) 4.9 5.4 5.9 5.0 5.8

No. of cells bare soil 1,333 1,521 1,683 1,122 2,053

No. of cells low-vitality  
grasses

2,344 2,379 1,479 2,000 1,775

No. of cells high-vitality  
grasses

1,206 1,151 1,964 1,750 1,342

Results from Berman test

Z1 score low-vitality grasses −5.134 −5.502 −7.751 −5.005 −7.134

Z1 score high-vitality grasses −1.104 −2.985 −4.88 −4.231 −5.985

Results from adjacency matrix

% low-vitality grasses next to 
bare soil

42.3 42.8 48.5 34.7 51.0

% high-vitality grasses next to 
bare soil

34.6 36.0 39.0 22.9 36.4

TA B L E  1   Summary of the 1-ha plot 
properties as obtained from drone-based 
Normalized Difference Vegetation Index 
images with 10,000 cells per hectare and 
1 m × 1 m resolution. The no. cells divided 
by 100 thus represents the coverage 
of the class in the plot. Further results 
are shown for the Berman test and the 
analysed adjacency matrix. Bold numbers 
of the Berman test indicate significant Z1 
scores with p < 0.05

F I G U R E  3   Graphical presentation of the Z1 scores from the Berman tests (a), as shown in Table 1. High-vitality grasses had consistently 
higher Z1 scores than low-vitality grasses, thus demonstrating a stronger association with the FCs. An opposite relationship is shown for 
results with the adjacency matrix (b), which considered all small gaps up to a minimum size of 1 m2, revealing that the proportion of low-
vitality grasses bordering a bare-soil gap was higher than for the high-vitality grasses



408  |    Journal of Ecology GETZIN ET al.

matrix, the percentage of high-vitality grasses bordering a bare-soil 
cell was consistently lower than for the low-vitality grasses (Table 1; 
Figure 3b). Smallest gap openings thus had no positive effect on 
grass vitality.

Spatial patterns assessed with the null model of univariate ran-
dom labelling revealed that high-vitality grasses in all five plots 
were consistently aggregated at the first neighbourhood scales. 
This significant clustering effect was strong for four plots, showing 
large deviations from the null model, but weak for the young FC-C2 
plot which burnt 2 years and 8 months ago, prior to the drone sur-
vey in 2017 (Figure 4). The clustering of high-vitality grasses was 
particularly strong for the smallest scale of 1 m radius, with g22- 
values ranging between 1.65 and 1.86 in the four long unburnt 
plots. The absolute difference between the g22 values and the 
upper simulation envelope was consistently largest for the smallest 
scale of 1 m, reaching differences of 0.49, 0.55, 0.09, 0.42, 0.49 
for the plots FC-L1, FC-L2, FC-C2, FC-C5, FC-1 respectively. Both, 
the high g22 values and the large positive deviations from the upper 
null-model envelopes, indicate strong facilitation of the grasses at 
smallest scales.

In contrast, all low-vitality grasses did not show positive devia-
tions from the null model. Here, mostly regularity was detected and 
this regularity was just marginally significant at the smallest scales of 

r ≤ 2 m (Figure 4a,b,e, inset). In the youngest plot FC-C2, low-vitality  
grasses showed even random distributions at the smallest scales. 
Unlike the high-vitality grasses, which show strong facilitation with 
their positive small-scale deviation from the null model, the low- 
vitality grasses had their largest absolute difference between the 
g11 values and the lower simulation envelope not at the 1-m scale 
but often at larger scales, e.g. at 8 m in FC-C2 or at 2 m in the plots 
FC-C5 and FC-1. This indicates that negative feedbacks and compe-
tition occurred only within the low-vitality grasses and it prevailed 
at larger scales. These negative deviations from the lower simula-
tion envelopes reached only values of 0.05, 0.05, 0.03, 0.07, 0.06 for 
the plots FC-L1, FC-L2, FC-C2, FC-C5, FC-1, respectively, indicat-
ing a lower negative feedback strength, as compared to the strong 
positive feedback exerted by the high-vitality grasses. Thus, high- 
vitality grasses exerted a very strong positive feedback at shortest 
distances and the low-vitality grasses a weaker negative feedback at 
longer distances (cf. Figure S6).

3.2 | Quadrat-based analyses of post-fire succession

Grass cover in the 1 m2 sample quadrats was significantly smaller 
in the matrix locations than at the FC edge in all three age groups 

F I G U R E  4   Spatial patterns of grasses in the five 1-ha plots assessed with the null model of univariate random labelling, once shown for 
the high-vitality grasses, denoted g22, and once for the low-vitality grasses, g11 (inset figure). The pattern is regular or aggregated at circular 
neighbourhood distances if the red line of the g-function is either below the lower or above the upper grey lines of the simulation envelopes 
respectively. Envelopes were constructed using the 5th lowest and 5th highest value of 199 Monte Carlo simulations of the null model



     |  409Journal of EcologyGETZIN ET al.

of 3.5, 4.5 and >15 years after fire. At the FC edge, grass cover in-
creased significantly with post-fire age (Table 2; Figure 5a). In the 
matrix, grass cover also increased significantly with post-fire age 
except that there was no significant difference between the very 
young FC-F1 and FC-C2 plots. This indicates that the positive ef-
fect of the FC on plant growth most strongly benefitted the grasses 
growing directly on the FC edge. Between the edge and matrix lo-
cations, count was only significantly smaller at the FC edge for the 
very young FC-F1 plot. The number of individual grass hummocks 
significantly decreased with post-fire age within the same locations 
(Table 2; Figure 5b). The best measure to describe the merging of 

small individual grasses into self-organized patches (i.e. large hum-
mocks) is cover/count × 100 because it would give a value of 100 for 
complete coverage with one plant. This measure was significantly 
smaller in the matrix locations than at the FC edge in all age groups 
(Table 2). Overall, it also increased with post-fire age (Figure 5c).

3.3 | Weather station data

The highest recorded air temperature between 4 August 2017 and 6 
April 2018 was 48.2°C on 6 January 2018. Seven more days occurred 

TA B L E  2   Details of the quadrat-based measurements, shown in Figure 5. The location effects within plots, edge versus matrix, were 
examined with one-tailed t tests to analyse if cover and cover/count were significantly greater at the edge or if count was significantly 
smaller at the edge. The age effects among the three plots were first assessed with analysis of variance (ANOVA), and then with post-hoc 
Tukey tests to analyse if cover, count or cover/count differ significantly for different post-fire ages. Bold numbers indicate significant test 
results with p < 0.05

Location 
effect, t test Mean t Value p-Value

Age effect, 
ANOVA F-value p-Value

Age effect, 
Tukey test

Diff. in 
means p-Value

Cover (%) FC-F1 Edge 33.1 2.630 0.005 FC-F1 Edge 61.51 <0.001 FC-F1 versus 
FC-C2

−9.2 0.026

FC-F1 Matrix 27.5 FC-C2 Edge FC-F3 versus 
FC-C2

28.0 <0.001

FC-C2 Edge 42.2 3.806 <0.001 FC-F3 Edge FC-F3 versus 
FC-F1

37.2 <0.001

FC-C2 Matrix 29.2 FC-F1 Matrix 28.82 <0.001 FC-F1 versus 
FC-C2

−1.7 0.920

FC-F3 Edge 70.2 2.503 0.007 FC-C2 Matrix FC-F3 versus 
FC-C2

27.4 <0.001

FC-F3 Matrix 56.6 FC-F3 Matrix FC-F3 versus 
FC-F1

29.1 <0.001

Count FC-F1 Edge 5.7 −2.696 0.004 FC-F1 Edge 84.64 <0.001 FC-F1 versus 
FC-C2

2.0 <0.001

FC-F1 Matrix 7.1 FC-C2 Edge FC-F3 versus 
FC-C2

−2.2 <0.001

FC-C2 Edge 3.7 0.398 0.654 FC-F3 Edge FC-F3 versus 
FC-F1

−4.2 <0.001

FC-C2 Matrix 3.6 FC-F1 Matrix 96.48 <0.001 FC-F1 versus 
FC-C2

3.6 <0.001

FC-F3 Edge 1.5 0.482 0.684 FC-C2 Matrix FC-F3 versus 
FC-C2

−2.2 <0.001

FC-F3 Matrix 1.4 FC-F3 Matrix FC-F3 versus 
FC-F1

−5.7 <0.001

Cover/count 
(%)

FC-F1 Edge 6.4 4.358 <0.001 FC-F1 Edge 108.4 <0.001 FC-F1 versus 
FC-C2

−6.4 0.212

FC-F1 Matrix 4.2 FC-C2 Edge FC-F3 versus 
FC-C2

44.5 <0.001

FC-C2 Edge 12.8 3.053 0.002 FC-F3 Edge FC-F3 versus 
FC-F1

50.8 <0.001

FC-C2 Matrix 8.3 FC-F1 Matrix 64.24 <0.001 FC-F1 versus 
FC-C2

−4.1 0.561

FC-F3 Edge 57.2 1.787 0.039 FC-C2 Matrix FC-F3 versus 
FC-C2

37.2 <0.001

FC-F3 Matrix 45.5 FC-F3 Matrix FC-F3 versus 
FC-F1

41.3 <0.001
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F I G U R E  5   Results from the quadrat-based fieldwork for the three plots with different post-fire age. The plots FC-F1, FC-C2 and FC-F3 
burnt 3.5, 4.5 and >15 years ago respectively. Cover increased with post-fire age and was highest at the FC edge (a). Similarly, the number of 
individual plants declined (b). The statistic count/cover shows that grasses were increasingly merging together with increased post-fire age 
and at the FC edge (c)

F I G U R E  6   Measured soil temperature at 2 cm depth under alive grass at the FC gap edge and in bare soil of the gap interior, and 
corresponding air temperature (a). Volumetric water content at the six soil moisture sensors within and around the FCs (b). The lines of the 
legend are sorted according to the positions of the sensors, starting from the FC gap interior outwards to bare soil in the matrix. The black 
arrow indicates that soil water of only the sensor in the FC gap interior (red line) showed decreased soil water in mid-January, which can 
be attributed to physical weathering and the re-establishment of the soil crust during the rainfall events in the months before. Note that 
soil moisture values had different absolute values during non-rainfall times due to differences in the initial calibration
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between December 2017 and January 2018 when air temperature 
exceeded 47°C. The lowest air temperature was −2.3°C, recorded 
on 4 August 2017. The highest soil temperature at 2 cm depth oc-
curred with 66.4°C on 8 January 2018 in the interior of the FC gap, 
while the corresponding soil temperature under the alive peripheral 
plant was only 41.3°C at that time (Figure 6a). The protective plant 
cover could thus reduce soil surface temperatures by about 25°C at 
the hottest time of the day between 1 and 3 p.m.

In total, there were 15 rainfall events, occurring between 
October 2017 and February 2018, when the volumetric soil-water 
content (SWC) of at least one sensor exceeded 0.25 m3/m3. These 
rainfall events revealed two main findings. First, SWC of only the 
sensor in the FC gap interior strongly decreased during the very 
hot January, after several major rainfall events during the previ-
ous months (Figure 6b, black arrow). This indicates that the initial 
mechanical surface crust in the unprotected FC gap has quickly re-
formed after the disturbance caused by installation of the sensor. 
Second, the peak SWC 2, 12 and 24 hr after rainfall was highest 
under the alive plant at the FC gap edge but lowest in the gap in-
terior (Figure 7). SWC decreased from the alive plant of the FC gap 
edge towards the matrix locations about 2–2.5 m distance away 
from the FC. Only for the interior of the FC gap, SWC was higher 
12 and 24 hr after rainfall than 2 hr after rain, indicating that imme-
diate water infiltration in the FC gap was low. These results repre-
sent standardized values of peak soil-water content, i.e. the initial 
differences in calibration of the six sensors during the dry season 
and their mean values from 3 days (26–28 September, Figure 6b) 
were subtracted from the peak values.

4  | DISCUSSION

With this study, we are quantitatively testing whether the theoreti-
cally assumed, scale-dependent feedback mechanisms and modes 

of water transport are valid for modelling the emergent patterns of 
Australian FCs. Generally, it is not enough to show that the modelled 
high-order components, such as the spatially periodic FCs patterns, 
are statistically well matched by the real-world patterns observed in 
aerial imagery. This is because several modes of water transport and 
different feedback mechanisms of plant self-organization can lead 
to periodic vegetation patterns (Meron, 2015, 2016; Rietkerk & van 
de Koppel, 2008). If the process-based partial-differential equation 
models that are rooted in physics and in pattern-formation theory 
shall find greater acceptance in ecology, then it is necessary to verify 
beyond these coarse-graining properties that the a priori assumed 
lower-level feedback processes are indeed explaining the emergent 
vegetation patterns (Newman et al., 2019). Here we have taken up 
this challenge and provide one of the rare studies on spatially pe-
riodic dryland vegetation that examines the modelled processes in 
the field. We combine within a holistic framework several types of 
empirical work to test (a) if the grasses systematically benefit from 
the FCs in the landscape, (b) if facilitation and competition of grasses 
reflects scale-dependent positive and negative feedbacks and (c) if 
spatio-temporal soil-water content is in accordance with the mod-
elled infiltration feedback.

4.1 | Landscape-scale feedbacks of grasses and their 
association with FCs—Hypothesis 1

According to pattern-formation theory, the periodically ordered FCs are 
not a random event but are inherently linked to the demography of the 
grass population. In Triodia grasslands with climax vegetation, healthy 
grasses of high vitality should therefore show a stronger spatial asso-
ciation with the FCs than low-vitality grasses since they should benefit 
from surface water flow from the gap interior to the edges. We examined 
this hypothesis with a drone survey during the driest month of the year 
with zero rainfall in July and June, and only 11 mm in May 2017 (data 

F I G U R E  7   Drone image of the weather station and the positions of the soil moisture sensors (a). Sum of the peak soil-water content 2, 
12, and 24 hr after rainfall, accumulated over 15 rainfall events (b). Soil–water content was highest under the alive grass plant at the gap 
edge but lowest in the FC gap interior

(a) (b)
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for Newman Airport, Australian Government Bureau of Meteorology, 
2018). As a consequence and based on the NDVI, we found gener-
ally more low-vitality than high-vitality grasses in the plots. Only in the 
very young plot FC-C2, which burnt 2 years and 8 months prior to the 
drone survey in July 2017, we found an opposite relationship because 
the smaller plants were likely not strongly constrained by intraspecific 
competition and resultant mortality. Given that the other drone-mapped 
plots represent typical climax stages of Triodia grassland, it is not surpris-
ing that a considerable proportion of the 1-ha plots consisted of bare 
soil-litter transitions with variable amounts of dead lignified grasses. The 
perennial grass species T. basedowii grows permanently until neighbour-
hood competition, resource depletion or the central collapse of a hum-
mock leads to plant death or ring formation. Hence, if fire is absent for a 
long time, considerable amounts of dead leaf material within hummocks 
accumulate (Grigg et al., 2008) and this increase of combustible material 
increases the probability of fire (Haydon, Friar, & Pianka, 2000). The re-
search plots FC-L1, FC-L2 and FC-C5 that had not burnt for >15 years, 
were likely in a terminal phase of this successional stage because their 
entire grass layers burnt in April 2018 due to a wildfire.

In these plots with climax vegetation, but even in the young plot 
FC-C2, high- and low-vitality grasses responded systematically to 
the pattern of FCs. Based on the spatially explicit Berman test, we 
found that the high-vitality grasses of all five investigated plots were 
consistently more strongly associated with the surrounding FCs than 
the low-vitality grasses (Figure 3a). This is a strong indication that the 
grasses that grow closer to the FCs must have benefited from these 
large gaps, which have mean diameters of nearly 4 m in the study 
region, equalling an area of about 12 m2 (Getzin et al., 2016). Since 
this result is based on a spatially explicit test, it reflects the positive 
response of all high-vitality grasses in the 1-ha study plot, no matter 
whether they grow near the periphery of the FC gap or at distances 
of some metres away from the FCs. These results were also robust 
when we used the mean NDVI value rather than the median as cut-
off value to differentiate between low- and high-vitality grasses. Our 
analysis also shows that the Epanechnikov kernel is more suitable 
than a Gaussian kernel to account for the relationship between FCs 
and grass vitality because its parabolic shape depicts more clearly 
the direct neighbourhood effect of FCs on the surrounding vegeta-
tion half way to the next FC. Expectedly, kernel radii larger than 5 m 
include too much noise effects from other nearby FCs and therefore 
result in inconsistent and non-significant results (Figure S5).

In contrast, if the adjacency matrix is assessed, which considers 
all FCs and all bare-soil gaps in the area down to a minimum size 
of 1 m2, then an opposite relation can be found. In this case, the 
percentage of low-vitality grasses bordering a bare-soil gap was con-
sistently higher than for the high-vitality grasses. This indicates that 
not every small gap is necessarily important for the demography of 
the Triodia grasses. In other words, the potential positive effect of 
less neighbourhood competition from growing randomly next to a 
small bare-soil gap could be functionally unimportant, relative to the 
overall constraint that the demographics of this highly water-limited 
grassland system is governed by the wavelength of the FCs at the 
landscape-scale and the geometric rules of pattern-formation theory 

(Deblauwe et al., 2008; Getzin et al., 2016; Meron et al., 2004; 
Rietkerk & van de Koppel, 2008). Also, small gaps which occur in 
the matrix are likely those places which receive less water from the 
FCs. Consequently, continuous plant cover cannot be sustained in 
the matrix and small gaps form.

The FCs are distributed in a spatially periodic pattern and, as 
predicted by pattern-formation theory, form a grid-like hexagonal 
array (Getzin, Yizhaq, Cramer, et al., 2019). Our empirical results thus 
support the theoretical model assumptions based on the reaction- 
diffusion principle and scale-dependent feedbacks where the hard-
ened FC gaps function as an important additional source of water for 
the surrounding vegetation matrix (Getzin et al., 2016; Meron, 2018).

4.2 | Scale-dependent feedbacks, facilitation and 
competition of grasses—Hypothesis 2

Grasses of the matrix in-between FCs have already been investigated 
in previous studies (Cramer et al., 2017; Ravi et al., 2017; Tarnita 
et al., 2017), but the spatially explicit analysis of their vitality status 
is a novel approach. The Australian outback is an ideal ecosystem to 
study scale-dependent feedbacks of grasses because T. basedowii is 
a long-lived perennial that grows in size for years and decades until 
fire destroys the vegetation (Levin et al., 2012). High-vitality grasses 
which primarily exert positive short-range feedbacks should have 
clustered distributions and increasingly merge at the FC gap edge to 
increase their benefit from higher water availability. But low-vitality 
grasses which suffer from long-range negative feedbacks, should 
not have clustered but segregated or scattered random distributions 
because the lack of water does only support the survival of separate 
individuals. Our results support this model assumption based on uni-
variate random labelling and fine-scale quadrat sampling.

High-vitality grasses were in all five plots significantly aggre-
gated and the small-scale clustering at 1 m neighbourhood distance 
was particularly strong in the four long unburnt plots with g22 values 
ranging between 1.65 and 1.86. This aggregation is indicative of a 
strong positive short-range feedback where the more vital grasses 
not only benefit from the nearby FC gaps but also from a clustered 
growth pattern and resultant self-organized patch formation due 
to facilitation (Rietkerk et al., 2004). The reason for the clustered 
pattern of vital grasses can be found, for example, in a reduction of 
temperature under grass canopy versus bare soil. In our study area, 
soil surface temperature under grass shade was up to 25°C lower 
than in unshaded bare soil (Figure 6a). Also, enhanced trapping of 
sediments or organic detritus may trigger the increase in local den-
sity of grasses and thereby the increase in water-trapping efficiency 
among the grasses (Dunkerley & Brown, 1999). In such densely veg-
etated areas, the protection against evapotranspiration and against 
soil-crust formation enhances surface water infiltration which, in 
turn, favours vegetation growth. Thereby, the grasses redistribute 
the water resources, they modulate the abiotic environment and 
thus function as ‘ecosystem engineers’ to better cope with the hos-
tile habitat (Borgogno et al., 2009; Gilad et al., 2004). Generally, 
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such facilitative patterns are well known to become increasingly 
important under increasing xeric conditions and in this case the pos-
itive effects of nurse shade outweigh competitive negative effects 
(Holmgren, Scheffer, & Huston, 1997). However, within such a com-
petition–facilitation trade-off, the positive effects of nurse shade 
can only function if there is the demonstrated positive net-effect of 
the FC gaps on grass vitality.

With the assessment of the g11-function and its low absolute devi-
ations from the lower null-model envelopes (Figure 4), we found that 
low-vitality grasses showed a weaker feedback strength than high-vi-
tality grasses with their strong positive deviations from the null model. 
This negative feedback, which indicates competition between plants, 
prevailed at larger scales than the positive feedback of facilitating 
high-vitality grasses. In terms of multiple-scale feedbacks, this agrees 
strongly with the central model assumption that positive feedbacks 
and facilitation should act at short distances, while negative feedbacks 
resulting from competition for resources should act at larger distances 
(Figure 1a; Rietkerk & van de Koppel, 2008). With regard to these dif-
ferent feedback strengths, our empirical results specifically agree with 
the conceptual figure of Borgogno et al. (2009) and indicate that the 
feedback strength should be greater at small scales than at larger scales 
(Figure S6). This is because facilitation occurs mainly in the immediate 
neighbourhood around plant crowns while competitive negative plant 
interaction happens more at the larger scale of plant roots, and ulti-
mately the feedback strength vanishes with further distances between 
plants. Overall, our spatially explicit results from univariate random la-
belling confirm the presence of short-range positive and long-range 
negative feedbacks that have been used to model the Australian FCs.

The scale-dependent feedbacks and facilitation of grasses 
also become evident from the fine-scale mapping around the FCs. 
Mature Triodia grasses under climax conditions have typical plant 
sizes of 1 m2 and more (Figure 2c). While our drone-based analysis 
has accounted for the growth pattern of these typical hummocks via 
the 1 m2 grid resolution, we also mapped the post-fire grass recovery 
of young hummocks within 1 m2 sample quadrats that were subdi-
vided into 10 cm × 10 cm subunits.

Our ground mapping supports those drone-based findings be-
cause we found a spatio-temporal trend that plant cover bordering the 
FC edge was higher than for the matrix grasses at distances of 2–3 m 
away from the gap edge. This trend became more prominent with 
increasing post-fire age from 3.5 years towards >15 years (Figure 5a), 
indicating that the increase in plant cover around the FCs follows a 
demographic rule: the highest coverage forms directly around the FC 
edges, while off the FCs the plant cover is lower and the probability 
of gap formation between the hummocks increases. Corresponding 
to these findings, the number of individual grass hummocks declined 
in a similar way and the cover/count statistic shows that the coop-
erative merging of grass individuals increased towards the FC edge 
but also with post-fire age. These results provide additional evidence 
that the grasses are overall benefiting from the FCs that function 
as an important extra source of water and that the trend of facilita-
tion via the merging of seed-regenerating grass individuals was posi-
tively associated with the decreasing distance to the FC gaps (Getzin 

et al., 2016; Meron, 2018). With their population-level response to 
aridity stress the Triodia grasses act as ecosystem engineers and the 
morphological plasticity in their growth patterns are adaptations to 
maximize water harvesting (Figure S4g–j). Such morphological adap-
tations of grass plants are well known from a number of water-limited 
environments and include, for example, the formation of ring-like 
shapes (Sheffer, Yizhaq, Gilad, Shachak, & Meron, 2007; Yizhaq 
et al., 2019), spiral-like (Fernandez-Oto, Escaff, & Cisternas, 2019) or 
banded grass patterns (Dunkerley, 2018; Dunkerley & Brown, 1999) 
and high grass biomass of the perennial belt around FCs in Namibia 
(Cramer et al., 2017; Fernandez-Oto, Tlidi, Escaff, & Clerc, 2014).

4.3 | Spatio-temporal data recording of a weather 
station and the infiltration feedback—Hypothesis 3

Central to the process-based modelling of the FCs is a Turing-like 
instability that is triggered by a specific feedback mechanism and 
mode of water transport which depend on the prevailing soil type 
and dominant plant architecture. While in Namibia on deep aeo-
lian sand it is the ‘uptake-diffusion feedback’ that is assumed to 
induce the instability, in Australia on hardened clay crusts and as-
sociated overland-water flow it is the ‘infiltration feedback’ (Getzin 
et al., 2016; Zelnik et al., 2015). Consequently, the pivotal process for 
modelling the emergent pattern of the Australian FCs is enhanced 
soil-water infiltration under alive plants growing next to the hard-
ened FCs gaps. The positive short-range feedback loop is thus trig-
gered by the growth of roots that loosen the soil crusts and increase 
vegetation growth via locally taking up more water. Here we provide 
empirical evidence that this assumed mechanism of water transport 
is indeed existing in the studied grassland system. In this regard, the 
results of our installed data loggers show two important findings:

First, soil water only at the sensor in the FC gap without protective 
plant cover strongly decreased over time during the very hot January, 
after several major rainfall events happened during the months before 
(Figure 6b). This demonstrates that the soil crusts in the FCs originate 
from particle dispersion during heavy rainfall events and subsequent 
mechanical weathering of the soil surface under the extremely hot 
temperatures, which ultimately prevent plant establishment (Getzin 
et al., 2016). With more than 150 excavations in the Australian FCs, it 
has been previously shown that pavement termitaria are not respon-
sible for the bare soil in FCs, but it is the high clay content and associ-
ated high soil compaction, induced by mechanical weathering, that is 
causing the absence of vegetation in FCs and similarly in nearby large 
bare-soil areas (Getzin, Yizhaq, Munoz-Rojas, et al., 2019), just like in 
many more Australian drylands (Dunkerley, 2002).

Second, the modelled infiltration feedback is supported by the 
observation that the peak soil-water content 2, 12 and 24 hr after 
rainfall was highest under the alive plant at the gap edge but lowest in 
the gap interior. Soil-water then decreased with larger scales from the 
alive plant at the FC edge towards the matrix locations about 2–2.5 m 
distance away. This shows further that the FC gaps function as an ad-
ditional source of water for the matrix grasses and that it is the plants 
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growing close to the FCs that are benefiting the most from this water 
source. These findings are in line with previous infiltration measures 
and an irrigation experiment within a FC (Getzin et al., 2016) and the 
field results support the assumed in-phase spatial profiles of biomass 
and soil water of the model (Figure S1). The results can also explain 
why the grasses around the gap edge are merging together because a 
nearly closed barrier around the FCs minimizes the outflow of water 
from the gap towards the matrix plants. This population-level re-
sponse to water stress and the positive net-effect of facilitation also 
explains why the high-vitality grasses are strongly associated with the 
FCs and why they can afford to have clustered distributions, while at 
the same time the low-vitality grasses at further distances are strug-
gling as segregated or randomly scattered entities.

5  | CONCLUSIONS

Bridging empirical ecology and physics is one of the most challeng-
ing, but also most interesting, endeavours in the natural sciences. 
Such multi-disciplinary research efforts usually take time due to dif-
ferent types of commonly used language or terminology but also due 
to finding a general acceptance of each other within the two fields 
of science. Here, we demonstrate exemplarily based on the striking 
Australian fairy circles, how modelling and a priori assumed processes 
can be verified using detailed ecological fieldwork.

Our findings support the presence of ecohydrological feedbacks 
at the landscape-scale and at the scale of the immediate plant neigh-
bourhood that are central to explain this emergent grassland gap 
pattern via Turing dynamics and pattern-formation theory. We have 
provided multiple-scale evidence that the grasses with their coopera-
tive growth dynamics function as ecosystem engineers. Thereby, they 
modulate the abiotic environment to better cope with the permanent 
shortage of water in this arid ecosystem. The empirically found short-
range positive and long-range negative feedbacks between the plants, 
the relative feedback strengths and the infiltration contrast all agree 
with the theoretical assumptions used for modelling the FCs based on 
Turing dynamics and the reaction-diffusion mechanism.

We conclude that by forming periodic gap patterns, the vegetation 
benefits from the additional water resource provided by the FC gaps, 
and thereby keeps the ecosystem functional at lower precipitation 
values compared with uniform vegetation (Meron, 2018). More field 
studies are needed for a more complete validation of the mathematical 
models of FCs and to enable a more realistic parameterization. Especially 
investigating the time scales of pattern formation in this dryland de-
serves more research because such patterns may be very long lived 
and form over hundreds of years (Caviedes-Voullième & Hinz, 2020). In 
this way, mutual collaboration between empiricists and modellers, for 
example with backgrounds in physics and ecology, will lead to a deep 
understanding of multi-scale feedbacks in complex ecological systems.
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TABLE S1 Summary of the used plots in this study and the applied measurements undertaken. 

 

 

 
 

 

 

 

 

Plot 

name 
Coordinates Applied measurements 

FC-L1 
23°22'22"S, 

119°54'17"E 

NDVI-image of 100 m × 100 m plot: Berman test, spatial pattern analysis of 

high- and low-vitality grasses 

FC-L2 
23°21'33"S, 

119°54'52"E 

NDVI-image of 100 m × 100 m plot: Berman test, spatial pattern analysis of 

high- and low-vitality grasses; weather station data 

FC-C2 
23°22'50"S, 

119°54'37"E 

NDVI-image of 100 m × 100 m plot: Berman test, spatial pattern analysis of 

high- and low-vitality grasses; quadrat-based analysis of post-fire succession 

FC-C5 
23°21'40"S, 

119°54'40"E 

NDVI-image of 100 m × 100 m plot: Berman test, spatial pattern analysis of 

high- and low-vitality grasses 

FC-1 
23°26'52"S, 

119°51'11"E 

NDVI-image of 100 m × 100 m plot: Berman test, spatial pattern analysis of 

high- and low-vitality grasses 

FC-F1 
23°22'28"S, 

119°54'28"E 
Quadrat-based analysis of post-fire succession 

FC-F3 
23°22'19"S, 

119°54'31"E 
Quadrat-based analysis of post-fire succession 
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FIGURE S1 Modeled Australian fairy circles based on partial-differential equations and Turing instabilities. The 
spatially periodic pattern of FCs is shown as yellow gaps, whereas high biomass is indicated by green colour (a). The 
in-phase spatial profiles of biomass and soil water are indicated by corresponding blue colour, i.e. low soil-water 
content in the barren gap interior (b). The same properties are shown for zoomed images of biomass (c) and soil 
water (d) respectively. Note the ring of dark green colour around the FC periphery in (c). Details on the model can 
be found in Getzin et al. (2016). 
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FIGURE S2 Locations of four 200 m × 200 m plots for which high-resolution RGB images were taken (a). Note the 
Ophthalmia Dam in the upper left corner. The fifth analyzed plot, FC-1, is not shown because it is located about 
10 km to the south west. Example of the photographed 200 m × 200 m plot FC-C5 (b) and the selected 
100 m × 100 m sub-window, used to analyze the NDVI with a grid resolution of 1 m × 1 m (c). 
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FIGURE S3 Example of the plot FC-C2 with the fairy circle locations converted into a kernel-smoothed covariate 
(Epanechnikov kernel with a radius of 5 m), which is a surrogate for extra water availability, provided by the FCs. 
The FCs are indicated by green colour. These same two spatial density maps were once overlayed with the position 
of the 1-m2 NDVI cells representing low-vitality grasses (a) and once with the high-vitality grasses (b) to separately 
test for spatial association between grass vitality and the FCs, using the Berman test. These two types of grass cells 
were also analyzed for their spatial patterns using the null model of univariate random labelling, revealing that low-
vitality grasses are typically segregated or randomly distributed while high-vitality grasses are clustered.  
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FIGURE S4 Locations of the quadrat-based mapping of post-fire recovery in March 2019 (a). The plots FC-F1, FC-C2, 
and FC-F3 burnt 3.5, 4.5, and > 15 years ago respectively. The quadrat placed in the matrix of the youngest plot 
FC-F1 (b,c). Examples of the quadrat placed in the matrix (d) and on the peripheral vegetation of a fairy circle (e) in 
the plot FC-C2. A burnt shrub and peripheral vegetation recovery in FC-C2 (f). Note how the peripheral grasses 
accumulate lignified plant material and litter around the circle’s edge. Example of a fairy circle in the plot FC-F3 (g) 
and of a quadrat placed over the merging Triodia individuals at the gap’s periphery (h). The grasses with their 
population-level behaviour act as “ecosystem engineers” to form a merged barrier, thereby maximizing their access 
to runoff from the gap (i). A horizontal perspective on the same group of grasses reveals a wall-like structure (j). 
Note the mechanical soil crusts in the foreground where water is trapped. 
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FIGURE S5 Testing the association of grass vitality with fairy circles for different kernel statistics. Using the mean 
(-0.10) instead of the median (-0.11) NDVI-value to differentiate between low-vitality (-0.15 to -0.10) and high-
vitality (-0.09 to 0.10) grasses had no effect on the general outcome of the Berman test (a). As with using the 
median, high-vitality grasses were more strongly associated with FCs than low-vitality grasses and only the high-
vitality grasses of the FC-L1 plot had a non-significant Z1 score > -1.96, as indicated by the grey dashed line. By 
contrast, using a Gauss kernel and 5 m radius showed inconsistent results with four non-significant Z1 scores and 
very low differences between low- and high-vitality grasses within plots (b). Additionally, an Epanechnikov kernel 
(c) with a radius of 10 m and a Gaussian kernel (d) with r = 10 m were also used to learn about the relationship of 
grass vitality and surrounding FCs. Somewhat expectedly, using kernels with a radius of 10 m resulted in blurry 
effects with a majority of grasses having non-significant Z1 scores. 
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FIGURE S6 A short-distance positive feedback and a long-distance negative feedback, showing a higher magnitude 
of positive short-distance interaction than for negative long-distance interaction (left “Figure 7”, after Borgogno et 
al., 2009). It is assumed that the feedback strength or magnitude of positive short-range interaction is larger 
because resource concentration and facilitation happens mainly around the smaller scale of plant crowns while 
competitive negative plant interactions happen more at the larger scale of plant roots, and ultimately the feedback 
strength vanishes with overall distances between plants (right “Figure 8”, after Borgogno et al., 2009). 
 

 

 

 

 

 

 


