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processes or testing hypotheses derived from ecological 
theory (Wiegand and Moloney 2014).

In ecology, the link between spatial pattern and process 
was established early on (Watt 1947, Pielou 1977), but did 
not gain in importance until the most recent two decades, 
when ecology reached a point where it became necessary 
to adopt a spatially-explicit perspective to advance the 
science (Levin 1992). Current ecological theory provides 
increasing evidence that spatial pattern and process play an 
important role in the assembly, dynamics, and function-
ing of plant and animal communities (Hurtt and Pacala 
1995, Tilman and Kareiva 1997, Chesson 2000, Brown 
et al. 2011, Detto and Muller-Landau 2013, May et al. 
2015, Velázquez et al. 2015). Thus, an important motiva-
tion for studying point patterns is that they may conserve 
an imprint of the processes that affected the placement 
of the ecological objects and the values of the marks that 
characterize the objects. Point patterns are therefore an 
‘ecological archive’ that may contain valuable information 
on the underlying processes, structure and function of the 
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Detailed knowledge of the characteristics of spatial distri-
bution patterns of animal and plant species is fundamen-
tal for developing a deep understanding in many branches 
of ecology. Spatial point pattern analysis (Ripley 1981, 
Diggle 2003, Illian et al. 2008, Baddeley et al. 2015) pro-
vides powerful techniques for the statistical analysis of point 
pattern data that consist of a complete set of locations of 
ecological objects within an observation window. These data 
can be supplemented by additional information character-
izing the objects (i.e. marks such as size, or condition such 
as surviving vs dead) or environmental covariates. Typical 
examples of point patterns include the distribution patterns 
of a tree species (Fig. 1A), the spatial association pattern of 
two life plant stages of a tree species (Fig. 1C), the spatial 
autocorrelation pattern of dead saplings within the pre-mor-
tality (i.e. surviving and dead) pattern of saplings (Fig. 1D),  
and the spatial correlation pattern of the sizes of trees  
(Fig. 1E). Ecologists have increasingly analyzed such data sets 
to quantify the characteristics of observed spatial patterns 
with the aims of deriving hypotheses on the underlying 
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Over the last two decades spatial point pattern analysis (SPPA) has become increasingly popular in ecological research. To 
direct future work in this area we review studies using SPPA techniques in ecology and related disciplines. We first summa-
rize the key elements of SPPA in ecology (i.e. data types, summary statistics and their estimation, null models, comparison 
of data and models, and consideration of heterogeneity); second, we review how ecologists have used these key elements; 
and finally, we identify practical difficulties that are still commonly encountered and point to new methods that allow cur-
rent key questions in ecology to be effectively addressed. 

Our review of 308 articles published over the period 1992–2012 reveals that a standard canon of SPPA techniques in 
ecology has been largely identified and that most of the earlier technical issues that occupied ecologists, such as edge cor-
rection, have been solved. However, the majority of studies underused the methodological potential offered by modern 
SPPA. More advanced techniques of SPPA offer the potential to address a variety of highly relevant ecological questions. 
For example, inhomogeneous summary statistics can quantify the impact of heterogeneous environments, mark correla-
tion functions can include trait and phylogenetic information in the analysis of multivariate spatial patterns, and more 
refined point process models can be used to realistically characterize the structure of a wide range of patterns. Additionally, 
recent advances in fitting spatially-explicit simulation models of community dynamics to point pattern summary statistics 
hold the promise for solving the longstanding problem of linking pattern to process. All these newer developments allow 
ecologists to keep up with the increasing availability of spatial data sets provided by newer technologies, which allow point 
patterns and environmental variables to be mapped over large spatial extents at increasingly higher image resolutions.
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system (Wiegand et al. 2003, 2009, McIntire and Fajardo 
2009). The main objective of spatial point pattern analy-
sis in ecology is to extract this information (Wiegand and 
Moloney 2014).

A broader scientific audience was attracted to spatial 
point pattern analysis in the 1980s through the textbooks 
of Ripley (1981) and Diggle (1983), and later by the books 
of Cressie (1993), Stoyan and Stoyan (1994), Diggle (2003) 
and Illian et al. (2008). Several conceptual articles have 
presented these techniques specifically to ecologists (Haase 
1995, Stoyan and Penttinen 2000, Goreaud and Pélissier 
2003, Wiegand and Moloney 2004, Perry et al. 2006, Law 
et al. 2009, McIntire and Fajardo 2009, Szmyt 2014). 
However, there is no systematic review on the use of the dif-
ferent elements of SPPA in ecology that could direct future 
work in this area.

The objectives of our study are to summarize key ele-
ments of spatial point pattern analysis (SPPA) in ecology, 
to review their use, and to discuss future challenges and 
opportunities. More specifically, we review 308 articles that 
used SPPA in ecology (and related disciplines) published 
between 1992 and 2012 (Supplementary material Appendix 
3). We first assess how researchers have used five key ele-
ments of SPPA (i.e. data types, summary statistics and their 
estimation, null and point process models, comparison of 
data with models, and heterogeneity). Based on this assess-
ment, we identify practical difficulties in the use of SPPA 
in ecology that are still common and we point to newer 
techniques that allow current key questions in ecology to 
be more effectively addressed. We illustrate the use of the 
different elements of SPPA and newer developments using 
typical real-world examples from the 50-ha tropical for-
est plot at Barro Colorado Island (BCI), Panama (Fig. 1), 
where all trees  1 cm diameter at breast height (dbh) have 
been mapped, identified to species and repeatedly censused 
(Hubbell et al. 2005).

Methods

Topic search

We performed an intensive topic search on the ISI Web of 
Knowledge site using the search mask TS  ((Ripley* OR 
point-pattern OR ‘point pattern’ OR ‘spatial pattern’) AND 
(Biolo* OR Ecolo* OR Forest*)), which covered ecology 
and related fields. We only considered scientific articles pub-
lished in English over the years of 1992–2012, excluding 
textbooks and conference proceedings. Although we cer-
tainly did not detect all articles that used SPPA in ecology 
and related disciplines, our systematic search based on the 
above mentioned search mask guaranteed that we obtained 
a sufficiently representative sample of relevant articles. Our 
search yielded a total of 360 articles, but we retained 308 for 
analysis by selecting only those that used techniques of SPPA 
to address ecological questions or hypotheses or tested new 
methods with real world data. The analyses to illustrate the 
use of the different elements of SPPA were conducted with 
the software ‘Programita’ (Wiegand and Moloney 2014), 
which can be accessed at < www.programita.org >.

Evaluation of articles

Supplementary material Appendix 1, Table A1 shows the 
different categories used to characterize each study. While 
Supplementary material Appendix 1 presents a detailed (tem-
poral) analysis of the data generated in the literature review, 
we present here only the most important trends that are 
relevant for our discussion and recommendation sections.

Key elements of point pattern analysis in ecology
In this section we briefly summarize five key elements of 
SPPA that appear in typical ecological analyses (Wiegand 
and Moloney 2014). These elements also structure our 
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Figure 1. Typical examples for data types that can be analyzed with SPPA. All examples were taken from the 50 ha forest dynamics plot of 
the tropical forest at Barro Colorado Island (BCI), Panamá (Hubbell et al. 2005). (A) The univariate pattern of saplings (i.e. individuals 
with diameter at breast height (dbh) smaller than 4 cm) of the canopy tree Guatteria dumetorum taken from the 1983 census. (B) Estimate 
of the intensity function l(x) for the pattern shown in (A) based on topographic variables. We show the normalized l̂(x)/lmax where lmax 
is the maximal value of  l̂(x). (C) Bivariate pattern of reproductive trees of the midstorey tree Eugenia galalonensis (red) in the 1985 census 
and all newly recruited individuals (black) (i.e. all individuals reaching for the first time dbh  1 cm). (D) Qualitatively marked pattern of 
all saplings of E. galalonensis from the 1990 census that survived to the 2005 census (red) and that died (black). (E) Quantitatively marked 
pattern of large trees (dbh  10 cm) of the mid-story tree Trichilia pallida (black) and all other large trees (red) with dbh as quantitative 
mark indicating tree size. We show only a subplot of the entire data.
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review and they provide the background for the evaluation 
of the 308 studies analyzed here (Supplementary material 
Appendix 1, Table A1). However, we have to emphasize that 
the modern statistical methodology for analyzing spatial 
point patterns is much wider than that commonly used in 
ecology. Baddeley et al. (2015) present many of the more 
recent developments that are not considered in this section. 
Supplementary material Appendix 4 provides key references 
and links for SPPA software packages.

Data types

Point patterns comprise the coordinates x  (x, y) of ecologi-
cal objects, e.g. trees or shrubs, nests, burrows, ‘fairy circles’, 
or termite mounds. These objects are usually represented as 
points within a given observation window W. The observa-
tion window usually corresponds to sampling plots that are 
rectangular as in Fig. 1. However, the window may also have 
an irregular shape (Goreaud and Pélissier 1999, Wiegand 
and Moloney 2004). The data set may be supplemented by 
environmental covariates (e.g. nutrient contents, slope), and 
the points may carry additional information (i.e. ‘marks’) 
characterizing the objects they represent, for example the 
number of flowers that set fruits (Fedriani et al. 2015), or 
surviving vs dead trees (Kenkel 1988).

Depending on the nature of the marks, different data types 
may arise. In ecological applications we distinguish between 
‘a priori’ and ‘a posteriori’ properties of the objects (Goreaud 
and Pélissier 2003, Wiegand and Moloney 2014). The first 
distinguishes a priori different types of objects such as differ-
ent tree species in a forest. In contrast, a posteriori proper-
ties are created by a marking processes acting upon existing 
objects (e.g. surviving vs dead trees in a forest, or size of a 
tree) (Wiegand and Moloney 2014). This differentiation leads 
to three fundamental classes of objects (Supplementary mate-
rial Appendix 1, Table A1): 1) unmarked patterns, where the 
points are characterized only by their locations and their a 
priori type. These can be univariate, bivariate, or multivari-
ate patterns with one, two or more than two distinct types 
of objects, respectively (Fig. 1A, C); 2) qualitatively marked 
patterns, where the points carry an a posteriori generated qual-
itative mark (e.g. surviving vs dead; Fig. 1D); and 3) quantita-
tively marked patterns, where the points carry an a posteriori 
generated quantitative mark (e.g. size of a tree; Fig. 1E).

Summary statistics

Summary statistics are numbers or functions that provide 
a brief and concise description of point patterns. Because 
summary statistics condense spatially-explicit information, 
they inevitably lose information contained in the pattern. 
Therefore, it is important to use several summary statistics 
simultaneously in order to obtain as complete an under-
standing of the multifaceted nature of complex spatial pat-
terns as possible (Wiegand et al. 2013).

Historically, a number of indices were developed to 
characterize the overall nature of point patterns through a 
single number (reviewed by Szmyt 2014), many by foresters 
who developed the earliest techniques for analyzing point 

patterns. However, these indices are rarely used in modern 
SPPA, with the notable exception of the intensity metric (i.e. 
l ‒ the mean number of points per unit area).

The first-order summary statistics consider the probability 
that a single point is located within a small area around loca-
tion x  (x, y) and are generally presented in the form of the 
intensity function l(x). If the pattern is homogeneous (also 
called stationary), it has the same statistical properties over 
the entire observation window W (i.e. it is invariant under 
translation). In this case the intensity can be estimated by the 
scalar constant  l̂=n/A where n is the number of points, A 
is the area of W, and the hat symbol indicates the estimated 
value. However, if the intensity varies in space the pattern is 
heterogeneous and it is better characterized by the function 
l(x). For example, the intensity of the pattern shown in Fig. 
1A is significantly affected by environmental variables that 
vary within W. Figure 1B shows an estimate  l̂(x) of the 
intensity function of that pattern. Estimation of l(x) is the 
key task in species distribution modeling that aims to explain 
the occurrence of a species using a set of environmental vari-
ables (Elith and Leathwick 2009). Poisson point process 
models provide important techniques for this (Diggle 2003: 
section 7.1, Renner et al. 2015).

The second-order summary statistics are the most impor-
tant summary statistics. They are related to the spatial (co)
variance of pairs of points and are calculated based on infor-
mation from all inter-point distances at or within neighbor-
hoods of radius r. If the pattern is homogeneous we can 
define the ‘typical point’ of the pattern and derive summary 
statistics characterizing the neighborhood of the typical 
point. For example, the pair correlation function g(r) (Illian 
et al. 2008: p. 218, Law et al. 2009) is the expected density 
of points within rings of radius r (and ring width dr) centered 
on the typical point, divided by the intensity l of the pat-
tern. Figure 2E shows that the mean neighborhood density 
of saplings of Guatteria dumetorum is at short distances (1–5 
m) three times larger than the overall sapling density  l̂ and 
still 1.7 times larger at distances of 50 m, suggesting a highly 
clustered pattern. However, the elevated neighborhood den-
sities at larger distances suggest heterogeneity of the pattern. 
Even so, because point processes are stochastic, larger values 
in the empirical pair correlation function may arise purely by 
chance, and the clustering suggested by Fig. 2E must some-
how be verified. This is usually done by confronting the data 
with Monte Carlo simulations using a suitable stochastic 
null model (see Null models and point process models).

The widely used K-function is the cumulative version of 
the pair correlation function, i.e. K r g r r dr

r

r
( ) ( )=

=∫ ′ ′ ′
′

2
0

p
and can be defined as the mean number of points within 
distance r of the typical point, divided by l. In ecology the 
square-root transformation L r K r r( ) ( )/= −p  is mostly 
used because it stabilizes the variance of the K-function 
(Besag 1977) and shows departures from complete spa-
tial randomness in a simpler way (Haase 1995). However, 
statisticians prefer the form L r K r( ) ( )/= p . There are 
inhomogeneous versions of g(r), K(r) and L(r) (Baddeley 
et al. 2000) developed for first-order inhomogeneous point  
processes where l(x) varies by location x (Fig. 1B, 2H). 
For this type of pattern, the inhomogeneous functions use  
an estimate of the intensity function to factor out the first-
order structure, thereby leaving behind the residual ‘pure’ 
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empty space function Hs(r)] (Illian et al. 2008: sections 4.2.5 
and 4.2.6). Note that D(r) and Hs(r) are sometimes called 
G(y) and F(x), respectively (Diggle 2003). Third-order sum-
mary statistics based on counting triplets of points exist, but 
they are rarely used (Illian et al. 2008: their section 4.4.2).

Marked point patterns have their own class of summary 
statistics. For example, when considering all pairs of points 
separated by distance r, mark connection functions plm(r) 
yield the conditional probability that the first point of the 
pair is of type l and the second of type m (Illian et al. 2008:  
p. 331, Wiegand and Moloney 2014: section 2.3.6). Figure 
3D shows the mark connection function p22(r) of dead sap-
lings (i.e., l  m  2) and Fig. 3F the corresponding pair cor-
relation function g22(r). Comparison of both functions shows 
that the mark connection functions essentially remove the 
signal of aggregation in the underlying unmarked pattern.

Finally, mark correlation functions are second-order 
summary statistics adapted to quantitatively marked patterns 

second-order structure, which is mostly attributed to inter-
actions among points (Law et al. 2009). Inhomogeneous 
functions are very useful in ecology because many real world 
patterns show heterogeneity (e.g. Fig. 1A, B). However, 
estimation of l(x) using this approach requires additional 
information on the environmental variables producing this 
heterogeneity (Diggle et al. 2007). Second-order inhomoge-
neity (e.g. both, repulsion and aggregation) can be assessed 
by comparing pair correlation functions obtained from 
smaller subareas (Law et al. 2009).

While second-order statistics characterize the pattern with 
respect to the total number of neighbors within a circle or 
ring around a typical point, nearest neighbor summary sta-
tistics estimate the probability of finding the nearest neigh-
bor (or in a more advanced setting the kth nearest neighbor) 
within distance r of the typical point [i.e. the nearest neigh-
bor distribution function D(r); Fig. 2I–L] or within distance 
r of a ‘test point’ [i.e. the spherical contact distribution or 
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Figure 2. Example of different null and point process models for the univariate patterns of saplings of G. dumetorum shown in Fig. 1A. (A) 
Complete spatial randomness (CSR) where the points of the pattern are randomly and independently distributed within the plot. (B) 
Heterogeneous Poisson process (HP) where tentative points are randomly and independently placed within the plot, but only accepted with 
probability  l̂(x)/lmax (Fig. 1B) (C) A complex (homogeneous) Thomas cluster process (Wiegand and Moloney 2014: their Eq. 4.17) with 
two critical scales of clustering. Parameter fitting yields small clusters (diameter ≈ 8 m) nested within large clusters (diameter ≈ 60 m), and 
the distribution of points over the clusters followed a negative Binomial distribution with parameters ks  0.1 and kl  0.1. (D) A complex 
inhomogeneous Thomas cluster process with two critical scales of clustering based on the intensity  l̂(x) shown in Fig. 1B. Small clusters 
(diameter ≈ 13 m) were nested within large clusters (diameter ≈ 90 m) and the distribution of points over the clusters followed a negative 
Binomial distribution with ks  0.1 and kl  0.1. (E)–(L) Observed summary statistics (black dots), expectation of the point process model 
(grey bold lines) and simulation envelopes (i.e. 5th lowest and highest values of 199 realizations of the point process model; black lines). 
The panels are placed below the corresponding example pattern. We used a bandwidth of 1.5 m for estimation of the pair correlation 
functions.
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summary statistics such as g(r), K(r) and L(r). Different 
strategies of edge correction used in ecology include  
1) sampling so that only points with complete neighbor-
hoods in W are used to estimate the summary statistics 
(minus sampling; Haase 1995); 2) sampling or reconstruct-
ing the unknown points outside W (plus sampling), which 
includes approaches such as toroidal edge correction (where 
copies of the original pattern are placed outside W), or con-
ditional pattern reconstruction (which can also deal with 
irregular observation windows; Illian et al. 2008: p. 185); 
3) using a weighting factor wij for each individual point pair 
i–j that corrects for the unobserved points lying outside the 
observation window (pairwise weighted edge correction 
methods; Ripley 1981, Illian et al. 2008: section 4.3.3), and 
finally 4) global edge correction that uses a weighting fac-
tor w(r) that is the same for all point pairs i–j with inter-
point distances of r, based on a direct estimate of the bias 
in the naïve estimators at distance r (e.g. the isotropized 
set covariance function of W; Ward and Ferrandino 1999, 
Illian et al. 2008: p. 230, Wiegand and Moloney 2014: p. 
148). Edge correction may not be needed when 1) the edges 
of the observation window are real edges (Lancaster and 
Downes 2004), 2) the summary statistics are conditional by 
nature, such as the mark connection and mark correlation 

(Penttinen et al. 1992, Illian et al. 2008: section 5.3.3, Law 
et al. 2009, Wiegand and Moloney 2014: section 3.1.7). For 
example, to analyze marks characterizing the size of trees in 
a forest plot (Fig. 1E), the mark correlation function kmm(r) 
visits all pairs i–j of trees separated by distance r, estimates 
the mean of the product of their sizes mi and mj, and divides 
this by the corresponding quantity taken over all pairs of trees 
(Illian et al. 2008: p. 346). In our example nearby trees of the 
species T. pallida tend to be smaller than two trees selected 
at random (i.e. kmm(r)  1; Fig. 4A). This trend, however, 
is probably caused by heterogeneity (see below). Thus, 
although mark connection and mark correlation functions 
are less affected by heterogeneity than K- and pair correlation 
functions (Illian et al. 2008: p. 281), possible spatial trends 
in the marks due to heterogeneity should be explored.

An important technical aspect in the estimation of sum-
mary statistics is consideration of so-called edge effects, 
which were widely debated in earlier studies in ecology 
(Haase 1995, Goreaud and Pélissier 1999). Edge effects can 
arise if points lying outside the observation window W are 
not sampled; i.e. only a part of the ring or disk around a 
point located close to the border of W lies within W. Edge 
effects lead to underestimation of the neighborhood density 
and therefore introduce a bias in estimating second-order 
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Figure 3. Examples for analyses of bivariate and qualitatively marked patterns. (A) and (B): Bivariate pattern and toroidal shift implementa-
tion of the independence null hypothesis to assess possible associations between recruits and reproductive trees shown in Fig. 1C. g12(r): 
bivariate pair correlation function, D12(r): bivariate nearest neighbor distribution function with reproductive trees (type 1) and recruits 
(type 2). We used a bandwidth of 2.5 m. (C)–(F) Qualitatively marked patterns (surviving saplings: mark 1, dead saplings: mark 2) and the 
local random labeling null model (a given mark is not moved more than 100 m) to assess possible spatial correlation in the pattern of dead 
saplings shown in Fig. 1D). plm(r): mark connection functions with l, m  1 or 2 and g22(r): pair correlation function of dead saplings. The 
black and red lines show the pointwise and global simulation envelopes, respectively. The global envelopes indicate a departure from the 
null model for distance interval 1–50 m with significance level a  0.05. The black horizontal lines in panels (C–F) show the expectation 
under local random labeling. We used a bandwidth of 2.5 m and 999 simulations of the null model, all other conventions as in Fig. 2E–L.
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to vary stochastically (Gotelli and Graves 1996: p. 3). The 
null model is therefore used to determine whether there is 
spatial structure in the data that does not exist in the null 
model. Although this approach is often not very informative 
for univariate patterns (e.g. Fig. 2A, E), it can be useful for 
detecting spatial structure in more complex data types which 
are often extremely relevant for ecologists (Fig. 3, 4).

The simplest null model for univariate patterns is the 
homogeneous Poisson process, according to which points 
are located randomly and independently within the obser-
vation window W (i.e. the pattern shows ‘complete spatial 
randomness’; CSR). CSR patterns are realizations of the null 
hypothesis of the absence of spatial structure in the under-
lying ecological processes (e.g. there is no spatial trend or 
associations among points), but these conditions are often 
not met by real world patterns. For example, saplings of  
G. dumetorum are clearly not distributed randomly, but are 
aggregated and may be additionally influenced by environ-
mental conditions (Fig. 2A, E, F). This suggests that addi-
tional ecological mechanisms, such as dispersal limitation or 
habitat filtering, are operating.

The hypothesis that a spatial pattern is driven only by 
the abiotic environment can be represented by the more 
complex heterogeneous Poisson process (HP). Instead of 
using a constant intensity l as in the CSR model, the HP 
null model is based on a spatially varying intensity function  
(Fig. 1B), which can be estimated through non-parametric 
techniques (Wiegand and Moloney 2004, Law et al. 2009) or 
parametrically using a set of environmental variables (Diggle 
2003, Elith and Leathwick 2009, Renner et al. 2015). In our 
example, the HP null model (Fig. 2B) does not account for 
all spatial structure in the observed pattern (Fig. 1A), since 
the observed values of g(r) are substantially greater than their 

functions (Illian et al. 2008: p. 281), and 3) when nearest 
neighbor statistics are used, since they are less affected by 
edge effects than second-order summary statistics (Wiegand 
and Moloney 2014: section 3.1.3.1).

Null models and point process models

Null models and point process models are the tools of SPPA 
through which ecological hypotheses are examined. Spatial 
point process models are mathematical models that provide a 
stochastic mechanism to generate point patterns. The spatial 
structure in a point process model is usually governed by a 
set of parameters (e.g. the degree of clustering), which must 
be fitted to the observed pattern. Point process models are 
typically used to describe the data as close as possible and 
to summarize the statistical properties of the observed point 
patterns with few parameters (e.g. to investigate if the degree 
of clustering of tree species is correlated with their dispersal 
syndrome; Seidler and Plotkin 2006). However, point pro-
cess models can also be used to represent the expected spatial 
pattern according to specific ecological hypotheses that are 
being tested (Shen et al. 2009). Comparison among alter-
native point process models allows for an assessment of the 
relative importance of different mechanisms in generating 
the observed patterns (Shen et al. 2009, Wang et al. 2013, 
2015; Fig. 2).

Null models are a subclass of point process models and 
formalize a particular null hypothesis in ecology. Basically, 
null models create the spatial patterns that are expected in 
the absence of a particular ecological mechanism by means 
of the randomization of ecological data where certain ele-
ments of the data are held constant, and others are allowed 
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Figure 4. Quantitatively marked patterns and local random marking null model to assess possible spatial correlations in the size (dbh) of 
large T. pallida trees relative to the size of nearby large trees of other species (Fig. 1E). The local random marking null model randomly 
shuffled the sizes of T. pallida trees, but did not move a given mark more than 100 m away. (A) Univariate mark correlation function kmm(r) 
of the size of large T. pallida trees showing no correlations in the mark product. (B) Bivariate mark correlation function km1m2(r) indicating 
that the product of the sizes of pairs of conspecific–heterospecific trees are for small distances slightly smaller than expected by the null 
model. Thus, T. pallida trees that have a heterospecific neighbor nearby tend to be smaller than the average T. pallida tree. (C) Moran’s I 
like correlation function Imm(r) showing that the positive spatial correlation in the sizes of large T. pallida trees is driven by the environment. 
(D) Bivariate Moran’s I like correlation function Im1m2(r) showing weak negative spatial correlation in the sizes of large T. pallida trees and 
heterospecifics, again indicating that T. pallida trees that have a nearby heterospecific neighbor tend to be smaller than the average T. pallida 
tree. We used 199 simulations of the null model, all other conventions as in Fig. 2E–L.
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dom labeling cannot reject the random mortality hypothesis  
(Fig. 3C–F). Comparison of the expected mark connection 
functions under random labeling (black horizontal lines) 
with the expectation under local random labeling (grey lines) 
suggests larger scale heterogeneity in mortality (Fig. 3D). 
Note that testing for independence or CSR corresponds to 
different ecological questions than using random labeling 
(Goreaud and Pélissier 2003), although this approach has 
been taken by a number of studies, as indicated by the cate-
gory ‘wrong selection of independence’ (Supplementary mate-
rial Appendix 1, Table A1) in our analysis of the literature.

Comparison of data and models

An important step in SPPA is the comparison of the observed 
pattern with patterns generated by stochastic point process 
or null models. In ecology, Monte Carlo methods are mostly 
used for this purpose. First, we generate multiple realizations 
of the null model or point process (e.g. 199 or 999 replicate 
patterns), second, we estimate the summary statistics of the 
observed pattern and of each of the replicated patterns. Third, 
we compare the summary statistics of the observed pattern to 
those of the replicated patterns to determine if the observed 
data fall outside the typical range of the patterns produced 
by the model (Baddeley et al. 2014). In ecology, ‘pointwise’ 
simulation envelopes are mostly used for this purpose. They 
are for example the 5th lowest and highest values of the pair 
correlation functions of 199 simulated patterns at distance 
r (Baddeley et al. 2014), which yield a significance level of 
a  0.05 for a fixed distance r. If the observed summary sta-
tistic lies at some distance r outside the pointwise simula-
tion envelopes it is often taken as evidence of a departure 
from the null hypothesis. Figures 2–4 show simulation enve-
lopes for various data types and null models. For example,  
Fig. 3A indicates that recruits of E. galalonensis strongly 
aggregate within distances of 5 m around conspecific repro-
ductive trees because the observed g12(r) is at these distances 
clearly outside the pointwise simulation envelopes.

However, departures of the observed summary statistic 
from the pointwise simulation envelopes cannot be used to 
reject the null model with significance level a because this 
analysis typically conducts multiple tests, one at each spatial 
distance r, and is prone to type I error inflation (Loosmore 
and Ford 2006). More refined simulation envelopes (e.g. 
global envelopes) or goodness-of-fit tests are required for this 
purpose (Diggle 2003, Loosmore and Ford 2006, Grabarnik 
et al. 2011, Baddeley et al. 2014, Myllymäki et al. 2015,  
2016). The number of simulations influences the accuracy in 
the estimate of the simulation envelopes. Therefore, higher 
numbers of simulations of the null model will be required in 
a confirmatory context (Loosmore and Ford 2006).

Consideration of heterogeneity

Consideration of heterogeneity is important for biological 
and technical reasons. First, quantification of the impact of 
the environment on species distribution patterns is a key 
task in ecology. In particular, SPPA is used to determine the 
relative importance of niche vs neutral theories to explain 
species coexistence (Shen et al. 2009, Wang et al. 2013, 

expectation under HP (closed disks and grey line in Fig. 2F, 
respectively). Thus, additional clustering mechanisms, inde-
pendent of the environmental effects, may operate.

The most important point processes that can generate 
realistic spatial structures for ecological applications are 
cluster processes (generally called Poisson cluster processes; 
Diggle 2003). For the most commonly used Thomas cluster 
processes, there are analytical expressions for g(r) and K(r) 
(Wiegand et al. 2009, Wiegand and Moloney 2014: sec-
tion 4.1.4), which allow the parameters of the process to be 
easily fit from the observed data. These also include more 
complex types of Thomas processes that can describe two 
critical scales of clustering, for example small clusters of 
points located within larger clusters (Fig. 2C). Such a point 
process is able to generate patterns that closely match sev-
eral summary statistics [i.e. g(r), L(r), Hs(r), and D(r); Fig. 
2G, K]. Cluster processes can also simultaneously account 
for a spatially varying intensity function (Shen et al. 2009, 
Waagepetersen and Guan 2009; Fig. 2D, H). Point processes 
that describe species interactions such as competition, how-
ever, require more complex procedures for model fitting (e.g. 
Gibbs or Markov processes; Diggle 2003: section 5.7, Illian 
et al. 2008: section 3.6, Genet et al. 2014).

An important null hypothesis for bivariate patterns is that 
of independence of the two univariate component patterns 
(Goreaud and Pélissier 2003), which corresponds to the 
absence of interactions between the two patterns (Getzin et al. 
2014). A null model testing for independence must preserve 
the observed structure of the two univariate patterns, but 
remove the spatial association between them (Dixon 2002, 
Wiegand and Moloney 2014). One implementation of the 
null hypothesis of independence is through the application 
of a toroidal shift, where one pattern is shifted as a whole 
against the other, following toroidal geometry (Goreaud and 
Pélissier 2003). Using this null model we find significant 
and positive small-scale association between newly recruited 
Eugenia galalonensis individuals and conspecific reproductive 
trees (Fig. 3A). If the two patterns show a hierarchy where 
only one pattern is likely to influence the other, as in this 
example, an antecedent condition null model is appropriate, 
where the antecedent pattern is fixed and the other pattern 
is randomized.

The simplest null model for qualitatively and quantita-
tively marked patterns is random labeling (or independent 
marking), which conserves the locations of points, but 
randomly shuffles marks (or the values of the marks) over 
the points (Kenkel 1988, Goreaud and Pélissier 2003). It 
corresponds to the null hypothesis that the points of the 
pattern are independently marked. Random labeling is 
therefore used to assess whether the marking process acted 
in a spatially correlated way over the locations of the points. 
Departures from random labeling may be caused by larger-
scale spatial trends in the marks imposed by the environment 
(first-order effects) or by interactions (second-order effects). 
To factor out larger-scale trends in the marks we may shuffle 
the marks only locally (i.e. local random labeling; Wiegand 
and Moloney 2014: section 4.4.2.2). Random labeling 
allows important ecological hypotheses to be tested, for 
example, the random mortality hypothesis which states that 
mortality of trees or shrubs does not depend on interactions 
with neighboring individuals. In our example, local ran-



1049

uni- and bivariate patterns, and 16% analyzed univariate 
and marked patterns.

Summary statistics

Authors have used a considerable variety of summary sta-
tistics, and have often adapted the existing ones to better 
accommodate their specific needs. However, a majority of 
studies (75%) used K- or L-functions as summary statistics, 
53% of them exclusively (Fig. 5D). In contrast, summary 
statistics of the pair-correlation function family were used in 
only 27% of the studies (Fig. 5D). This is unfortunate since 
these are more informative than the K/L-family because they 
are non-cumulative (i.e. provide better quantification of the 
effects at specific spatial scales) (Wiegand and Moloney 2004, 
Perry et al. 2006, Law et al. 2009). Use of multiple summary 
statistics was not widespread; 10% of the papers combined 
the K- and g-families of statistics, but only 6% used K- or 
g-summary statistics together with other summary statistics 
(but see Sterner et al. 1986, Barot et al. 1999).

In general, the problem of edge correction, which occu-
pied authors of earlier studies, has been mostly resolved. 
Most of the studies we examined used pairwise-weighted 
(41%) or global edge correction (21%) (Supplementary 
material Appendix 1, Fig. A2f ).

Null models and point process models

Most of the 254 studies that conducted univariate analysis 
tested the CSR hypothesis (86%) (Fig. 5E). In contrast, 
only 15% of them used CSR in combination with another 
univariate null model or point process model. More than 
half of all studies used only CSR in combination with 
the K-function family. The use of null models other than 
CSR has only recently become more frequent in univariate 
analyses (Supplementary material Appendix 1, Fig. A3a). 
The most frequent null model used in the 135 studies con-
ducting bivariate analysis was the toroidal shift (39% of the 
studies), followed by bivariate CSR (33%). Unfortunately, 
26% of all studies that conducted bivariate analysis did not 
clearly state the null model used (Fig. 5E).

Data comparison

The overwhelming majority of studies (93%) used Monte 
Carlo simulations and pointwise simulation envelopes, and 
12% of all studies also used a goodness-of-fit (GoF) test to 
assess the overall fit of the null model over a distance interval 
of interest. The number of simulations of the null model 
strongly varied but was often low ( 100; Fig. 5F).

Heterogeneity

We found that, up to 1998, approximately 80% of the stud-
ies examined were conducted for homogeneous patterns, 
but this proportion dropped to 50% afterwards (black sym-
bols in Supplementary material Appendix 1, Fig. A3e). One 
quarter of all studies considered heterogeneity explicitly, and 

2015). The most elegant solution is to include the informa-
tion on environmental covariates for estimation of the inten-
sity function l(x) (e.g. Fig. 1B) and apply inhomogeneous 
second-order summary statistics (Baddeley et al. 2000, Law 
et al. 2009). Figure 2D shows a realization of an inhomo-
geneous Thomas cluster process (Waagepetersen and Guan 
2009), which considered an estimate l̂(x) of the underlying 
intensity function in fitting the model. This point process 
provides a good description of both, the small- and larger 
scale pattern in the data [i.e. g(r), and D(r); Fig. 2H, L)], yet 
a heterogeneous Poisson process, which only considers l̂(x) 
(Fig. 2B), does not describe the full clustering present in the 
pattern (Fig. 2F, J).

Second, most methods of SPPA were originally devel-
oped for homogeneous patterns but real world ecological 
datasets usually show some level of heterogeneity (Fig. 1A, 
B). Besides using inhomogeneous summary statistics, several 
simple methods exist to deal with heterogeneity (Wiegand 
and Moloney 2014: section 2.6). Failing to consider het-
erogeneity may result in incorrect inference (Pélissier and 
Goreaud 2001). For instance, a common problem arises 
when the L-function is applied to point patterns consisting 
of large areas void of points. This may for example happen 
if the observation window includes areas such as rocks or 
ponds, which cannot be colonized. In this case the diagno-
sis of ‘aggregation at all scales’ is frequently made, but may 
only reflect a first-order effect that obscures possible second-
order effects (i.e. virtual aggregation; Wiegand and Moloney 
2004).

Results of review

General descriptors

In the 1980s just a few ecological studies applied modern 
techniques of SPPA (Sterner et al. 1986, Kenkel 1988) but 
they became more common from 1998 onwards (Fig. 5A). 
Study sites were spread over most of the globe (Fig. 5B). A 
majority of the 308 studies focused on plants, mostly trees 
(65.9%), but included also animal structures or captures 
(7.8%), or fire events (2.6%) (Fig. 5C). Approximately 
half of the studies analyzed point patterns with relatively 
few points ( 100) (Supplementary material Appendix 1, 
Fig. A1d) and although the analyses were conducted with 
spatially-explicit data, only 62% of the studies contained 
at least one map of the point patterns. Most of the articles 
(55.2%) tested a hypothesis; 29.5% of which addressed 
specific ecological questions, and 14.9% presented or 
tested new methods (Supplementary material Appendix 1, 
Fig. A2a).

Data types

Most of the studies analyzed univariate patterns (82%). In 
contrast, only 44% considered bivariate patterns, 21% quali-
tatively marked patterns, and 6% of studies considered quan-
titatively marked and multivariate patterns (Supplementary 
material Appendix 1, Fig. A2b). However, a large proportion 
of the studies analyzed several data types; 39% analyzed both 
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related disciplines. A major conclusion emerging from 
our review is that, despite publication of several concep-
tual papers and books on the topic during the last several 
decades, the majority of the studies examined here under-
used the methodological potential offered by modern 
techniques of SPPA. This is partly understandable since 
SPPA is not a standard technique learned by ecologists. 
However, we also detected a creative core of studies that 
placed SPPA in new contexts and explored a number of 
exciting opportunities. Below we outline techniques that 
have great potential in ecological research and provide a 
list of recommendations for the use of SPPA methods in 
ecology.

another quarter of the studies exhibited indications of virtual 
aggregation. Interestingly, out of the 159 studies that con-
ducted the simplest analysis (i.e. used the K-function family 
together with CSR for univariate patterns), eighty were con-
ducted for homogeneous patterns, but sixty ( 19% of all 
studies investigated) showed virtual aggregation. Finally, just 
seventeen studies (11%) used inhomogeneous second-order 
summary statistics.

Discussion

In this study we reviewed the use of different elements 
of spatial point pattern analysis (SPPA) in ecology and 
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Promising but underused techniques

We start by commenting on general tendencies that emerged 
through our literature review, before we expand, in more 
detail, on five recent developments that we find especially 
promising for ecological applications.

General tendencies
While earlier studies in SPPA were seriously limited by  
the effort and cost to map point patterns with large sample 
sizes, this limitation is now less of a concern thanks to the 
development of new mapping techniques and the increasing 
availability of remote sensing data sets that can be analyzed 
with SPPA (Lee and Lucas 2007, Moustakas et al. 2008, 
Garzon-Lopez et al. 2014). A large number of null models 
or point processes exist that can be used to test more spe-
cific hypotheses or to quantify complex spatial structures. 
For instance, point processes for characterizing clustering 
are now quite refined and allow for the detection of two 
or more critical scales of clustering (Wiegand et al. 2009;  
Fig. 2C), as are the techniques for the additional consider-
ation of underlying heterogeneity (Waagepetersen and Guan 
2009, Wiegand and Moloney 2014; Fig. 2D). The same 
applies for point processes that consider species interactions 
(e.g. Gibbs processes; Diggle 2003, Illian et al. 2008, Genet 
et al. 2014).

However, with exception of a few point process models, 
where analytical formulas for summary statistics exist (e.g. 
Thomas processes), fitting of spatial point process models to 
complex real-world data sets is in general a complicated task. 
The R package ‘spatstat’ provides methods to fit a wide vari-
ety of point process models as well as diagnostic tools such 
as residual analysis (Baddeley and Turner 2005, Baddeley  
et al. 2015). Recent developments include the framework 
of integrated nested laplace approximation (INLA) that 
speeds up parameter estimation and can make complex spa-
tial point process models more accessible to scientists of all 
areas outside of statistics (Illian et al. 2013). New techniques 
such as wavelet analysis, when applied to point pattern data 
(Detto and Muller-Landau 2013), also allow for the formu-
lation of biologically motivated point process models and 
can characterize processes such as dispersal and density-
dependent establishment.

Simulation envelopes
Most studies that we reviewed used Monte Carlo simulations 
and pointwise simulation envelopes to assess departures of the 
observed point pattern from the null model (e.g. Fig. 2E–L, 
3, 4). This is often sufficient for exploratory analysis, but 
does not allow for rejection of the null model with an a priori 
defined significance level (e.g. a  0.05 for the 5th largest 
and smallest values of 199 simulations of the null model; 
Loosmore and Ford 2006, Baddeley et al. 2014). Myllymäki 
et al. (2016: their Eq. 17) recently presented a test based on 
global envelopes that are variable in r and allow for rejection 
of the null hypothesis with a prescribed significance level a 
if the observed summary statistic wanders at least at one dis-
tance r outside the envelopes (for details see Supplementary 
material Appendix 2). These global envelopes (red lines in 
Fig. 3 and 4) are clearly wider than the pointwise simulation 

Solved difficulties and persistent challenges

After more than 20 yr of being used in ecology, it appears 
that a ‘standard canon’ of techniques of spatial point pattern 
analysis in ecology has been largely identified and most of 
the technical issues that occupied users earlier, such as the 
edge correction, have been solved. The textbook by Illian 
et al. (2008) provides a comprehensive reference for most of 
the technical issues that are relevant for the practical use of 
SPPA in ecology, and more recent techniques are presented 
in Baddeley et al. (2015). However, our review highlights 
that many of the most powerful and promising techniques 
of SPPA have been rarely used in ecology. Indeed, more than 
half of the reviewed studies were limited to the application of 
the K-function family and the CSR null model for univariate 
analysis.

An important and persistent challenge in ecology, in 
general, and in ecological applications of SPPA, in particu-
lar, is pattern-process inference; i.e. the problem of estab-
lishing the link between spatial patterns and the ecological 
processes of interest (Watt 1947, Levin 1992, McIntire 
and Fajardo 2009). This problem partially arises in ecology 
because SPPA uses static patterns to make inferences on 
systems where several dynamic processes interact in modi-
fying the spatial patterns. Because of this limitation, we 
may ultimately not be able to understand the significance 
of static patterns without implementing a dynamic frame-
work (e.g. individual-based models; Brown et al. 2011, May 
et al. 2015; see below). However, if spatially-explicit inter-
actions and mechanisms are important for species diversity, 
community assembly and ecosystem dynamics, spatial pat-
terns observed in these systems should conserve a signature 
of the underlying processes (Moloney 1993, McIntire and 
Fajardo 2009).

Beyond the fundamental problem of static patterns vs 
dynamic processes, we found that difficulties in identifying 
the pattern-process link are also a consequence of 1) focus-
ing on a single summary statistic, which may fail to detect 
important features of complex patterns (Wiegand et al. 
2013); 2) using null hypotheses such as CSR that are too 
simplistic to respond to more complex ecological questions; 
and 3) mistakes in the technical implementation of null 
models (e.g. heterogeneity not appropriately considered). 
These three difficulties can be easily overcome by making use 
of existing techniques. For example, heterogeneity can often 
be considered in a simple way by heterogeneous Poisson 
processes with non-parametric kernel estimates (Wiegand 
and Moloney 2004) or by analyzing internally homoge-
neous subareas within the observation window (Pélissier and 
Goreaud 2001).

We also noticed two additional challenges. First, the ter-
minology was quite heterogeneous; many different terms 
were used for the same summary statistics [e.g. D(r) vs G(y) 
for the nearest neighbor distribution function], edge cor-
rection methods or null models. Second, authors often did 
not present the data type, the plot size and the number 
of points in the analyzed patterns. In many cases, graphs 
showing one or the most typical spatial patterns were  
neither included, which makes the evaluation of results  
difficult.
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pioneered the use of spatially-explicit, point pattern exten-
sions of classical diversity indices in multivariate point pat-
terns. For example, they introduced the spatially-explicit 
Simpson index b(r) defined as the conditional probability 
that two individuals are heterospecific given that their sepa-
ration distance is r. This summary statistic is related to the 
distance decay of similarity (Wang et al. 2015). Recently 
developed multivariate summary statistics include also the 
individual species–area relationship ISAR (Wiegand et al. 
2007, Punchi-Manage et al. 2015), which quantifies the 
species richness in neighborhoods within radius r of a focal 
species, and extensions of b(r) and ISAR to incorporate 
pairwise species dissimilarity (Shen et al. 2013, Wiegand 
and Moloney 2014, Pélissier and Goreaud 2015, Wang 
et al. 2015, 2016). These new methods allow for detailed 
quantification of phylogenetic and functional diversity in 
fully mapped plots and will improve our understanding of 
the major drivers of biodiversity patterns.

Another interesting and more recent development in 
multivariate SPPA is the concept of point pattern null com-
munities (Shen et al. 2009, Wang et al. 2013, 2015). Figure 2 
illustrates the assembly of null communities: a point process 
is fitted for each species to its distribution pattern and sto-
chastic realizations for each species are independently super-
imposed to obtain one null community. Null communities 
that assume CSR for each species (Fig. 2A) contain no spatial 
structure and serve as point of reference to evaluate the rela-
tive importance of spatial processes (e.g. dispersal limitation) 
or the environment (i.e. habitat filtering) to produce certain 
spatial patterns in diversity. In contrast, null communities 
assembled with the heterogeneous Poisson process (Fig. 2B) 
are structured only by habitat filtering, whereas null com-
munities assembled with homogeneous cluster processes  
(Fig. 2C) are structured only by biotic processes, such as dis-
persal limitation. Finally, null communities based on inho-
mogeneous Thomas processes (Fig. 2E) or inhomogeneous 
pattern reconstruction (Wiegand et al. 2013) reproduce 
all aspects of the general spatial structure of the individual 
species patterns. Because the null communities assume inde-
pendent superposition of species patterns, departures from 
the data can be attributed to the effect of species interactions 
(Wang et al. 2015).

Linking traits to species patterns
Coupling large multi-species spatial data sets, such as the 
BCI data, with functional-trait data is a promising approach 
for linking spatial patterns to ecological processes. In a first 
step in doing this, key properties of spatial structure, such 
as the mean cluster size, are quantified for many species by 
fitting point process models to the data (e.g. Fig. 2C, D). 
In a second step, these key properties are then correlated to 
species traits, such as dispersal syndromes, to reveal a link 
between pattern and process (Seidler and Plotkin 2006). 
Getzin et al. (2014) and Velázquez et al. (2015) linked point 
pattern measures of bivariate species co-occurrence to species 
traits. Getzin et al. (2014) showed that animal dispersed 
plant species in the BCI forest tended to show independence 
between recruits and adult conspecifics, whereas species with 
explosive seed dispersal tended to show positive small scale 
associations and wind-dispersed segregation. Velázquez et al. 
(2015) showed that interspecific spatial association of recruits 

envelopes (black lines) and would reject the null model less 
often. Because estimation of these global envelopes does not 
require more simulations than constructing the pointwise 
simulation envelopes, we encourage their use to avoid spuri-
ous rejection of null models. However, all these methods are 
conservative if parameter fitting is involved (Diggle 2003, 
Myllymäki et al. 2016).

Sometimes it is important to directly compare the 
strength of departures from the null model among analyses 
of different objects, e.g. different species. In this case effect 
size transformation (also called z-scores or studentized scal-
ing; Myllymäki et al. 2015, Eq. 2 in Supplementary material 
Appendix 2) of the summary statistics can be used (Getzin 
et al. 2014, Punchi-Manage et al. 2015). The distribution 
of the effect sizes for different species at a given distance r 
provides a better assessment of the nature of departures from 
the null model than the proportion of species with significant 
departures.

Quantitatively marked patterns
The low proportion of articles analyzing quantitatively 
marked patterns is somewhat surprising because these meth-
ods exist for a long time (Penttinen et al. 1992) and because 
most field surveys routinely record properties in addition 
to the spatial location of ecological objects (e.g. height and 
diameters of trees). Application of bivariate mark correlation 
functions allows in our example for a detailed assessment of 
the relationship between the size of individuals of the focal 
species E. galalonensis and the size of heterospecific trees a 
distance r away (Fig. 1E). Under interspecific competition 
we would expect that E. galalonensis individuals with nearby 
heterospecific neighbors would be smaller than expected by 
a null model that randomly shuffles the sizes of E. galalon-
ensis locally (here within 100 m). This null model factors 
out possible larger-scale heterogeneity in tree sizes. Indeed, 
we find that tree sizes in the null model simulations show 
a spatial correlation (grey line in Fig. 4C) which indicates 
spatial trends in the sizes of T. pallida. As a consequence, 
the assessment of standard random labeling (Supplementary 
material Appendix 2, Fig. A5a–c) differs from that of local 
random labeling (Supplementary material Appendix 2, Fig. 
A5d–f ). Figure 4B shows that T. pallida trees with a nearby 
heterospecific neighbor are on average slightly smaller than 
T. pallida trees where heterospecifics are more distant. This 
result is confirmed by the summary statistic Im1m2(r), the 
standard Pearson correlation coefficient between the size m1 
of a T. pallida tree and the size m2 of a heterospecific tree a 
distance r away (Fig. 4D). However, a large part of the nega-
tive correlation is caused by the spatial trends in the sizes of 
T. pallida trees (grey line in Fig. 4D).

Multivariate patterns
One of the most difficult challenges of SPPA in ecology is 
to describe spatial patterns in species, functional and phy-
logenetic diversity in plant communities through the use 
of multivariate summary statistics. An increasing number 
of larger data sets of fully mapped plots from hyper-diverse 
systems, such as the BCI forests plot in Panama (Condit 
1998) or the sclerophyll shrublands of southwestern 
Australia (Perry et al. 2008), are now available for this pur-
pose. Shimatani (2001) and Shimatani and Kubota (2004) 
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that the data contain non-random structures caused by het-
erogeneity or species interactions (see below ‘Heterogeneity’). 
However, the next step of deriving or testing hypotheses on 
the underlying ecological processes often requires more spe-
cific point process models. If the task is to test predictions, 
point process models should represent a priori hypotheses 
based on ecological theory and knowledge.

Model data comparison
If the objective of the study is exploratory and the main 
interest of the analysis is to find out if the null model can 
be clearly accepted or rejected, it is sufficient to use point-
wise simulation envelopes with an intermediate number of 
simulations (e.g. 199). However, if the objective is confirma-
tory and/or requires a better resolution of the ‘blurry’ zone 
where data are close to the null model, substantially more 
simulations may be required. This is especially true for pat-
terns with a smaller numbers of points. To avoid problems 
of simultaneous inference, goodness-of-fit tests (Loosmore 
and Ford 2006) or global envelopes (Myllymäki et al. 2016; 
Supplementary material Appendix 2) can be used. Finally, 
figures showing observed vs. expected summary statistics and 
the simulation envelopes should be included if possible.

Heterogeneity
The data should be checked for signals of heterogeneity that 
may compromise the conclusions of the analysis. This can be 
done, for example, by investigating for heterogeneity of the 
intensity function or trends in the values of the marks, or by 
use of CSR, toroidal shift or random labeling null models, 
Getzin et al. (2008). To remove the effects of heterogeneity 
researchers can now choose among several relatively simple 
methods, but more refined approaches based on paramet-
ric estimation of the intensity function and inhomogeneous 
summary statistics are also available.

Conclusions

After 20 yr of use, the basic techniques of spatial point pat-
tern analysis have now largely been incorporated into eco-
logical studies. They provide a powerful battery of methods 
to extract information about the underlying processes from 
the spatial locations of ecological objects such as plants or 
animal structures and captures. The results of our literature 
review indicate that some challenges, such as developing 
multivariate summary statistics or appropriately establish-
ing the links between the spatial patterns and the processes 
of interest, still remain. Given the rapid advance in remote 
sensing and digital mapping technologies, which allow easy 
collection of data sets unthinkable a few years ago, excit-
ing new possibilities emerge for applying SPPA. However, 
our results also highlight that many of the most powerful 
and promising techniques, some of them available for one 
or two decades and relatively easy to apply (e.g. methods 
to analyze marked point patterns), are still unknown to a 
broader audience of ecologists. We can firmly state after our 
review that a majority of studies substantially underused the 
potential offered by modern SPPA. We argue that point pat-
tern analysis is more than the K-function and random (CSR) 
null models, which are frequently associated with the use of 

was in the BCI forest positively related to trait similarity in 
terms of topographic habitat preferences and dispersal mode, 
but inversely related in terms of wood specific gravity and 
shade-tolerance.

Linking SPPA with dynamic models
One of the most fundamental limitations of the current use 
of SPPA in ecology is that patterns that emerge from the 
interaction of dynamic processes are studied by analyzing 
static point patterns (Wiegand and Moloney 2014). This 
problem can only be overcome by linking SPPA with sto-
chastic, spatially-explicit and individual-based simulation 
models that incorporate (simplified) representations of the 
dynamic processes that are hypothesized to generate the 
patterns (Grimm et al. 2005). Despite some early attempts 
(Jeltsch et al. 1999), using the full potential of this approach 
has only become possible with the advent of methods of 
statistical inference for stochastic simulations models that 
allow fitting the parameters of dynamic simulation mod-
els to point pattern summary statistics (Hartig et al. 2011, 
Lehmann and Huth 2015). Using this framework, May et al. 
(2015) showed that multivariate spatial patterns can indeed 
provide important additional information (compared to e.g. 
the non-spatial species abundance distribution) that can be 
used to identify underlying processes.

Recommendations (protocol for methods of SPPA)

We conclude with a brief checklist for authors and review-
ers on the use and documentation of common key elements 
of SPPA in ecology. Such a list can help to avoid the most 
common pitfalls. To reduce confusion in the use of terms 
and mathematical symbols, we recommend using those of 
the reference textbook of Illian et al. (2008).

Data types
The data type, plot size and number of points of the analyzed 
point patterns should always be presented. A figure showing 
one or more typical spatial patterns should also be included 
(at least in an appendix), to allow better evaluation of the 
results.

Summary statistics
Non-cumulative, second-order summary statistics are the 
preferable tool because they allow for an intuitive assessment 
of scale dependent effects. However, they should be comple-
mented by additional summary statistics (e.g. cumulative 
and nearest neighbor based ones) to depict different aspects 
of the spatial structure present in the data. The edge cor-
rection method, and the software used should be reported. 
When fitting parametric point processes to the data, the best 
possible estimator should be selected because the detailed 
shape of the summary statistic matters.

Null models and point process models
Null models and point process models translate ecological 
questions and hypotheses into the language of point pattern 
statistics. Therefore, the research questions or hypotheses 
should be clearly stated and the null model should be prop-
erly justified. The first step of an analysis is usually to confirm 
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SPPA by ecologists. Instead, they would greatly benefit from 
adopting the wide range of available techniques to decode 
the cryptic but valuable information comprised by spatial 
point patterns in nature.     
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Appendix 1. Detailed results of literature review 

Evaluation of articles 

Table A1 shows the different categories we used to describe each study. We first recorded a 

number of basic descriptors such as the year of publication, the journal, the ecological object 

(e.g., trees or fire events), the vegetation type, and how SPPA was used (e.g., if specific 

hypotheses were tested or if the study presented mainly a new method). Next we recorded 

details on the basic elements of SPPA described above (i.e., data types, summary statistics, 

null models, data comparison, and heterogeneity). Finally, we also recorded the software used 

for the point pattern analysis.  

 In some cases we simply report the relative proportion of studies that fall into the 

different categories shown in Table A1; however, in other cases we were interested in the 

temporal development of the use of different elements of SPPA. In these cases we used an 

index C(t, c) that gives the proportion of all studies published up to year t that fall within a 

given category c. We estimate this “proportion of cumulative studies” as C(t, c) = P(t, c)/a(t) 

where P(t, c) is the number of cases where category c applied up to year t and a(t) is the 

number of articles in our sample published up to year t. Some of the categories were non-

exclusive so that the index C(t, c) may add up to a value larger than one. Because only 11 

studies in our sample were published before 1997 (Fig. 1A), we estimated C(t, c) for years 

1997 to 2012.  

 

Results  

General descriptors 

In the 1980s just a few studies applied modern techniques of SPPA to ecological questions 

(e.g., Galliano 1982, Sterner et al. 1986, Getis and Franklin 1987, Kenkel 1988). By the 1990s 

such studies appeared more regularly, becoming increasingly common from 1998 onwards 

(Fig. A1a). Study sites were spread over most of the globe with some local clusters in central 
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Europe (Fig. A1b). The 308 Studies on SPPA analyzed here were published in 92 different 

journals, but the distribution of studies over the journals was highly skewed; nine journals 

accounted for half of the studies, with Journal of Vegetation Science (39 studies), Forest 

Ecology and Management (38), and Plant Ecology (21) being the journals where most of the 

studies were published. When looking at categories of journals publishing more than 5 

studies, we found that 71 studies were published in journals focusing on plant ecology, 62 

studies were published in forestry journals, and 54 in general ecology journals (e.g., 

Ecography, Ecology, or Acta Oecologica). The ecological objects studied closely mirrored the 

subject matter of the respective journals, with an overwhelming number of studies conducted 

on trees (203), followed by shrubs (26), animal structures or captures (24), herbs (21) and fire 

events (8). Most of the studies of vegetation were conducted in forests (175), primarily in 

temperate latitudes (113). A small number of studies were also conducted in areas of semi-

arid vegetation (22) and Mediterranean climate (19) (Fig. A1c). Approximately half of the 

studies analyzed point patterns with relatively few points (< 100), but the other half 

considered 100 to 800 points (Fig. A1d). Although the analyses were conducted with spatially 

explicit data, only 62% of the studies contained at least one map of the point patterns.  

 When looking at the way SPPA was used in the 308 articles, we found that most 

articles (170) tested a hypothesis, 91 articles addressed specific ecological questions, and 46 

articles predominantly presented new methods or tested new methods. The proportion of 

articles that tested methods decreased after 1998 (blue symbols in Fig. A2a) and those 

presenting new methods increased after 2000 (green symbols in Fig. A2a).  

 

Data types 

Most of the studies examined presented analysis of univariate patterns (82%). In contrast, 

44% considered bivariate patterns, 21% qualitatively marked patterns, and only 6% of studies 

considered quantitatively marked and multivariate patterns (Fig. A2b). The relative 
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proportions of the different types of analyses also did not change much over time (Fig. A2b). 

A large proportion of the studies analyzed several data types. Thirty-nine percent of the 

papers analyzed both uni- and bivariate patterns, and 16% analyzed univariate and marked 

patterns. 

 

Summary statistics 

Authors have used a considerable variety of summary statistics, and have often adapted 

existing ones to better accommodate their specific needs. However, a majority of studies 

(75%) used K- or L-functions as summary statistics, 53% of them exclusively (Fig. A2c). In 

contrast, summary statistics of the pair-correlation function family, which are often more 

informative, were used in only 27% of all studies. Indices were used in 11% of the studies and 

nearest neighbor distribution functions in 10% (Fig. A2c). Use of multiple summary statistics 

was not widespread; 10% of the papers examined combined the K- and g-families of statistics, 

but only 6% used K- or g summary statistics together with other summary statistics (Fig. 

A2c). Early exceptions are the studies by Sterner et al. (1986) and Barot et al. (1999).  

 Figures A2d and e show how the use of the different summary statistics changed over 

time. During the last ten years, the proportion of articles using K(r) or L(r) functions has 

decreased while the number of those using g(r) functions or functions adapted for 

quantitatively marked or inhomogeneous patterns has increased (Fig. A2d). Regarding the 

different types of summary statistics, indices and nearest neighbor summary statistics were 

frequently used before 2000, but their use has strongly declined since then (Fig. A2e).   

 

Edge correction 

Roughly one quarter of all studies did not clearly state the edge correction method used (Fig. 

A2f) and often referred to papers that presented several edge correction methods. In 8% of the 

studies the authors did not use edge correction, whereas 8% and 4% of studies (mostly old 



 

 5 

ones) used minus- or plus sampling edge correction, respectively (Fig. A2f). In most of the 

studies, various pairwise-weighted edge correction (41%) and global edge correction (21%) 

methods were used. After 2003, the proportion of studies using pairwise-weighted edge 

correction methods declined somewhat at the expense of global edge correction methods (Fig. 

A2f), especially within the context of the use of the software Programita.  

 In general, the problem of edge correction, which occupied authors of earlier studies, 

has been mostly resolved. Recent textbooks (Illian et al. 2008, Wiegand and Moloney 2014) 

now provide a detailed treatment of the different options for uni- and bivariate patterns. 

Pairwise-weighted and global edge-correction methods provide generally similar results in the 

estimation of second-order summary statistics. 

 

Null models 

Most of the 254 studies that conducted univariate analysis used CSR as the null model (86%) 

(Fig. A3a). In contrast, only 15% of all univariate studies used CSR in combination with 

another univariate null model or point process model. More than half of all studies 

exclusively used the CSR null model in combination with the K-function family of pattern 

analysis (Fig. A3a). Surprisingly, the use of null models other than CSR has only recently 

become more frequent in univariate analyses (Fig. A3a). The heterogeneous Poisson process 

(HP) was used in 15% of all univariate studies, and cluster processes in 8%, while only 5% of 

the studies analyzing univariate patterns did not clearly state the null model used. 

 The most frequent null model used in the 135 studies conducting bivariate analysis 

was the toroidal shift (39% of the studies), followed by bivariate CSR (33%). Both null 

models were frequently used over the entire period examined by this review (Fig. A3b). One 

quarter of all bivariate analyses considered structural constraints, such as an antecedent 

condition, but the bivariate, heterogeneous Poisson process model was rarely used (9.6% of 

the studies). It is also interesting that 14% of all bivariate studies modified widely used null 



 

 6 

models to better respond to their specific questions and hypotheses. However, 26% of all 

studies that conducted bivariate analysis did not clearly state the null model used (Fig. A3b). 

Sixty-four studies used random labeling correctly for qualitatively marked patterns, but eleven 

studies confused the null models for independence and random labeling. 

 

Data comparison 

The overwhelming majority of studies (93%) used Monte Carlo simulations, and 12% of all 

studies also used a goodness-of-fit test (GoF) to assess the overall fit of the null model over a 

distance interval of interest. Several studies mentioned the GoF test, but did not use it because 

of the exploratory character of the study. Interestingly, the proportion of cumulative studies 

using GoF test dropped to 6% in 2003 but since 2004, it has constantly increased up to 12% 

(Fig A3c). Because the Monte Carlo simulations are stochastic, there is some uncertainty in 

the assessment of the simulation envelopes, especially if less than 100 simulations are used. 

The number of simulations used by the authors in the null model strongly varied. In most 

cases it was between 200 and 1000 (34 % of published articles) or between 20 and 100 (32%). 

However, 6% of all studies did not provide the number of simulations (Fig. A3d). 

 

Heterogeneity 

We found that, up to 1998, approximately 80% of studies were conducted for homogeneous 

patterns, but this proportion dropped to 50% afterwards (black symbols in Fig. A3e). The 

proportion of studies that overlooked heterogeneity (blue symbols in Fig. A3e) and studies 

that recognized it but used homogeneous techniques (yellow symbols in Fig. A3e) accounted 

for 14% and 13% of all cases, respectively. In contrast, studies considering heterogeneity in 

the point pattern methods increased after 2005, making up one quarter of all cases (green 

symbols in Fig. A3e). Finally, studies that exhibited indications of virtual aggregation made 

up one quarter of all studies. This reached a peak of 33% in 2000, but then declined due to the 
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increasing consideration of techniques accounting for various aspects of heterogeneity (Fig. 

A3e). Interestingly, out of the 159 studies that conducted the simplest analysis (i.e., used the 

K-function family together with CSR for univariate patterns), 50% were conducted for 

homogeneous patterns, but 38% of these studies showed virtual aggregation.  

 

Software 

Appendix 4 in Supplementary material shows the references and links for the most frequently 

used software programs. The most used software was Programita (56) (Wiegand and 

Moloney 2004, 2014) and spatstat (46) (Baddeley and Turner 2005), which appeared after 

2005. All other packages were used in less than 8% of all studies (Fig. A3f). However, 23% 

of all studies (71) did not specify the software used. 

 

Additional references  

Galliano, E.F. 1982. Pattern detection in plant populations through the analysis of plant-to-all-

plants distances. - Vegetatio 49:39–43. 

Getis, A. and Franklin, J. 1987. Second-order neighborhood analysis of mapped point 

patterns. - Ecology 68: 474–477. 
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Table A1. Descriptors and categories used to characterize how the reviewed studies used the five key 

elements of spatial point pattern analysis in ecology (bold, numbers 1 to 5). The different categories 

under each key element are given in italics and normal fonts.  

Basic descriptors of papers 3) Null models and point process models 
 year of publication  Univariate 
 journal   homogeneous Poisson  (CSR)  
 number of points   cluster processes  
 map of pattern included (yes, no)   heterogeneous Poisson (HP) 
 location of study area   others  
 ecological object*   not specified 
 vegetation type †  bivariate  
 Use of SPPA   antecedent condition  
  hypothesis testing   toroidal shift  
  answer specific question   homogeneous Poisson  (CSR)  
  method presentation   heterogeneous Poisson (HP) 
  method test   other  
     not specified 
1) Data types  qualitatively marked patterns  
 unmarked   random labeling  
  univariate   not specified 
  bivariate   wrong selection of independence 
  multivariate    
 qualitatively marked 4) Data comparison 
 quantitatively marked  Monte Carlo methods (yes, no) 
    Number of simulations 
2) Summary statistics  Goodness-of-fit test (yes, no) 
 indices     
 second-order summary statistics 5) Heterogeneity 
  K(r) or L(r)   homogeneous 
  g(r) or O(r)  heterogeneous, but not recognized  
  inhomogeneous versions  heterogeneity recognized, no specific method 
 nearest neighbor summary statistics   Heterogeneity recognized, specific methods 
 mark connection or mark correlation functions  virtual aggregation (yes, no) 
 others    
 Edge correction Software 
  minus sampling  not specified 
  plus sampling  Programita (Wiegand and Moloney 2014) 
  pairwise weighted edge correction  Spatstat (Baddeley and Turner 2005) 
  global edge correction  SPPA (Haase 2001) 
  no edge correction  ADE (Thioulouse et al. 1997) 
  not specified  other       

* trees, shrubs, herbs, animal captures or structures, fire events, others 

† alpine, boreal forests, dry tropical, Mediterranean, semi-arid land, subtropical forest, temperate 

forest, wet tropical forest, others, several types. 
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Figure A1. Basic descriptors of the 308 articles using point pattern analysis in ecology and 

related disciplines over the 1992-2012 study period. (a) Number of studies published per year 

included in our analysis. (b) Geographical location of the 308 articles using point pattern 

analysis in ecology and related disciplines. (c) Number of studies performed in different 

vegetation types. (d) Frequency distribution of the number of points in the patterns.    
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Figure A2. Use of spatial point pattern analysis, data types, summary statistics, and edge 

correction methods in the 308 studies analyzed. Temporal change in the proportion of articles; 

(a) that tested hypotheses, answered specific questions, or presented/tested new methods, (b) 

that analyzed different data types. (c) Proportion of articles that used a given summary 

statistic or a combination of summary statistics; inhomogeneous refers to inhomogeneous 

second-order summary statistics, and mark functions to mark correlation and mark connection 

functions. (d) Temporal change in the proportion of articles using different types of summary 

statistics. (e) Same as d), but for indices, nearest neighbor statistics and the pair correlation 

function. (f) Temporal change in the proportion of articles using different edge correction 

methods; weighted and global indicate pairwise weighted edge correction and global edge 

correction, respectively. 
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Figure A3. Null models, data comparison, heterogeneity, and software as used in the 308 

articles analyzed. Temporal change in the proportion of articles using; (a) different univariate  

and (b) bivariate null models, (c) a goodness-of-fit test, (d) a certain number of simulations of 

the null model, (e) different methods to deal with heterogeneity. (f) Number of articles using 

different software packages. References for software are given in Appendix 4 in 

Supplementary material.  
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Appendix 2. Additional results of global envelopes 

Global envelopes S+(r) and S-(r) that are variable in r were proposed by Myllymäki et al. 

(2015b) in their section 5 as “global scaled maximum absolute difference (MAD) envelopes”. 

They have the desired property that the null model can be rejected over a given distance 

interval with significance level α if the observed summary statistic S(r) wanders at one or 

more distances r outside the simulation envelopes. Note that the pointwise envelopes do not 

have this property because of the problem of multiple inference (Loosmore et al. 2006).   

 The global envelopes S+(r) and S-(r) are constructed in three steps. First, the summary 

statistics Si(r) are estimated from the observed data (i = 0) and from the s realizations of the 

null model (i = 1,.. s), and the mean )(rS  and the standard deviation )(ˆ rSσ  of the Si(r) are 

estimated for i = 1,.. s. Then, the original summary statistics Si(r) are student transformed: 

  
)(ˆ
)()()(

r
rSrSrS

S

ises
i σ

−
= ,     (1) 

In ecology this transformation is called standardized effect sizes. Notably, the pointwise 

simulation envelopes Gp
-(r) and Gp

+(r) of the student transformed summary statistic (e.g., for 

α = 0.05 the 5th lowest and highest values of Si
ses(r) taken from i = 1, .., 199) approximate for 

all distances r the critical value Gp
-(r) = -zα and Gp

+(r) = zα with zα = 1.96 for α = 0.05. Thus, 

we have constant pointwise simulation envelopes. This works if the distribution of the Si(r) 

for i = 1, …s approximates for fixed values of r a normal distribution. This assumption can be 

tested by comparing the Gp
-(r) and Gp

+(r) with the critical values zα and - zα. If the distribution 

is not symmetric for some values of r one can either use upper and lower quantiles proposed 

by Myllymäki et al. (2015a,b) or exclude these distances from the distance interval where the 

global envelope test is applied.  

 Second, the standard “maximal absolute difference” (MAD) test introduced by Diggle 

(1979) and Ripley (1979) is applied for the studentised summary statistics Si
ses(r). This test 

makes sense because the variance of Si
ses(r) under the null model is the same for all distances 
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r. The functional summary statistic Si
ses(r) of the ith simulation of the null model is reduced to 

its minimum and maximum value Si
min and Si

max, respectively, taken over the distance interval 

r = rmin, .., rmax of interest. The kth largest value of the Si
max is the upper global envelope G+, 

and the kth smallest value of the Si
min is the lower global envelope G-. Note that this test 

conducts only one test for the entire interval. For this reason, the problem of multiple 

inference (Loosmore et al. 2006) does not occur and we can reject the null model with 

significance level α if S0
ses(r) > G+ or S0

ses(r) < G- for one or more distances r (r ≥ rmin and r ≤ 

rmax). 

 Third, to obtain the desired global simulation envelopes S+(r) and S-(r) that are 

variable in r we apply the inverse transformation of (1) to G+ and G- (see eq. 19 in Myllymäki 

et al. 2015b): 

  
−−

++

−=

+=

GrrSrS

GrrSrS

S

S

)(ˆ)()(

)(ˆ)()(

σ

σ
    (2) 

The global envelopes S+(r) and S-(r) are implemented in the software Programita, which can 

be accessed at www.programita.org 

 

Additional references 

Ripley, B.D. 1979. Tests of randomness for spatial point patterns. - Journal of the Royal 

Statistical Society B 41:368-374. 

Diggle, P.J. 1979. On parameter estimation and goodness-of-fit testing for spatial point 

patterns. - Biometrics 35:87-101.
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Figure A4. Comparison of the results of standard random labeling and local random labeling 

for the data of surviving and dead saplings of E. galalonensis shown in figure 1D. a) - c) 

Results for local random labeling (where a given mark is not moved more than 100m), they 

are the same as in figures 3C - E. The horizontal black line shows the expectation of standard 

random labeling. Comparison with the expectation of local random labeling (grey bold line) 

shows that mortality of E. galalonensis shows spatial trends. d) -f) Same as a) - c), but for 

standard random labeling where the marks are randomly shuffled among all saplings.  



 

 15 

 

d)

Distance r [m]

0 10 20 30 40

k m
1m

1(
r)

0.8

0.9

1.0

1.1

1.2
e)

Distance r [m]

0 10 20 30 40

I m
1m

1(
r)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

a)

k m
1m

1(
r)

0.8

0.9

1.0

1.1

1.2
b)

I m
1m

1(
r)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

f)

Distance r [m]

0 10 20 30 40

ρ m
1m

1(
r)

0.4
0.6
0.8
1.0
1.2
1.4

c)

ρ m
1m

1(
r)

0.4
0.6
0.8
1.0
1.2
1.4

Standard random marking

Local random marking

 

Figure A5.  Comparison of the results of standard random marking and local random marking 

for the quantitatively marked pattern of large trees (dbh > 10cm) of the mid-story tree 

Trichilia pallida shown in figure 1E. a) - c) Results for local random marking (where a given 

mark is not moved more than 100m). a) is the same as Fig. 5A and b) the same as Fig. 5C, 

and in c) we show additionally the mark variogram. Comparison with the expectation of local 

random marking (grey bold line) shows that sizes of T. pallida shows spatial trends. d) -f) 

Same as a) - c), but for standard random marking null model where the marks are randomly 

shuffled among all large trees. 
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Minnesota. Canadian Journal of Forest Research 42: 899-907  

Akhavan et al. 2012. Spatial patterns in different forest development stages of an intact old-

growth Oriental beech forest in the Caspian region of Iran. European Journal of Forest 
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Appendix 4. Key references and links for software packages appearing in 

Figure 4F. 
 

Software Key reference Link 

ADE Thioulouse, J., D. Chessel, S. Dolédec, and J. M. 

Olivier. 1997. ADE-4: a multivariate analysis 

and graphical display software. Statistics and 

Computing 7:75-83. 

http://pbil.univ-lyon1.fr/ADE-4/ 

SPATIAL Duncan, R. P. 1990. SPATIAL analysis program. 

Department of Plant Science, Lincoln 

University, New Zealand. 

 

Programita Wiegand, T., and K.A. Moloney. 2014. Handbook 

of spatial point pattern analysis in ecology. 

Chapman and Hall/CRC press, Boca Raton, 

FL. 

www.Programita.org 

Spatstat Baddeley, A., and R. Turner. 2005. Spastat: An R 

package for analyzing spatial point patterns. 

Journal of Statistical Software 12: 1-42 

http://spatstat.github.io/ 

splancs Rowlingson, B. and Diggle, P. 1993 Splancs: 

spatial point pattern analysis code in S-Plus. 

Computers and Geosciences 19: 627-655 

www.maths.lancs.ac.uk/ 

~rowlings/Splancs/ 

S-plus INSIGHTFUL CORPORATION. 2005. S-Plus 7 

for Windows user' guide. Insightful 

Corporation, Seattle, WA.  

 

SPPA Haase 2001. Can isotrpy vs anisotropy in the 

spatial association of plant species reveal 

physical vs biotic facilitation? Journal of 

Vegetation Science 12: 127-136.  

 

SpPack Perry, G.L.W. 2004. SpPack: spatial point pattern 

analysis in Excel using Visual Basic for 

Applications. (VBA). Environmental 

Modelling & Software 19:559-569 

 

 




