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Abstract – We present a path-integral approach for finding solutions of the convection-diffusion
equation with inhomogeneous fluid flow, which are notoriously difficult to solve. We derive a
general approximate analytical solution of the convection-diffusion equation which is in principle
applicable to arbitrary flow profiles. As examples, we apply this approximation to the diffusion
in a linear shear flow and in a parabolic flow in infinite space, and to the diffusion in a linear
shear flow over an impenetrable interface. This last case is particularly important for problems
involving diffusive transport towards an interface with advection. We compare the analytical
approximation with numerical solutions which are obtained from a conventional finite-element
time-difference method.

Copyright c© EPLA, 2014

Introduction. – Convection-diffusion equations occur
in many physical and chemical problems and describe the
transport of heat, matter, or other physical quantities due
to a convective flow superimposed by the diffusion of the
transported entity within the flow [1]. Only in excep-
tional cases is the convection-diffusion equation solvable
by analytical means [2], but in most cases one has to
take recourse to rather complicated numerical integration
schemes. These numerical approaches include a wide ar-
ray of sophisticated finite-element methods [3–12], lattice
Boltzmann methods [13], particle methods [14], or solving
the related Smoluchowski-Langevin stochastic differential
equation [15], see also the overviews [16,17] and the excel-
lent review [18]. In the present paper, we develop a path-
integral–based approach to handling convection-diffusion
equations and find a general approximate solution of the
equation. We demonstrate our method on several exam-
ples, and consider in particular the diffusion within an ad-
vective shear flow profile over an interface. This problem
is particularly important when dealing with the diffusion
of molecules or particles close to the surface of microfluidic
and nanofludic devices [19,20], or wetting and spreading
phenomena [21].

The paper is organized as follows: In the next sec-
tion, we present our general path-integral treatment of the
diffusion-convection equation in two dimensions with an
inhomogeneous flow along one direction (uni-directional

(a)E-mail: jenderl@gwdg.de

flow). We obtain a general solution of the problem via
a Fourier amplitude function that is expressed as a path
integral involving the flow function. By using a second-
order cumulant expansion, this path integral can be solved
and yields a closed-form analytical approximation of the
solution. Next, we apply our approximation to several ex-
amples and compare it with exact finite-element numerical
solutions. Finally, we discuss our results and possible gen-
eralizations and extensions to more complex convection-
diffusion problems.

Path-integral formulation. – In particular, we con-
sider the convection-diffusion equation

∂c (r, t)
∂t

= DΔc (r, t) − v (z) ∂xc (r, t) (1)

where c(r, t) is the local concentration of the transported
and diffusing quantity at position r and time t, D is the
diffusion coefficient, and v(z) is the z-dependent flow pro-
file of a flow along the x-direction. For simplicity reasons,
we restrict ourselves here to considering only two spatial
dimensions, x and z, but the generalization to the third
dimension will be straightforward. Also, we assume that
the flow is directed only along the x-direction, but with
an arbitrary flow profile v(z) as a function of the coordi-
nate z. Green’s function for this equation with the initial
condition G(r, ri, t = 0) = δ(r − ri) can be written in

40007-p1



N. Karedla et al.

path-integral form as [22]

G(rf , ri, t) ∝
(rf ,t)∫

(ri,0)

Dr(t′) exp [−S {r(t′)}] (2)

where the functional S is defined by

S =
∫ t

0

dt′
{ẋ(t′) − v [z (t′)]}2 + ż2(t′)

4D
, (3)

where the path integration in eq. (2) runs over all possible
trajectories starting at position ri at time zero and ending
at position rf at time t. When considering a subset of
all trajectories r(t′) with one and the same z(t′), the path
integration over x(t′) can be done analytically yielding the
result

(xf ,t)∫
(xi,0)

Dx(t′) exp

[
−

∫ t

0

dt′
{ẋ(t′) − v [z (t′)]}2

4D

]
→

1√
4πDt

exp

[
− (xf − xi − x̄)2

4Dt

]
, (4)

where the quantity x̄ is the flow transport along the
x-direction measured along the specific trajectory z(t′)
which is equal to ∫ t

0

dt′v [z (t′)] .

Thus, the final solution G(rf , ri, t) is found to be

G(rf , ri, t) =
∫

dx̄ w (x̄, zf , zi, t)

× 1√
4πDt

exp

[
− (xf − xi − x̄)2

4Dt

]
, (5)

where the weight function w (x̄, zf , zi, t) is given by the
path integral

w (x̄, zf , zi, t) ∝
(zf ,t)∫

(zi,0)

Dz(t′) exp
[
−

∫ t

0

dt′
ż2(t′)
4D

]

× δ

{
x̄ −

∫ t

0

dt′v [z(t′)]
}

. (6)

Thus, in each plane z = const, the solution G(rf , ri, t) is a
superposition of Gaussian distributions with the distribu-
tion function w(x̄, zf , zi, t) at center positions x̄ along the
x-axis. Now what remains is to find an analytical solution
for the weight function w(x̄, zf , zi, t). As we will see be-
low, this can be done exactly for specific flow profiles v(z),
but also in the general case of an arbitrary flow profile, the
path integral of eq. (6) can be analytically approximated,
which will be the topic of the next section.

Gaussian approximation. – To find an analytical ap-
proximation of eq. (6), we switch first to Fourier space by

w (x̄, zf , zi, t) =
∫

dk

2π
w̃ (k, zf , zi, t) exp(ikx̄). (7)

Now, the Fourier amplitude w̃ is given by the path integral

w̃ (k, zf , zi, t) ∝
(zf ,t)∫

(zi,0)

Dz(t′)

× exp
{
−

∫ t

0

dt′
[
ż2(t′)
4D

+ ikv [z(t′)]
]}

. (8)

To approximate this expression analytically, let us for-
mally define the average over a functional V [z(t′)] by

〈V [z(t′)]〉(zf ,t)

(zi,0)
=∫ (zf ,t)

(zi,0)
Dz(t′) exp

{
−

∫ t

0
dt′ ż2(t′)

4D

}
V [z(t′)]∫ (zf ,t)

(zi,0)
Dz(t′) exp

{
−

∫ t

0
dt′ ż2(t′)

4D

} . (9)

The path integral in the denominator can be calculated
analytically and is equal to

g(zf − zi, t) =
1√

4πDt
exp

[
− (zf − zi)

2

4Dt

]
. (10)

Thus, the Fourier transform w̃ can be represented as an
average over a functional in the form

w̃ (k, zf , zi, t) = g(zf − zi, t)

×
〈

exp
{
−ik

∫ t

0

dt′v [z(t′)]
}〉(zf ,t)

(zi,0)

(11)

The important next step is to apply a cumulant expansion
to eq. (11) and to retain only the linear and the quadratic
terms of the expansion:

〈
exp

{
−ik

∫ t

0

dt′v [z(t′)]
}〉

≈

exp

{
−ik 〈x̄〉 − k2

2
〈
δx̄2

〉}
, (12)

where the linear term is explicitly given by

〈x̄〉zf ,zi,t
=

〈∫ t

0

dt′v [z(t′)]
〉(zf ,t)

(zi,0)

=
1

g(zf − zi, t)

×
∫ t

0

dt′
∫

dz′g(zf − z′, t − t′)v (z′) g(z′ − zi, t
′) (13)

and the quadratic term by〈
δx̄2

〉
=

〈
x̄2

〉
− 〈x̄〉2 , (14)
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Fig. 1: (Colour on-line) Temporal evolution of the Gaussian concentration profile in three different flow profiles: linear shear flow
v(z) = z (left column), parabolic flow profile v(z) = 0.2z2 (middle column), and linear kink profile v(z) = |z| (right column).
The value of diffusion coefficient was set to one.

where the second moment is

〈
x̄2

〉
zf ,zi,t

=

〈 t∫
0

dt′
t∫

0

dt′′v [z(t′)] v [z(t′′)]

〉zf ,t

zi,0

=
2

g(zf − zi, t)

∫ t

0

dt′
∫

dz′

× g(zf − z′, t − t′)v (z′) g(z′ − zi, t
′) 〈x̄〉z′,zi,t′

.

(15)

With this cumulant approximation, eq. (12), one can back-
transform w̃ into real space yielding an analytic expression
for the weight function w:

w (x̄, zf , zi, t) ≈
g(zf − zi, t)√

2π〈δx̄2〉
exp

[
− (x̄ − 〈x̄〉)2

2〈δx̄2〉

]
. (16)

Then, the final approximation for Green’s function of the
convection-diffusion equation is found to be

G(rf , ri, t) ≈
g (zf − zi, t)√

2π (2Dt + 〈δx̄2〉)
exp

[
− (xf − xi − 〈x̄〉)2

4Dt + 2〈δx̄2〉

]
, (17)

where 〈x̄〉 and 〈δx̄2〉 are themselves functions of zi, zf ,
and t as given by eqs. (13)–(15). Equation (17) is the core
result of the present paper and approximates the solution
of the convection-diffusion equation by a superposition of

Gaussian distributions shifted along x by the mean value
x̄ which itself depends on the initial position zi, and on
the final position zf where the solution is evaluated. Also,
in addition to the spreading of the profile due to pure dif-
fusion, 2Dt, there occurs a convection-induced spreading
〈δx̄2〉 which also depends on zi and zf .

Examples. – Let us first consider the special case of a
linear flow profile v(z) = v1z in free space. In that case, an
exact solution is well known [23], and we will reproduce
it here on the basis of eq. (17). For the linear profile,
both the average 〈x̄〉zf ,zi,t and variance 〈δx̄2〉zf ,zi,t can be
calculated exactly:

〈x̄〉zf ,zi,t = v1t
zi + zf

2
, (18)

〈δx̄2〉zf ,zi,t =
Dv2

1t3

6
. (19)

Moreover, for the linear profile, all higher cumulants are
zero. Thus, in that case, the approximate solution given
by eq. (17) is the exact solution. The left column of images
in fig. 1 shows the temporal evolution of an initially Gaus-
sian concentration profile with unity variance and center
position {x, z} = {0, 0} for the time values t = 0, 1, 2, 4
and 8.

Next, let us consider the parabolic flow profile v(z) =
v2z

2 in free space. Again, both the average and variance
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Fig. 2: (Colour on-line) Comparison between the result of a full
numerical integration of the convection-diffusion equation with
a parabolic velocity profile v(z) = 0.2z2 and the approximate
solution, eq. (17). Shown are the concentrations profiles inte-
grated along the z-direction as a function of the x-coordinate
for five time values t = 0, 1, 2, 4, 8. Solid lines are the exact, nu-
merically integrated solutions, and shaded curves are the result
of the Gaussian approximation.

can be calculated analytically yielding

〈x̄〉zf ,zi,t =
v2t(Dt + z2

i + zizf + z2
f )

3
, (20)

〈δx̄2〉zf ,zi,t =
2Dv2

2t3(2Dt + 4z2
f + 7zizf + 4z2

i )
45

. (21)

However, now the higher-order cumulants do not vanish
anymore, and eq. (17) is indeed only an approximation to
the exact solution. The temporal evolution of this approx-
imation is shown by the images in the middle column of
fig. 1. To compare it with the exact solution, we integrated
the full two-dimensional convection-diffusion problem with
a finite-element numerical equation solver (COMSOL) on
a grid stretching from x = −80 till x = 80 and z = −20 till
z = 20 with a grid spacing of Δx = Δz = 1/20 and a time-
step of 0.01. The full calculation between t = 0 and t = 8
lasted for 90min on an Intel(R) Xeon(R) E5440 2,83GHz
quad core PC. For better visualization, we do not com-
pare the full concentration distribution of the numerical
calculation and the approximation, but the concentration
profiles integrated along the z-axis. The result is shown
in fig. 2. It should be noted that the concentration pro-
files integrated along the x-axis are identical because the
integral of eq. (17) along x yields the exact result, inde-
pendent of the particular function v(z). As can be seen,
the approximation eq. (17) matches fairly well the disper-
sion of the concentration profile for small time values, and
starts to deviate sensibly from the exact values only for
large time values t � 1.

As a last example, we consider a linear flow profile over
a planar surface with no-slip condition (flow velocity is
zero on surface). This is the most relevant case for all
convection-diffusion problems close to an interface. In-
stead of considering the convection-diffusion equation in
a half-space z > 0 with flow profile v(z) = v1z, we will
treat it in infinite space but assuming the cusp-like flow

Fig. 3: (Colour on-line) Same as fig. 2 but for a linear cusp
velocity profile v(z) = |z|.

profile v(z) = v1|z|. When additionally imposing a mirror-
symmetric initial distribution c0(x, z) = c0(x,−z), the
solution to this problem will be equivalent to the solu-
tion of the equation in half space over an impenetrable
boundary. Now, there is no more an explicit analytical
solution for the average 〈x̄〉zf ,zi,t and variance 〈δx̄2〉zf ,zi,t.
Both quantities have to be computed numerically using
eqs. (13)–(15). From eq. (13), we find the integral

〈x̄〉zf ,zi,t
=

∫ t

0

dt′
√

4(t − t′)t′

t

[
e−ξ2

√
π

+ ξerf(ξ)

]
, (22)

where we have introduced the abbreviation

ξ =
t′zf + (t − t′)zi√

4t(t − t′)t′
. (23)

This integral has to be evaluated numerically. Because
the final result depends on three variables, namely zf , zi

and time t, this could be a formidable task. However, the
problem is much simplified when realizing that 〈x̄〉zf ,zi,t

has the following time-scaling property:

〈x̄〉zf ,zi,t
= t3/2 〈x̄〉t−1/2zf ,t−1/2zi,1

. (24)

Thus, one has to evaluate eq. (22) only for one specific
value of time, t = 1, and can then find the function for all
other values of time using eq. (24). Knowing 〈x̄〉zf ,zi,t, one
uses next the last equality in eq. (15) for numerically calcu-
lating the second moment 〈x̄2〉zf ,zi,t and thus the variance
〈δx̄2〉zf ,zi,t. And similar to the average value 〈x̄〉zf ,zi,t, one
can use the time-scaling behavior of the variance,〈

δx̄2
〉

zf ,zi,t
= t3

〈
δx̄2

〉
t−1/2zf ,t−1/2zi,1

(25)

for finding the function for arbitrary time values. The
right column of images in fig. 1 shows the result for the
temporal evolution of the Gaussian initial concentration
profile for a linear cusp flow with v1 = 1. The whole cal-
culation took ca. 100 s on the computer. For comparison,
we solved the full problem, as before, using the finite-
element numerical equation solver COMSOL, where the
full calculation again took ca. 90min. Figure 3 shows a
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comparison of the temporal evolution of the z-integrated
concentration profiles as obtained by full numerical inte-
gration and using the approximation (17). Again, the ap-
proximation yields fairly good results for small time values
and starts to deviate visibly from the exact solution only
for t � 1.

Discussion and conclusion. – The core result of
our paper is the approximate solution of the convection-
diffusion equation (1) as given by eq. (17). The found
approximation is very similar to the famous Taylor-
Aris approximation for the convection-diffusion induced
broadening of plug flow in capillaries [24,25]. There,
the concentration profile along the flow direction is also
approximated by a Gaussian distribution, for which the
peak position and width are derived as functions of time.
Furthermore, the physical meaning of the Gaussian ap-
proximation found in the present work is also similar
to Taylor-Aris dispersion: The Gaussian approximation
works very well as long as the diffusion transversal to
the flow direction is fast enough for mixing the diffus-
ing molecules perpendicular to that direction before the
flow gradient disrupts the profile. To quantify this, one
introduces the Péclet number, Pe = v̄L/D, where v̄ is the
mean flow velocity, L the transversal size of the capillary,
and D the diffusion coefficient, which describes the ratio
of diffusive to convective transport. As long as the Péclet
number is small, i.e. as long as the diffusive transport per-
pendicular to the flow direction dominates over the convec-
tive transport, the Taylor-Aris approximation works well.
In our examples considered in the present letter, there is
no intrinsic lateral size L, because the considered systems
are unbounded. However, we consider the transport of an
initial Gaussian distribution with distribution width σ0.
The width of this distribution perpendicular to the flow
direction evolves as σ⊥(t) =

√
σ2

0 + 2Dt, and we can take
σ⊥(t) as the momentous characteristic transversal size of
the problem. Then, the average flow velocity over this
length scale is proportional to v1σ⊥(t) for the linear cusp
velocity profile, and to v2σ⊥(t)2 for the parabolic velocity
profile. Thus, one can define the time-dependent Péclet
number Pe1(t) = v1σ⊥(t)2/D and Pe2(t) = v2σ⊥(t)3/D
for the linear and for the parabolic flow profile problems,
respectively. As long as these numbers are less or on the
order of unity, the Gaussian approximation will work well.
But this simple analysis also shows that the fidelity of
the approximation deteriorates with time approximately
proportional to t for the case of the linear cusp profile,
and proportional to t3/2 for the case of the parabolic pro-
file. The main reason is that we considered here only un-
bounded problems. For a bounded system, where diffusion
will be limited in space perpendicular to the flow direction,
the approximation will work over longer time-scales, sim-
ilar to the Taylor-Aris case with low Péclet numbers.

This leads to another important discussion: The ap-
proach presented in this letter can be easily generalized to
any problem where the convection-diffusion problem can

be formulated as

∂c

∂t
= D

(
Δ⊥ +

∂2

∂x2

)
c + v(r⊥)

∂c

∂x
, (26)

where {x, r⊥} form an orthogonal coordinate system and
Δ⊥ being the part of the Laplace operator not containing
any derivative with respect to x. Then the function g in
eqs. (13), (15) is the fundamental solution of the transverse
diffusion problem

∂g

∂t
= DΔ⊥g (27)

and the integration in these equations extends over all
transverse coordinates r⊥. Importantly, this concept is
also applicable to transversally bounded problems such as
shear flow between two parallel plates moving laterally
with respect to each other.

Finally, we want to emphasize that the new path inte-
gral representation of the solution as given by eqs. (5), (7)
and (8) can be used also for finding other exact solutions
of convection-diffusion problems, in particular for all cases
where the path integral (8) can be evaluated analytically,
or for devising efficient numerical integration schemes.
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