
λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

λ-calculus

Simona Ronchi Della Rocca

Università degli Studi di Torino

summer school “Logic and Computation”

Goettingen, July 24-30, 2016

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

A bit of history

Alonzo Church (1936) The λ-calculus as formal account of

computation. Proof of the undecidability of the ALT problem.

John Mc Carthy (1962) The LISP programming language, inspired to

λ-calculus. LISP is a list-processing language with a

function-abstraction facility. Used mostly for applications in artificial

intelligence.

Peter J. Landin (1964) A mechanical evaluation of ISWIM (acronym

of ”If you See What I Mean”), a λ-calculus enriched by some

constants for numerals, through a machine named SECD (acronym

of “Stack, Environment, Code, Dump”).

Translation of ALGOL 60 into λ-calculus.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Corrado Bohm (1966) The CUCH language, mixing λ-calculus and

combinatory logic.

(1968) The separability theorem. The first “semantical” result about

λ-calculus: if two irreducible terms of λ-calculus are syntactically

different then they are also semantically different, so they need to

have different interpretation in any model.

Dana Scott (1976) The first mathematical model of λ-calculus, based

on a solution of the equation: D = [D→ D], where [D→ D]

represents the class of continuous functions from D to D. Birth of the

denotational semantics.

Roger Hindley, Robin Milner (1968 - 1978) Typed λ-calculus and ML

programming language with automatic type inference.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Gordon Plotkin (1975) The call-by-value version of λ-calculus. In fact

the λ-calculus uses a call-by-name parameter passing style.

(1981) Structural operational semantics of λ-calculus.

Henk Barendregt (1981) A complete compendium about λ-calculus.

Jean Yves Girard and the french school (1971) The second order

λ-calculus.

(1987 - 2016) The Linear Logic and a quantitative interpretation of

λ-calculus.

Coppo, Dezani, RDR and Torino school (1984 - 2016) The logical

description of semantical properties of λ-calculus.

An historical view of λ-calculus:

Felice Cardone and J. Roger Hindley: “Lambda-calculus and Combinators

in the 20th Century”, chapter of “The Handbook of the History of Logic”

(edited by D. Gabbay and J. Woods), Vol.5:533-627, Elsevier, 2008.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

The language Λ

Let Var be a countable set of variables. The set Λ of λ-terms is inductively

defined as follows:

x ∈ Var implies x ∈ Λ (variable)

M ∈ Λ and x ∈ Var implies (λx.M) ∈ Λ (abstraction)

M ∈ Λ and N ∈ Λ implies (MN) ∈ Λ (application)

≡ denotes the syntactical identity on terms.

Abbreviations:

λx1...xn.M denotes (λx1(...(λxn.M)...))

MN1N2...Nn denotes (...((MN1)N2)...Nn).

Example
λx.xx, λx.x(λz.zy), λy.(λx.x)(λuv.u)

I ≡ λx.x,K ≡ λxy.x,O ≡ λxy.y,D ≡ λx.xx, E ≡ λxy.xy.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Free and bound variables

The symbol λ plays the role of binder for variables!

The set of free variables of a term M, denoted by FV(M), is
inductively defined as follows:

M ≡ x implies FV(M) = {x};

M ≡ λx.M′ implies FV(M) = FV(M′) − {x};

M ≡ PQ implies FV(M) = FV(P) ∪ FV(Q).

A variable is bound in M if it is not free in M. BV(M) denotes the set

of bound variables of M.

A term M is closed if and only if FV(M) = ∅. A term is open if it is not

closed.

Let Θ ⊆ Λ, Θ0 is the restriction of Θ to closed terms.

Example

FV
(
λz.(λx.x(λz.zy))(λxyz.yz)

)
= {y}, FV

(
λz.x(λx.xy)

)
= {x, y},

FV
(
(λyx.x)y

)
= {y}.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

α-reduction

The name of a bound variable is meaningless!

λx.M →α λy.M[y/x] if y does not occur in M.

=α is the reflexive, symmetric, transitive and contextual closure of

→α.

Example
λx.x =α λy.y =α λz.z, λxy.x =α λxz.x and λxy.x =α λyx.y.

But:

λx.y ,α λx.x and λx.yx ,α λy.yy.

= denotes ≡ ∪ =α. Terms will be considered modulo =.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Substitution

Replacing the occurrences of a free variable x in M by a term N (notation

M[N/x]) can produce an incorrect result (capture of variables).

Example

(λx.λy.xy)[yz/x] produces λy.yzy: the free occurrence of y became bound!

Example

Variables convention Assume that, for every term M occurring in a certain

context (definition, proof,...) FV(M) ∩ BV(M) = ∅.

Thanks to this convention, the operation M[N/x] can be simply defined

as:

x[N/x] = N

y[N/x] = y, if x , y

(λy.M)[N/x] = λy.M[N/x]

(PQ)[N/x] = (P[N/x]Q[N/x])

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Context

Let Var be a countable set of variables, and [.] be a constant (the hole).

The set ΛC of contexts is inductively defined as follows:

[.] ∈ ΛC ;

x ∈ Var implies x ∈ ΛC ;

C[.] ∈ ΛC and x ∈ Var imply (λx.C[.]) ∈ ΛC ;

C1[.] ∈ ΛC and C2[.] ∈ ΛC imply (C1[.]C2[.]) ∈ ΛC .

Contexts will be denoted by C[.],C′[.],C1[.]....

Let C[.] be a context and M be a term. Then C[M] denotes the term

obtained by replacing by M every occurrence of [.] in C[.].

Note
Filling a hole in a context is not a substitution!

In fact free variables in M can become bound in C[M]. For example, filling

the hole of λx.[.] with the free variable x gives as result the term λx.x.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

β-reduction

The λ-calculus has just one reduction rule: the β-reduction.

The β-reduction (→β) is the contextual closure of the following rule:

(λx.M)N → M[N/x].

(λx.M)N is called a β-redex (or simply redex) and M[N/x] is called

its β-contractum (or simply contractum).

→∗β and =β are respectively the reflexive and transitive closure of→β

and the symmetric, reflexive and transitive closure of→β.

Example
(λx.yxx)(λz.z)→β y(λz.z)(λz.z)

λx.y((λz.z)(λw.w))→β λx.y(λz.z)

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Normal form

The general shape of a term is:

λx1...xn.ζM1...Mm (n,m ≥ 0)

where Mi are the arguments of M (1 ≤ i ≤ m) and ζ is the head of M.

ζ is either a variable (head variable) or a redex (head redex)

A term is in β-normal form (shortly normal form) if it does not contain

occurrences of β-redexes. The general shape of a normal form is:

λx1...xn.zM1...Mm (n,m ≥ 0)

where Mi is a normal form (1 ≤ i ≤ m).

A term has a normal form if it reduces to a normal form.

Let NF be the set of all normal forms.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Confluence

The natural interpretation of a term λx.M is a function whose formal parameter is x.

The interpretation of (λx.M)N is the application of the function λx.M to the

actual parameter N and so the β-reduction rule models the replacement

of the formal parameter x by the actual parameter N in the body M of the function.

Thus the β-normal form of a term, if it exists, can be seen as the final

result of a computation.

The following fundamental theorem implies that this interpretation is

correct, i.e. if the computation process stops, then the result is unique.

Theorem (Confluence)
Let M →∗β N1 and M →∗β N2.

There is Q such that both N1 →
∗
β Q and N2 →

∗
β Q.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Proof (sketch)

(Taı̈t and Martin Löf, simplified by Takahashi)

The deterministic parallel reduction ↪→ is inductively defined as
follows:

x ↪→ x

M ↪→ N implies λx.M ↪→ λx.N

M ↪→ M′,N ↪→ N′ imply MN ↪→ M′N′

M ↪→ M′,N ↪→ N′ imply (λx.M)N ↪→ M′[N′/x]

The non-deterministic parallel reduction⇒ is inductively defined as
follows:

x⇒ x

M ⇒ N implies λx.M ⇒ λx.N

M ⇒ M′,N ⇒ N′ imply MN ⇒ M′N′

M ⇒ M′,N ⇒ N′ imply (λx.M)N ⇒ M′[N′/x]

M ⇒ M′,N ⇒ N′ imply (λx.M)N ⇒ (λx.M′)N′

Roughly speaking, the deterministic parallel reduction reduces in one step

all the redexes of a term, while the non-deterministic one reduces a subset of them.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Lemma (Properties of parallel reductions)
M →β N implies M ⇒ N

M ⇒ N implies M →∗β N

→∗β is the transitive closure of⇒

For every term M, there is a unique term N such that M ↪→ N (N is called

the complete development of M, and is denoted by [M]).

Property
M ↪→ P and M ↪→ Q implies P = Q.

Lemma (Diamond Property of⇒)

If M ⇒ N0 and M ⇒ N1 then there is N2 such that both N0 ⇒ N2 and

N1 ⇒ N2.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

→∗β is the transitive closure of⇒. So there are N1
0 , ...,N

n0
0 , N1

1 , ...,N
n1
1 (n0, n1 ≥ 1)

such that M ⇒ N1
0 ...⇒ Nn0

0 ⇒ N0 and M ⇒ N1
1 ...⇒ Nn1

m ⇒ N1. Then the proof

follows by applying repeatedly the diamond property of⇒ (diamond closure)

M +3

��

))

��

N1
0

+3

��

. . . +3 Nn0
0

+3

��

N0

��

N1
1

+3

��

[M1] +3

��

. . . +3 . . . +3
...

��
...

��

...

��

��

...

��

Nn1
1

+3

��

...

��

...

��
N1

+3 . . . +3 . . . +3 . . . +3 N2

Diamond Closure.

1

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Unicity

Corollary

The normal form of a term, if it exists, is unique.

Proof. Assume by absurdum that a term M has two different normal

forms M1 and M2. Then, by the Confluence Theorem, there is a term N

such that both M1 and M2 β-reduce to N, against the hypothesis that both

are normal forms. �

Example

Terms without normal form:

DD→β DD→βDD....

λx.(λy.x(yy))(λy.x(yy))→β λx.x((λy.x(yy))(λy.x(yy)))→β

λx.x(x((λy.x(yy))(λy.x(yy)))...

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Sequentialisation

Example
DD→β DD→βDD....

KI(DD)→β KI(DD)→β ...→β KI(DD)→β ...

(choosing at every step the innermost redex)

KI(DD)→β I

(choosing the leftmost redex).

Let us impose a total order between redexes.

the degree of a redex in a term M is the number of λ’s precedings it

in reading M from left to right.

Example
M = λx.((λz.z)x)((λzw.Iwz)D)

The degree of (λz.z)x is 1.

The degree of (λzw.Iwz)D is 2.

The degree of Iw is 3.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Standardization

A sequence of reductions M0 →β M1 →β→β Mn is standard if

the degree of the redex contracted in Mi is less than the degree of

the redex contracted in Mi+1, for every i < n.

Example
M = λx.((λz.z)x)((λzw.Iwz)D)

M →β λx.((λz.z)x)(λw.IwD)→β λx.((λz.z)x)(λw.wD) is standard.

M →β λx.((λz.z)x)((λzw.Iwz)D)→β λx.((λz.z)x)(λw.IwD)→β

λx.x(λw.IwD) is not standard.

Theorem (Standardization)

M →∗β N implies there is a standard reduction sequence from M to N.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Reaching the normal form

Note
The redex with the minimum degree is the leftmost redex.

Corollary

A term reduces to its normal form (if it exists) by reducing, at every step,

the leftmost redex.

Example
The redex with minimum degree in KI(DD) is KI. So reducing it we have:

KI(DD)→β I

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Solvability

A term M is solvable if there is a sequence of terms N0, ...,Nm such

that

(λx0...xn.M)N0...Nm →
∗
β I

({x0, ..., xn} = FV(M))

A term is unsolvable if it is not solvable.

Informally speaking, a solvable term is a term in some sense

computationally meaningful. In fact, let M ∈ Λ0 be solvable, and let P ∈ Λ:

we can always find a sequence ~N of terms such that M ~N reduces to P:

just take the sequence ~Q such that M ~Q→∗β I,

which exists since M is solvable, and pose ~N ≡ ~QP.

So a closed solvable term can mimic the behaviour of any term,

if applied to suitable arguments.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Head normal form

A term is in head normal form (hnf) if its head is a variable

A term has head normal form if it reduces to a hnf.

Let HNF be the set of all terms in head normal form.

Example

Every normal form is a hnf.

λx.x(DD) is in hnf, but not in normal form.

λx.Ix(DD)→β λx.x(DD), so it has hnf, but it has not normal form.

DD has neither hnf nor normal form.

NOTE
The head normal form of a term is not unique!

Let M = λx.Ix(II). M →β λx.x(II)→β λx.xI.

Both λx.x(II) and λx.xI are hnf’s!

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Head normal form

Let M ≡ λx1 . . . xn.zM1 . . . Mm.

n is the order of M

m is the degree of M

Property

Let M have hnf. Then there are unique n,m such that, for every N,

M →∗β N where N in hnf implies that the order and degree of N are

respectively n and m.

Proof. By contraposition, let M have two hnf’s, with different order and

degree, i.e., M →∗β P1 = λx1...xn.xM1...Mm and

M →∗β P2 = λx1...xp.xN1...Nq, where n , p and/or m , q. By the

confluence theorem, there must be a term Q such that both P1 →
∗
β Q and

P2 →
∗
β Q. But this impossible, since the only redexes can occur in Mi or in

N j, and their reduction cannot change any of n,m, p, q

(1 ≤ i ≤ m,1 ≤ j ≤ q) . �

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Fixed point theorem

A term having head-normal-form with an infinite behavior:

Let R = (λy.x(yy))(λy.x(yy)) and Y = λx.R

Y →β λx.xR→∗β λx. x(x(...(x︸ ︷︷ ︸
n

R)...))︸︷︷︸
n

for every n ≥ 0

Theorem (Fixed point operator)

Every term M ∈ Λ has a fixed point, i.e., for every term M there is a term

N such that MN =β N.

Proof. It is immediate to check that, for every M, Y M =β M(Y M). Hence
Y M is a fixed point of M. �

The fixed point theorem is the key property for proving that the λ-calculus

has the computational power of the partial computable functions.

It corresponds to recursion in programming languages.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Solvability theorem

Head normal forms supply a syntactical account of solvability!

Theorem (Solvability)

A term is solvable if and only if it has a head normal form.

The proof is based on the following property.

Property

i) The lack of hnf is preserved by substitution, i.e. if M hasn’t hnf then

M[N/y] hasn’t hnf too, for all y ∈ Var.

ii) The lack of hnf is preserved by head contexts, i.e. if M hasn’t hnf

then (λ~x.M)~N hasn’t hnf too, for all ~x and ~N.

Proof. Exercise!!! �

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Proof of Solvability theorem

proof

(⇐) Without loss of generality, we can assume that M is closed. Let

M = λx1...xn.xi M1...Mm (1 ≤ i ≤ n). Let Pi = λx1...xm+1.xm+1. Then for

every sequence P1...Pi...Pn, where P j is any term, for i , j,

MP1...Pi...Pn =β I.

(⇒) If M hasn’t hnf, then by Property, for all head context C[.], C[M]

hasn’t hnf; in particular, C[M] can’t be reduced to I.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Theories

In order to model the computation, =β is too weak.

For example, if we want to model the termination property, both the terms DD

and (λx.xxx)(λx.xxx) represent running forever programs,

while the two terms are 6=β each other.

Indeed DD→β DD and (λx.xxx)(λx.xxx)→β (λx.xxx)(λx.xxx)(λx.xxx).

So it would be natural to consider them equal in this particular setting.

But if we want to take into account not only termination, but also the size of terms,

they need to be different, in fact the first one reduces to itself

while the second increases its size during the reduction.

As we will see in the sequel, all interesting interpretations of the calculus

equate also terms that are not =.

T ⊆ Λ × Λ is a congruence if and only if (M,N) ∈ T implies

(C[M],C[N]) ∈ T , for all contect C[.].

T ⊆ Λ × Λ is a λ-theory if and only if it is a congruence and M = N implies

(M,N) ∈ T .

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Properties of theories

A λ-theory T is consistent if and only if there are M,N ∈ Λ such that

M ,T N. Otherwise T is inconsistent.

A λ-theory T is maximal if and only if it has no consistent extension,

i.e., for all M,N ∈ Λ, such that M ,T N, any λ-theory T ′ containing

T and such that M =T ′ N is inconsistent.

A λ-theory is sensible if it equates all unsolvable terms;

A λ-theory is semi-sensible if it never equates a solvable and an

unsolvable term.

Example
The theory Tβ = {(M,N) | M =β N} is consistent, sensible and

semi-sensible.

The theory Tβ ∪ (I,DD) is consistent, not sensible and not semi-sensible.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Extensionality

A theory is extensional if all terms in it (not only abstractions)

have a functional behaviour. So, in an extensional theory T ,

the equality between terms must be extensional (in the usual sense),

i.e., it must satisfy the property:

(EXT) Mx =T Nx⇒ M =T N x < FV(M) ∪ FV(N).

Clearly =β does not satisfy (EXT).

In fact, (EXT) holds for =β only if it is restricted to terms which reduce

to an abstraction: indeed xy =β (λz.xz)y, but x ,β λz.xz.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

η-reduction

The least extensional extension of =β is induced by the η-reduction rule,

defined as follows.

The η-reduction (→η) is the contextual closure of the following rule:

λx.Mx→η M if x < FV(M);

λx.Mx is a η-redex and M is its contractum;

M →βη N if N is obtained from M by reducing either a β or a η redex

in M;

→∗βη and =βη are respectively the reflexive and transitive closure of

→βη and the symmetric, reflexive and transitive closure of→βη.

Theorem
=βη is the least extensional extension of =β.

Let T be a theory such that I =T E. Then T is extensional.

Proof. Exercise! �

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Evaluation

The evaluation of a term consists of applying to it a sequence of reduction

rules until a result is given. The most natural notion of result is a normal

form, but we can define other reasonable notions.

A set of results is any set Θ ⊆ Λ such that:

Θ is closed under→β;

if M =β N and N ∈ Θ then there is P ∈ Θ such that M →∗β P.

The first condition of the previous definition takes into account the fact

that a result represents the output of an evaluation, so, also in case it can be further

reduced, it cannot become an unevaluated term.

The second condition simply comes from the fact that→β is our evaluation rule.

Notice that normal forms are results, according to the definition.

Example

HNF is a set of results.

The set of weak head normal forms, i.e., the set

{λx.M | M ∈ Λ} ∪ {xM0...Mn | x ∈ Var,Mi ∈ Λ} is a set of results.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Evaluation relation

An evaluation relation O on the λ-calculus with respect to a set of

results Θ (notation: O ∈ E(Θ)) is any subset of Λ × Θ, such that

(M,N) ∈ O implies M →∗β N.

An evaluation relation can be presented by using a formal system.

A logical rule, or briefly rule, has the following shape:

P1 Pm
name

C

where the premises Pi (1 ≤ i ≤ m) and the conclusion C are logical

judgments (written using meta-variables); while name is the name of the

rule.

The intended meaning of a rule is that, for every instance s of the meta-variables

in the rule, s(C) is implied by the logical AND of s(Pi) (1 ≤ i ≤ m).

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

A derivation is a finite tree of logical rules, such that each leaf is an

axiom, each intermediate node has as premises the consequences

of its son nodes and its consequence is one of the premises of its

father node. The conclusion of the root node is the proved judgment.

A formal system defining an evaluation relation O ∈ E(Θ) is a set of

logical rules for establishing judgments of the shape M ⇓O N, whose

meaning is (M,N) ∈ O.

A formal system establishing judgments of the shape M ⇓O N can be
viewed as a logical representation of a reduction machine; in
particular the evaluation process of the machine is simulated by a
derivation in the logical system.

M ⇓O N means that on input M, the reduction machine O stops and

gives as output N

M ⇓O means that on input M, the reduction machine O stops

M ⇑O means on input M, the reduction machine never stops

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Operational semantics

An evaluation relation O ∈ E(Θ) induces naturally an operational

semantics, i.e. a pre-order relation (and an equivalence relation) on

terms.

M �O N ⇔ ∀C[.].C[M],C[N] ∈ Λ0 (
C[M] ⇓O⇒ C[N] ⇓O

)
.

M ≈O N ⇔ M �O N and N �O M.

This operational equivalence amounts to Leibniz Equality Principle for programs,

i.e., a criterion for establishing equivalence on the basis of the behaviour of

programs regarded as black boxes. It is natural to model a program by a closed

term. So a context can be viewed as a partially specified program,

where every occurrence of the hole denotes a place that must be filled by a

subprogram, while a generic term can be viewed as a subprogram.

So two terms are equivalent if they can be replaced by each other in the same

program without changing its behaviour (with respect to an evaluation relation O).

Since we are considering pure calculi, i.e., calculi without constants, the only

behaviour we can observe on terms is the termination, and this justify the previous

definition of operational semantics.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

The H-abstract machine

Take as set of results the set of head normal forms.

H ∈ E(Λ-HNF) is the evaluation relation induced by the abstract

machine consisting of the following rules:

m ≥ 0
xM1. . .Mm ⇓H xM1. . .Mm

(var)

M ⇓H N
λx.M ⇓H λx.N

(abs)

P[Q/x]M1. . .Mm ⇓H N
(λx.P)QM1. . .Mm ⇓H N

(head)

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Examples

λx.(λuv.xuv)I(DD) ⇓H λx.xI(DD).

In fact we can build the following derivation:

(var)
xI(DD) ⇓H xI(DD)

(head)
(λv.xIv)(DD) ⇓H xI(DD)

(head)
(λuv.xuv)I(DD) ⇓H xI(DD)

(abs)
λx.(λuv.xuv)I(DD) ⇓H λx.xI(DD)

Note that, in the particular case of the system ⇓H, every derivation is

such that each node has a unique son.

DD ⇑H

(Exercize!) Proof hint: Assume by absurdum DD ⇓H, take the

smallest (w.r.t. the number of rules) derivation proving it, and prove

that it implies the existence of a smaller one.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

H-characterization

The system ⇓H characterizes completely the class of terms having head

normal form.

Theorem (H-characterization)

M ⇓H if and only if M has hnf.

Proof.

(⇒) By induction on the definition of ⇓H.

(⇐) M has hnf means that there is N ∈ HNF such that M →∗β N ∈ HNF.

By standardization, at every step the leftmost redex is reduced. The

proof is done by induction on the length of the reduction sequence

M →∗β M′. Let M = λx1. . .xn.ζM1. . .Mm (n,m ∈ N).

If ζ is a variable then M is already in hnf. In fact M ⇓H M, by n

applications of rule (abs) and one application of the rule (var).

If ζ ≡ (λx.P)Q then by induction, P[Q/x]M1. . .Mm ⇓H N, for some N;

thus M ⇓H λx1. . .xn.N, by n applications of rule (abs) and one

application of the rule (head).

�

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

H-operational semantics

M �H N if and only if, for all context C[.] such that C[M],C[N] ∈ Λ0,(
C[M] ⇓H implies C[N] ⇓H

)
.

M ≈H N if and only if M �H N and N �H M.

Property
I ≈H E.

Proof. hint Let assume by absurdum that the two terms are different. This

means that there is a context C[.] discriminating them. Let C[.] be such

that C[I] ⇓H while C[E] ⇑H. Let C[.] be a minimal discriminating context

for I and E, and prove that this implies the existence of a smaller

discriminating context. The case C[I] ⇑H and C[E] ⇓H is symmetric.

�

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

H-operational semantics

Corollary
The H-theory is extensional.

The next theorem proves an unexpected result.

It has been proved that the H-operational semantics is extensional,

i.e., it is closed under η-equality.

It can be proved that it equates also terms that can

be obtained each other by means of an infinite number of η-reductions.

Let E∞ ≡ Y(λxyz.y(xz)) where Y is the fixed point operator. For every M,

E∞M =β λz.M(E∞z) =β λz.M(λz1.z(E∞z1)) =β λz.M(λz1.z(λz2.z1(E∞z2))),

and so on. So z can be viewed as obtained from E∞z by means of an

infinite number of application of η -reduction rule.

Theorem
I ≈H E∞

Proof. Through a denotational model. �

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

The N-abstract machine

Take as set of results the set NF of normal forms.

N ∈ E(Λ-NF) is the evaluation relation induced by the formal system

proving judgments of the shape

M ⇓N N

where M ∈ Λ and N ∈ Λ-NF. It consists of the following rules:

(Mi ⇓N Ni)(i≤m)
(var)

xM1. . .Mm ⇓N xN1. . .Nm

M ⇓N N
(abs)

λx.M ⇓N λx.N

P[Q/x]M1. . .Mm ⇓N N
(head)

(λx.P)QM1. . .Mm ⇓N N

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Example
λx1 x2.x1(ID)((λuv.u)(II)x2) ⇓N λx1 x2.x1DI, as shown by the following derivation.

(var)
x ⇓N x

(var)
xx ⇓N xx

(abs)
λx.xx ⇓N λx.xx

(head)
ID ⇓N D

(var)
x ⇓N x

(abs)
λx.x ⇓N λx.x

(head)
II ⇓N I

(abs)
λv.II ⇓N λv.I

(head)
(λuv.u)(II) ⇓N λv.I

(var)
x1(ID)((λuv.u)(II)) ⇓N x1D(λv.I)

(abs)
λx2.x1(ID)((λuv.u)(II)) ⇓N λx2.x1D(λv.I)

(abs)
λx1 x2.x1(ID)((λuv.u)(II)) ⇓N λx1 x2.x1D(λv.I)

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

N-characterization

The system ⇓N characterizes the class of β-normal forms.

Theorem
M ⇓N if and only if M has nf.

Proof.

⇒ By induction on the definition of ⇓N.

⇐ If M →∗
Λ

N ∈NF then M →∗β N. The proof follows by induction on the pair

(M, p), where p is the length of the reduction sequence M →∗β N, ordered in a

lexicographic way. By standardization, at every step the leftmost redex is

reduced.

Let M ≡ λx1. . .xn.ζM1. . .Mm.

If ζ is a variable then N ≡ λx1. . .xn.ζn f (M1)...n f (Mm). By induction Mi ⇓N

(1 ≤ i ≤ m), thus M ⇓N by rule (var) having as premises the derivation proving

Mi ⇓N and n instances of (abs).

If ζ ≡ (λx.P)Q then ⇓N (M) ≡ λx1. . .xn. ⇓N (P[Q/x]M1. . .Mm); so, by

induction, P[Q/x]M1. . .Mm ⇓N R, for some R; hence (λx.P)QM1. . .Mm ⇓N N,

by applying rule (head) and M ⇓N λx1. . .xn.N by n instances of (abs).

�

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

N operational semantics

M �N N if and only if, for all context C[.] such that C[M],C[N] ∈ Λ0,(
C[M] ⇓N implies C[N] ⇓N

)
.

M ≈N N if and only if M �N N and N �N M.

Property
I ≈N E.

Corollary
The theory ≈N is extensional.

But the theory ≈N is able to grasp only finite number of η-reductions,

differently from ≈H

Theorem
I 0N E∞

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

The λ calculus as programming language

The λ-calculus can be seen as paradigm for programming languages.

In fact it has the computational power of Turing machines, or, equivalently, it is

computationally complete. The completeness can be achieved without adding

special constants to the language, but all data structures needed for computing,

in particular booleans, natural numbers and functions, can be coded into Λ.

Both the reduction machines that are been presented can be effectively used

for computing. Here the machine ⇓H will be used.

In order to prove the computational completeness, we will refer to the class of

recursive funtions introduced by Kleene.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Representing data structures: booleans

Definition
Let O ∈ E(Θ) be an evaluation relation.

An O-representation of booleans is any set {T, F} such that:

T, F ∈ Θ;

there is a term Cond such that, for every M,N ∈ Θ:

Cond T MN ⇓O M Cond FMN ⇓O N.

Example
In H-operational semantics, choose:

T = λxy.x and F = λxy.y.

In this cases Cond can be taken as the identity term I, or simply omitted.

In fact, if M,N ∈ HNF then TMN ⇓H M and FMN ⇓H N.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Representing data structures: pairs

Definition
Let O ∈ E(Θ) be an evaluation relation.

Let M,N ∈ Θ. [M,N] is a pair if the are terms P1, P2 such that:

P1[M,N] ⇓O M

P2[M,N] ⇓O N

Example
In H-operational semantics, choose:

P1 = λx.xT and P2 = λx.xF.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Representing data structures: numerals

Definition (Inspired to Peano’s definition of natural numbers)
Let O ∈ E(Θ) be an evaluation relation.

A O-numeral system is a 5-tuple 〈B,Zero, S ucc,Test, Pred〉, where:

B is an O-representation of booleans

Zero, S ucc,Test, Pred ∈ Θ are such that, for all n ∈ N:

S ucc (... (S ucc︸ ︷︷ ︸
n

Zero)...) ⇓O. Let S ucc (... (S ucc︸ ︷︷ ︸
n

Zero)...) ⇓O pnq and

let pnq ∈ Θ. pnq is the numeral representation of n;

P ⇓O pnq implies S ucc P ⇓O pn + 1q;

P ⇓O Zero and Q ⇓O pn + 1q imply Test P ⇓O T and Test Q ⇓O F;

P ⇓O pn + 1q implies Pred P ⇓O pnq.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Representing data structures: numerals

Example
In H-operational semantics, choose:

B = {T,F}

Zero = [T,T];

Succ = λt.t(λuvx.xF(λy.yuv));

Test = λx.xT;

Pred = λx.xF.

Exercise

Verify that:

pnq ≡ [F, [F....[F︸ ︷︷ ︸
n

,Zero]...]]

pn + 1q ≡ λx.xFpnq

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Representing functions

Definition
Let O ∈ E(Θ) be an evaluation relation, and and let φ be a partial

recursive function with arity p ∈ N; let pnq be the numeral representation

of n ∈ N in an O-numeral system.

φ is O-representable if and only if there is a term pφq ∈ Λ0 such that,
for all terms Ni such that Ni ⇓O pniq (1 ≤ i ≤ p; n1, ..., np ∈ N):

if φ(n1, ..., np) is defined then pφqN1...Np ⇓O pφ(n1, ..., np)q;

if φ(n1, ..., np) is undefined then pφqN1...Np ⇑O.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Kleene’s primitive recursive functions

Definition (Primitive Recursive Functions (shortly PRF))

Basis functions:

1 The zero function Z(n) = 0

2 The successor function: S (n) = n + 1

3 The projection functions πm
i (x1, ..., xm) = xi (1 ≤ i ≤ m ∈ N).

Example
In H-operational semantics, choose:

pZq ≡ λx.Zero;

pS q ≡ Succ;

pπi
mq ≡ λx1. . .xm.xi (1 ≤ i ≤ m ∈ N).

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Definition
Composition:

h : Nn → N ∈ PRF and g1,. . ., gn : Nm → N ∈ PRF imply

f (x1,. . ., xm) = h(g1(x1,. . ., xm),, gn(x1,. . ., xm)) ∈ PRF (n,m ∈ N)

In order to represent the composition of partial functions,

the main problem is to make the representation ”strict”;

namely, when a function is applied to an undefined argument

then its evaluation must diverge.

The proposed solution takes into account the fact that terms

representing natural numbers are in head normal form and so solvable.

Lemma
If M ⇓H pnq then MKII ⇓H I.

Example
In H-operational semantics, choose:

F = λx1. . .xm.phq(pg1qx1. . .xm).....(pgnqx1. . .xm) and

p f q = λx1. . .xm.(pg1qx1. . .xmKII).....(pgnqx1. . .xmKII)(Fx1. . .xm).

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Definition
Primitive recursion:

h : Nm+2 → N ∈ PRF and g : Nm → N ∈ PRF, then f ∈ PRF:

f (k, x1,. . ., xm) =


g(x1,. . ., xm) if k = 0

h(f (k − 1, x1,. . ., xm), k − 1, x1,. . ., xm) otherwise.

In order to represent the functions built by primitive recursion and by

minimalization, a fixed point operator is needed.

We already proved that Y plays the role of a fixed point.

But, while Y M =β M(Y M), it does not hold that

Y M →∗β M(Y M), which is a necessary condition

for using it as recursion operator in a reduction machine.

Theorem
Let YH = (λxy.y(xxy))(λxy.y(xxy)). If M ∈ Λ then YH M →∗β M(YH M);

moreover YH M ⇓H R if and only if M(YH M) ⇓H R.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Example
p f q is H-represented by YHP, where P is:

λtyx1. . .xm.Test y(pgqx1. . .xm)(phq(t(Pred y)x1. . .xm(Pred y)x1. . .xm)).

Proof. [hint] Let Ni ⇓O pniq, Q ⇓O pkq for some k, ni ∈ N (1 ≤ i ≤ m); the

proof can be given by induction on k. �

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Kleene’s recursive functions

Definition (Minimalization)

Let h : N2 → N be a total function and let x ∈ N. Then a function

f : N→ N can be defined by minimalization from h in the following way:

f (x) = µy [h(x, y) = 0] =

 min{k ∈ N | h(x, k) = 0} if such a k ∈ N exists

undefined otherwise.

Example

Let P ≡ λthxy.
(
Test(hxy)

)
y
(
thx(Succ y)

)
.

Let h : N2 → N be an H-representable partial recursive function. Let N

and Q be such that N ⇓O pnq and Q ⇓H pkq.

If h(n, k) = 0 then (YHP)phqNQ ⇓H pkq.

If h(n, k) , 0 then:

(YHP)phqNQ ⇓H R if and only if (YHP)phqN(Succ Q) ⇓H R.

λ-calculus

Simona Ronchi Della

Rocca

Introduction

The syntax

The reduction rule

Confluence

Standardization

Solvability

Theories

Operational semantics

Computational power

Computational completeness

Definition (Recursive Functions (shortly RF))

A function f : Nm → N (m ∈ N) is recursive if and only if one of the

following conditions holds:

f is a primitive recursive function;

f is defined by composition of partial recursive functions;

f is defined by minimalization starting from a total recursive function.

Theorem
The λ-calculus has the computational power of the Kleene recursive

functions, so of the Turing machines.

	Introduction
	The syntax
	The reduction rule
	Confluence
	Standardization
	Solvability
	Theories
	Operational semantics
	Computational power

