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Thomas Kneib Outline

Outline

• Leukemia survival data.

• Structured hazard regression for survival times.

• Bayesian inference in structured hazard regression.

– Full Bayesian inference based on MCMC.

– Empirical Bayes inference using mixed model methodology.

• Multi-state models for the analysis of human sleep.
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Thomas Kneib Leukemia Survival Data

Leukemia Survival Data

• Survival time of adults after diagnosis of acute myeloid leukemia.

• 1,043 cases diagnosed between 1982 and 1998 in Northwest England.

• 16 % (right) censored.

• Continuous and categorical covariates:

age age at diagnosis,
wbc white blood cell count at diagnosis,
sex sex of the patient,
tpi Townsend deprivation index.

• Spatial information in different resolution.
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Thomas Kneib Leukemia Survival Data

• Classical Cox proportional hazards model:

λ(t; x) = λ0(t) exp(x′γ).

• Baseline hazard λ0(t) is a nuisance parameter and remains unspecified.

• Estimate γ based on the partial likelihood.

• Questions / Limitations:

– Simultaneous estimation of baseline hazard rate and covariate effects.

– Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).

– Spatially correlated survival times.

– Non-proportional hazards models / time-varying effects.

⇒ Structured hazard regression models.
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Thomas Kneib Leukemia Survival Data

• Replace usual parametric predictor with a flexible semiparametric predictor

λ(t; ·) = λ0(t) exp[f1(age) + f2(wbc) + f3(tpi) + fspat(si) + β1sex]

and absorb the baseline

λ(t; ·) = exp[g0(t) + f1(age) + f2(wbc) + f3(tpi) + fspat(si) + β1sex]

where

– g0(t) = log(λ0(t)) is the log-baseline hazard,

– f1, f2, f3 are nonparametric functions of age, white blood cell count and
deprivation, and

– fspat is a spatial function.
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Structured Hazard Regression

• A general structured hazard regression model consists of an arbitrary combination of
the following model terms:

– Log baseline hazard g0(t) = log(λ0(t)).

– Time-varying effects gl(t)ul of covariates ul.

– Nonparametric effects fj(xj) of continuous covariates xj.

– Spatial effects fspat(s) of a spatial location variable s.

– Interaction surfaces fj,k(xj, xk) of two continuous covariates.

– Varying coefficient interactions ujfk(xk) or ujfspat(s).

– Frailty terms bg (random intercept) or xjbg (random slopes).
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Thomas Kneib Structured Hazard Regression

• Penalised splines for the baseline effect, time-varying effects, and nonparametric
effects:

– Approximate f(x) (or g(t)) by a weighted sum of B-spline basis functions

f(x) =
∑

ξjBj(x).

– Employ a large number of basis functions to enable flexibility.

– Penalise differences between parameters of adjacent basis functions to ensure
smoothness:

Pen(ξ|τ2) =
1

2τ2

∑
(∆kξj)2.

– Bayesian interpretation: Assume a k-th order random walk prior for ξj, e.g.

ξj = ξj−1 + uj, uj ∼ N(0, τ2) (RW1).

ξj = 2ξj−1 − ξj−2 + uj, uj ∼ N(0, τ2) (RW2).
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Thomas Kneib Structured Hazard Regression

• Bivariate Tensor product P-splines for interaction surfaces:

– Define bivariate basis functions (Tensor products of univariate basis functions).

– Extend random walks on the line to random walks on a regular grid.
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• Spatial effects for regional data s ∈ {1, . . . , S}: Markov random fields.

– Bivariate extension of a first order random walk on the real line.

– Define appropriate neighbourhoods for the regions.

– Assume that the expected value of fspat(s) = ξs is the average of the function
evaluations of adjacent sites:

ξs|ξs′, s
′ 6= s, τ2 ∼ N


 1

Ns

∑

s′∈∂s

ξs′,
τ2

Ns


 .

τ2

2

t−1 t t+1

f(t−1)

E[f(t)|f(t−1),f(t+1)]

f(t+1)
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Thomas Kneib Structured Hazard Regression

• Spatial effects for point-referenced data: Stationary Gaussian random fields.

– Well-known as Kriging in the geostatistics literature.

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Can be interpreted as a basis function approach with radial basis functions.
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Thomas Kneib Structured Hazard Regression

• Cluster-specific frailty terms:

– Account for unobserved heterogeneity.

– Easiest case: i.i.d Gaussian frailty.

• All covariates in the discussed model terms are allowed to be piecewise constant
time-varying.
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Bayesian Inference

• Generic representation of structured hazard regression models:

λ(t) = exp [x(t)′γ + f1(z1(t)) + . . . + fp(zp(t))]

• For example:

f(z(t)) = g(t) z(t) = t log-baseline effect,

f(z(t)) = u(t)g(t) z(t) = (u, t) time-varying effect of u(t),
f(z(t)) = f(x(t)) z(t) = x(t) smooth function of a continuous

covariate x(t),
f(z(t)) = fspat(s) z(t) = s spatial effect,

f(z(t)) = f(x1(t), x2(t)) z(t) = (x1(t), x2(t)) interaction surface,

f(z(t)) = bg z(t) = g i.i.d. frailty bg, g is a grouping
index.

• The generic representation facilitates description of inferential details.
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Thomas Kneib Bayesian Inference

• All vectors of function evaluations fj can be expressed as

fj = Zjξj

with design matrix Zj, constructed from zj(t), and regression coefficients ξj.

• Generic form of the prior for ξj:

p(ξj|τ2
j ) ∝ (τ2

j )−
kj
2 exp

(
− 1

2τ2
j

ξ′jKjξj

)

• Kj ≥ 0 acts as a penalty matrix, rank(Kj) = kj ≤ dj = dim(ξj).

• τ2
j ≥ 0 can be interpreted as a variance or (inverse) smoothness parameter.

• Relation to penalized likelihood: Penalty terms

Pλj
(ξj) = log[p(ξj|τ2

j )] = −1
2
λjξ

′
jKjξj, λj =

1
τ2
j

.
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Thomas Kneib Bayesian Inference

• Likelihood for right censored survival times under the assumption of noninformative
censoring:

n∏

i=1

λi(Ti)δi exp

(
−

∫ Ti

0

λi(t)dt

)
,

where δi is the censoring indicator.

• In general, numerical integration has to be used to evaluate the cumulative hazard
rate (e.g. the trapezoidal rule).
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Fully Bayesian inference based on MCMC

• Assign inverse gamma prior to τ2
j :

p(τ2
j ) ∝ 1

(τ2
j )aj+1 exp

(
− bj

τ2
j

)
.

Proper for aj > 0, bj > 0 Common choice: aj = bj = ε small.

Improper for bj = 0, aj = −1 Flat prior for variance τ2
j ,

bj = 0, aj = −1
2 Flat prior for standard deviation τj.

• Conditions for proper posteriors in structured hazard regression: Enough uncensored
observations and either

– proper priors for the variances or

– aj < bj = 0 and rank deficiency in the prior for ξj not too large.
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Thomas Kneib Fully Bayesian inference based on MCMC

• MCMC sampling scheme:

– Metropolis-Hastings update for ξj|·:
Propose new state from a multivariate Gaussian distribution with precision matrix
and mean

Pj = Z ′jWZj +
1
τ2
j

Kj and mj = P−1
j Z ′jW (ỹ − η−j).

IWLS-Proposal with appropriately defined working weights W and working
observations ỹ.

– Gibbs sampler for τ2
j |·:

Sample from an inverse Gamma distribution with parameters

a′j = aj +
1
2
rank(Kj) and b′j = bj +

1
2
ξ′jKjξj.

• Efficient algorithms make use of the sparse matrix structure of Pj and Kj.
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Empirical Bayes inference based on mixed model methodology

• Consider the variances τ2
j as unknown constants to be estimated.

• Idea: Consider ξj a correlated random effect with multivariate Gaussian distribution
and use mixed model methodology.

• Problem: In most cases partially improper random effects distribution.

• Mixed model representation: Decompose

ξj = Xjβj + Zjbj,

where
p(βj) ∝ const and bj ∼ N(0, τ2

j Ikj
).

⇒ βj is a fixed effect and bj is an i.i.d. random effect.
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Thomas Kneib Empirical Bayes inference based on mixed model methodology

• This yields the variance components model

λ(t; ·) = exp [x′β + z′b] ,

where in turn
p(β) ∝ const and b ∼ N(0, Q).

• Obtain empirical Bayes estimates / penalized likelihood estimates via iterating

– Penalized maximum likelihood for the regression coefficients β and b.

– Restricted Maximum / Marginal likelihood for the variance parameters in Q:

L(Q) =
∫

L(β, b,Q)p(b)dβdb → max
Q

.

• Involves Laplace approximation to the marginal likelihood (similar as in the previous
talk by Håvard Rue).

• Corresponds to REML estimation of variances in Gaussian mixed models.
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Human Sleep Data

• Consider individual human sleep data as independent realisations of time-continuous
stochastic processes with discrete state space {awake, REM, non-REM}.

• Compact description of such a process in terms of transition intensities between these
states.

• Simple approaches: Markov or Semi-Markov processes.

• Limitations / Questions:

– Changing dynamics of human sleep over night.

– Individual sleeping habits to be described by covariates.

– Only a small number of covariates is available (unobserved heterogeneity).

⇒ Model the transition intensities in analogy to survival models.
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Thomas Kneib Human Sleep Data

• Simplified structure for the transitions:

Awake

Non-REM REM

Sleep

?

6

-

¾

λRN(t)

λNR(t)

λAS(t) λSA(t)
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Thomas Kneib Human Sleep Data

• Model for the transitions:

λAS,i(t) = exp
[
γ

(AS)
0 (t) + siβ

(AS) + b
(AS)
i

]

λSA,i(t) = exp
[
γ

(SA)
0 (t) + siβ

(SA) + b
(SA)
i

]

λNR,i(t) = exp
[
γ

(NR)
0 (t) + ci(t)γ

(NR)
1 (t) + siβ

(NR) + b
(NR)
i

]

λRN,i(t) = exp
[
γ

(RN)
0 (t) + ci(t)γ

(RN)
1 (t) + siβ

(RN) + b
(RN)
i

]

where

ci(t) =

{
1 cortisol > 60 n mol/l at time t

0 cortisol ≤ 60 n mol/l at time t,

si =

{
1 male

0 female,

b
(j)
i = transition- and individual-specific frailty.
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Thomas Kneib Human Sleep Data

• Use penalized splines for the baseline and time-varying effects.

• I.i.d. Gaussian priors for the frailty terms (with transition-specific variances).

• The likelihood contribution for individual i can be constructed based on a counting
process formulation of the model:

li =
k∑

h=1

[∫ Ti

0

log(λhi(t))dNhi(t)−
∫ Ti

0

λhi(t)Yhi(t)dt

]

=
ni∑

j=1

k∑

h=1

[
δhi(tij) log(λhi(tij))− Yhi(tij)

∫ tij

ti,j−1

λhi(t)dt

]
.

Nhi(t) counting process for type h event.

Yhi(t) at risk indicator for type h event.

tij event times of individual i.

ni number of events for individal i.

δhi(tij) transition indicator for type h transition.
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Thomas Kneib Human Sleep Data

⇒ Concepts from survival analysis can be adapted.

• In particular:

– Fully Bayesian inference based on MCMC and

– Mixed model based empirical Bayes inference.
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• Baseline effects:
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• Time-varying effects for a high level of cortisol:

0 2 4 6 8

−
10

−
5

0
5

Non−REM −> REM

0 2 4 6 8

−
3

−
2

−
1

0
1

2

REM −> Non−REM

Bayesian Structured Hazard Regression 29



Thomas Kneib Software

Software

• Estimation was carried out using BayesX.

• Public domain software package for Bayesian inference in geoadditive and related
models.

• Available from

http://www.stat.uni-muenchen.de/~bayesx
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Conclusions

• Unified framework for general regression models describing the hazard rate of survival
models.

• Bayesian inference based on MCMC or mixed model methodology.

• Extendable to models for transition intensities in multi state models.

• Future work:

– More general censoring mechanisms.

– Conditions for propriety of posteriors.

– Joint modelling of covariates and duration times.
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