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Abstract: Stochastic Optical Fluctuation Imaging (SOFI) is a super-
resolution fluorescence microscopy technique which allows to enhance the
spatial resolution of an image by evaluating the temporal fluctuations of
blinking fluorescent emitters. SOFI is not based on the identification and
localization of single molecules such as in the widely used Photoactivation
Localization Microsopy (PALM) or Stochastic Optical Reconstruction
Microscopy (STORM), but computes a superresolved image via temporal
cumulants from a recorded movie. A technical challenge hereby is that,
when directly applying the SOFI algorithm to a movie of raw images,
the pixel size of the final SOFI image is the same as that of the original
images, which becomes problematic when the final SOFI resolution is much
smaller than this value. In the past, sophisticated cross-correlation schemes
have been used for tackling this problem. Here, we present an alternative,
exact, straightforward, and simple solution using an interpolation scheme
based on Fourier transforms. We exemplify the method on simulated and
experimental data.

© 2015 Optical Society of America

OCIS codes: (100.6640) Superresolution; (170.2520) Fluorescence microscopy.
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1. Introduction

Since the invention of Stimulated Emission Depletion (STED) Microscopy by Stefan Hell at
the beginning of the nineties of the last century [1,2], the field of super-resolution fluorescence
microscopy (microscopy beyond Abbe’s classical resolution limit) has seen an dramatic devel-
opment with the invention and refinement of a plethora of new techniques such as Photoacti-
vated Localization Microscopy (PALM) [3] or Stochastic Optical Reconstruction Microscopy
(STORM) [4], for arecent review see e.g. [S]. One of the latest additions to the family of super-
resolution methods is Stochastic Optical Fluctuation Imaging or SOFI [6]. In this method, one
employs the temporal stochastic intensity fluctuations of emitters for enhancing the spatial res-
olution of an image. SOFI uses a conventional wide-field microscope and does not require any
change in hardware or setting. The only requirement is that the used microscope has to be able
to rapidly record images with high sensitivity. Only after a stack of images is recorded, SOFI
evaluates the temporal fluctuations in each pixel of the images and calculates a super-resolved
final image. SOFI will work with any labeling where the used labels exhibit stochastic, statisti-
cally independent intensity fluctuations. SOFI has been used in conjunction with quantum dots
(QDs), photoswitching organic dyes [7-9], or photo-switchable fluorescent proteins [10, 11].
In [12], an particularly clever approach to SOFI was presented where the authors used donor
molecules for labeling structures of interest and then used the FRET-induced blinking of by-
diffusing acceptor molecules for performing SOFI. This approach is reminiscent of point ac-
cumulation for imaging in nanoscale topography (PAINT) in the context of PALM/STORM.
Another particular variant of labeling was recently presented in [13] by Zheng et al. where
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the authors used multi-color quantum dot labeling for significantly boosting the label density
and acquisition speed of SOFI. Besides enhancing the spatial resolution of imaging, SOFI pro-
vides also a very efficient suppression of scattering background and autofluorescence [6], and
it endows a wide-field microscope with optical sectioning capability, thus allowing to use a
wide-field microscope for obtaining true three-dimensional images of a sample [9, 14].

An important issue of SOFI is the impact of the finite pixel size of the wide-field detector
(e.g. emCCD) which records the images. SOFI allows, in principle, to achieve arbitrarily high
spatial resolution which is only limited the measurement time required for obtaining sufficiently
well statistics (see also next section). However, the raw material on which the SOFI algorithm
is applied to are frames with pixels of finite size. How can one thus achieve a spatial resolution
of e.g. 50 nm in a final SOFI image if the raw images with which one starts have a pixelation of
e.g. 100 nm? A solution to this problem was first proposed by Dertinger at al. in [15], and later
perfected by Geissbuehler et al. in [8, 9, 16]. The core idea is to generate virtual pixels inter-
spersed between the physical pixels of the recording camera by cross-correlating signals from
the original pixel grid. This approach allows indeed to generate SOFI images with arbitrarily
small pixel size, which is not limited by the pixel size of the recorded raw images. However,
there are several disadvantages connected with this idea. First, the SOFI brightness values of the
generated virtual pixels in the final SOFI image are different form the SOFI brightness values
of the primary pixels, and even between different types of virtual pixels, the brightness values
are different. Thus, for obtaining an unbiased final SOFI image, one has to apply sophisticated
brightness re-calibration procedures, which heavily depend on the exact knowledge of the PSF
of the imaging microscope. Second, when calculating higher order SOFI images, the number of
possible high-order cross-correlations between several pixels for obtaining one desired virtual
pixel at a given position is increasing exponentially, and there is no unambiguous way of how
to chose which cross-correlation geometry will be optimal.

Here, we present a much simpler solution which is straightforward and exact, and which
is based on the fact that the Optical Transfer Function (OTF) of a microscope has only a fi-
nite support. Thus, for sufficiently large spatial frequencies, a microscope does not transmit
any further information, which is also the origin of the classical resolution limit. Thus, when
performing a Fourier transform on an image, the Fourier amplitudes will drop to zero at large
values of the Fourier vector. Padding the Fourier-transformed image with zeros will does not
change or alter its information content, but after back-transforming such a padded image into
real space, one obtains an image with increased pixel number of reduced size. This procedure
thus represents a method of exact interpolation of the original image, without introduction of
artifacts. Using this interpolation scheme, the pixel size of the original frames of a recorded
movie can be adapted to the desired spatial resolution delivered by SOFIL. We call this combi-
nation of SOFI with Fourier-transform based interpolation Fourier-SOFI or fSOFI, and in what
follows, we give a detailed description of its principles and exemplify the method on imaging
fluorescently labeled neurons.

2. Theoretical background of SOFI

We start by briefly recalling the core idea of SOFI. When imaging a sample with a wide-field
microscope, each emitter in the sample contributes to the final image on the detector (typically
a CCD) with some intensity distribution U (r —r’) which is called the Point Spread Function
(PSF) of the microscope, where r denotes the position on the camera and r' the position of an
emitter in the sample. The PSF is fully determined by the optical properties of the microscope
(in particular by the numerical aperture or N.A. of the used objective), and its size defines the
resolving power of the microscope: the smaller the diameter of the PSF, the smaller details can
be resolved in a sample, because contributions from closely spaced emitters start to overlap,
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so that any information of the fine details of the emitter distribution is lost. In PALM and
STORM, one circumvents this problem by having, in each recorded image, only a very small
sub-population of the labeling molecules in a fluorescent state, such that each emitter can be
individually identified in the image, and its center position determined with an accuracy which
is much superior to the width of the PSF. SOFI does not require this sparsity of fluorescent
emitters and works even at large densities of simultaneously fluorescing emitters. To understand
how it works, consider a sample which is labeled with N fluorescing molecules at positions r’j
and time-dependent brightness s;(), 1 < j < N. The image which is recorded at any moment

in time ¢ is then given by the sum

N
Z r—r))e;s;(1) (1)

where €; is the maximum brightness of the jth molecule, and s;(¢) describes its (normalized)
temporal intensity fluctuations. Let us now assume that the emitting molecules are blinking, for
example stochastically switching between a fluorescent and non-fluorescent state, and that this
blinking of all molecules is statistically independent from each other. In that case, the temporal
second order cumulant C; [s(1),s¢(t + 7)] of the fluorescence signals from two molecules has
to be zero, or

Ca[sj(1), st +10)] = (8s(1) - S5t + 7)) = Sjuej fo(7) )

where the angular brackets denote averaging over time ¢, ds;(t) = (s;(¢) — (s;)) is the bright-
ness variance of the jth molecule, §;; is Kronecker’s symbol being one for equal indices and
zero otherwise, and f>(7) is a function describing the second-order temporal correlation of the
brightness of one molecule. For the sake of simplicity it is assumed that this correlation func-
tion is the same for all molecules, i.e. that all molecules behave statistically in the same way.
Thus, when now applying this second-order cumulant operation to each pixel of the recorded
movie F(r,t), one obtains the so-called second-order cumulant image,

Gy [F(r,t),F(r,t+7)] = U(r—r)U(r —r})g;g(8s(1)dsi (1 + 7))

1

™=

J
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where we have used, in the second line, the property of the statistical independence of the
intensity fluctuations of different emitters as embodied in Eq. (2). When inspecting Eq. (3)
one finds that each emitter of the sample contributes to the second-order cumulant image
C, [F(r,t),F(r,t + 7)] proportional to the second power of the PSF, which directly corresponds
to an enhanced resolution. For extracting all the information contained in the recorded images,
it remains to integrate the cumulant images over the correlation times 7; which then yields the
definition of the final SOFI images S,,:

(/d’cfz >§ r—r “4)
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The just described simple concept of second-order SOFI can be easily generalized to higher
orders by using higher order cumulants, see [6].

In principle, SOFI is straightforward to implement and use. First, one records a temporal
stack of images F (r,t) (movie), where the only requirement is that the image acquisition speed
is faster than the typical time scale of the intensity fluctuations of the emitters in the studied
sample. For calculating the e.g. second-order SOFI image, one would then have to calculate
the cumulant images using Eq. (3) for all possible correlation times {7}, and then to sum the
results over all values of {7} with 1 <t < 1,,,, where T,,, is some arbitrary maximum cor-
relation time which has to be chosen large enough so that all intensity-fluctuation correlations
of an emitter have decayed to zero. Values with 7 = 0 should be excluded because shot noise
is not suppressed in this case. However, the just described approach is computationally pro-
hibitive, in particular when computing higher-order SOFI image using higher-order cumulants.
One can adopt a simplified computational scheme which is taken from fluorescence correlation
spectroscopy (FCS) where one often encounters the task to compute a correlation curve from
asynchronous single-photon counting data [17]. For computing the second-order SOFI image,
one starts with calculating the second order cumulant image for 7 = 1,

V() = G[F (r,), F(r,t +1)]. (5)

In a next step, one generates a new stack of images F @) (r,7) by binning every two subsequent
frames into a single frame, i.e.

F2)(r,t)2) = F(r,t)+ F(r,t +1). (6)

With this new stack of frames with coarse-grained temporal resolution, one again calculates a
cumulant image for 7 =1,

P (r) = G[FD(r,6), FO (r,1 4 1)]. 7

This procedure is repeated k times until the coarse-grained time, 2* times the frame time, is by
ca. an order of magnitude larger than the typical correlation time of the intensity fluctuations,
so that all the information contained in these fluctuations is captured. The final SOFI image is
then calculated as the simple sum

$:(r) =Y. (v). @®)
k

The whole procedure is visualized in Fig. 1. Of course, the coarse-graining algorithm will not
capture all possible correlation information. However, comparisons between both approaches
on real data have shown that the difference in SOFI image quality between both approaches is
in most cases imperceptible. Even more, in most cases the calculation of just Cél) (r) is already
enough for obtaining a high-quality SOFI image, which tremendously reduces the numerical
load and accelerates computation speed.

Last but not least, let us finish this section by briefly addressing photo-bleaching, which is
a common problem in fluorescence microscopy. Because SOFI relies on the stationarity of the
fluorescence fluctuations of the sample, it is sensitive to photo-bleaching artifacts. To prevent
that photo-bleaching affects a final SOFI image, it is recommended to divide the full stack
of recorded images into sub-stacks of N,, frames, see Fig. 1, which has to cover a time span
longer than the typical correlation time of the emitters’ intensity fluctuations, but has to be
much shorter than the characteristic photo-bleaching time. The SOFI algorithm should then be
applied to each sub-stack of N,, frames separately, so that photo-bleaching will not skew the
SOFI analysis. Finally, the SOFI images of all sub-stacks can be added together to obtain the
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Fig. 1. Hierarchical SOFI algorithm: For each window w with N,, frames multiple cumulant
images are computed in a hierarchical way, where the time resolution is coarsened by factor
2 in each level. The sum of the cumulants of all levels approximates the integral over T of
C)’ with exponentially growing bin size.

final SOFI image. This assures that the cumulant analysis of each sub-stack is unaffected by
photo-bleaching.

3. Fourier SOFI

As stated in the introduction, one technical challenge encountered by SOFI in the past is the
finite pixel size of the imaging detector. From equations (3) and (4) one can see that the fi-
nal pixel size of an SOFI image is equal to the initial pixel size of the images on which the
SOFI algorithm is applied. To circumvent this limitation and to adopt the final pixel size of
an SOFI image to the spatial resolution provided by SOFI, Dertinger et al. [15] proposed to
calculate temporal cumulants not only on one and the same pixel, but to also cross-correlate
between pixels for generating new intermediate pixels with smaller effective size. Although
this method gives good results, it is prone to grid-like artifacts because the SOFI brightness of
cross-correlated virtual pixels is affected by PSF dependent weighting factors, see also [8,9,16].
Usually one focal plane (i.e. one PSF shape) has to be assumed for all emitters during this cali-
bration, potentially leaving residual artifacts in the corrected images (see Fig. 6e). Furthermore,
the method becomes computationally prohibitive and complex for higher-order SOFI.

There exists a much simpler and exact solution to this problem. The core idea is to recalculate
the recorded images F(r,¢) on a finer grid with reduced pixel size before calculating the SOFI
images. This can be done exactly by employing the fact that Fourier transform of the PSF, which
is called the Optical Transfer Function (OTF), has only a finite support. With other word, for
sufficiently large absolute values of the Fourier vectors, the OTF drops to zero. This can be
used to devise an interpolation scheme for re-calculating the recorded images on a finer pixel
grid without introducing any artifacts. Let us assume that the images F (r,t) are recorded with a
camera having N x N pixels of size d x d and co-ordinates r;;, where 1 <, j < N. Thus, when
directly applying the SOFI algorithm, one obtains SOFI images with the same number of pixels
and pixel size as the original images. Also, the discrete two-dimensional Fourier-transformed
images F(k,t) which can be calculated by a fast Discrete Fourier Transform (DFT) have the
same N x N number of sampling points k;;, with a maximum length of the spatial Fourier
vector of 27[(N — 1)/2]/d along both the x- and y-direction, where [] is the ceiling function.
If the camera pixel size is chosen sufficiently small, smaller than the resolution limit of the
microscope, then the Fourier-transformed images £ (k,t) will become zero for large absolute
values |k;;| of the Fourier vector. Thus, padding the Fourier-transformed images with zeros
will not change at all the information content of the images. However, when back-transforming
the zero-padded Fourier images to real space, this results in images with smaller pixel size
and larger pixel number, without changing, in any way, the real image content. By using this
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general idea, as also schematically shown in Fig. 2, one can recalculate the original images
on a finer grid with arbitrarily small pixel size without introducing any artifacts. In particular,
when padding the Fourier images with A sampling points on all sides, the pixel size of the
back-transformed images will be

_[v=1)/2] d
T IN=1)/2]+A

It should be stressed here that the SOFI algorithm is applied to the raw images after they have
been interpolated to smaller pixel size using Fourier interpolation. The core idea is that Fourier
interpolation of the original movie makes higher frequencies numerically accessible for the
subsequent SOFI calculation which yields a superresolved image with smaller pixel size. The
combination of Fourier interpolation with SOFI is called Fourier-SOFI or fSOFI, and it allows
for obtaining artifact-free SOFI images on an arbitrarily refined pixel grid. In practice, one
should chose a final pixel size dpew Which is at least two times smaller than the resolution limit
of the highest order SOFI one wants to calculate (Nyquist sampling theorem). Because n'" order
SOFI theoretically achieves a resolution that is n times better than that of the original images
(after post-processing [15]), dnew should be at least 2n times smaller than the resolution of the
used microscope when calculating n'" order SOFIL.

For experimental data the Fourier-transformed images generally does not fall to zero for
higher spatial frequencies due to noise. This leads to artifacts in the upsampled images, which
are, however, canceled during SOFI computation (due to absent temporal correlation of the
noise), leaving the SOFI image unaffected. Another issue is that a DFT intrinsically assumes
an image which repeats itself infinitely often along all directions (double-periodic image). This
may lead to artifacts in the upsampled image, because a real image is typically discontinuous
across borders when stacking it periodically. A rigorous and exact solution to this problem is
the procedure which is visualized in Fig. 3: Instead of directly upsampling the original image,
it is first padded with mirror-symmetric half-copies of itself (see Fig. 3), and only this enlarged
image is then upsampled and finally cropped back to the original size. Although this method
increases the numerical load, it is exact and totally free of any artifacts.

A comparison of simple interpolation and fSOFI is shown in Fig. 4 on a simulation of two
very close emitters. As can be clearly seen, although the basic SOFI algorithm certainly im-
proves spatial resolution when applied to the raw images, the pixel size of the raw images does
not match the Nyquist criterion for the resolution achieved by SOFI, which leads to strongly
“pixelated” SOFI images. By applying fSOFI, this pixelation can be avoided and the pixel size
of the fSOFI image matches the improved spatial resolution. The improved image fidelity as
well as subpixel positioning is presented on two simulated examples in Fig. 5, one of a ringlike
structure of emitters, and one two closely positioned single emitters For comparison the raw
cross-cumulant SOFI image is shown, displaying the typical artifacts inherent to this method.

As an experimental proof of principle, we have imaged the distribution of the R1-subunit
of the B-type of the y-aminobutyric acid (GABA) receptor in hippocampal neurons. GABA
is one of the most important inhibitory neurotransmitters in the central nervous system, typi-
cally reduces the probability of action potential generation and thus prevents excess stimula-
tion. Of the two types of GABA receptors, the ionotropic GABA4 receptor is a ligand-gated
chlorine channel, while the metabotropic GABAg receptor mediates further signal transduction
by G-protein activation upon ligand binding. The GABAp receptor is a heteromer consisting
of the subunits GABAgR1 and GABAgR2 [19]. Both are expressed separately in the soma
of neurons and initially reside in the somatic endoplasmic reticulum (ER) membrane. From
there, they are transported to their sites of insertion into the plasma membrane of a dendrite.
Fig. 6 shows the distribution of GABAgR1 labeled with QD625 quantum dots in a hippocam-
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Real space Fourier space Real space

Fig. 2. Algorithm of Fourier interpolation: Each frame (example: single emitter represented
by an airy disc) is first Fourier-transformed. For sufficiently small detector pixel sizes, the
Fourier transform is zero on the borders due to finite support of the OTF. The Fourier
transform can thus be padded with zeros without changing the frequency information, here
separated by a dashed white line from the original Fourier transform. Transforming back
into real space gives an artifact-free image with more pixels, where each “virtual” pixel
corresponds to a smaller area than that of the original detector pixels.

‘ periodic padding
‘ Fourier upsampling
‘ cropping

unpadded Fourier upsampling

Fig. 3. Example of periodic padding of an image for preventing boundary artifacts upon
Fourier upsampling: Instead of Fouier-upsampling the original image, one first extends the
image with mirror symmetric half-copies to obtain a larger and continuously periodic image
(periodic padding), which is then Fourier-upsampled, and then cropped back to the original
size. The comparison between both results (unpadded Fourier upsampling, right bottom,
versus padded Fourier upsampling, right top) clearly shows that the padding procedure
leads to a perfectly artifact-free upsampling of the original image.

a) b) c)
- -

Fig. 4. Comparison between fSOFI and interpolation of SOFI image using a simulation of
two close emitters. a) Average of movie. b) 4™ order SOFI image. c) Linear interpolation
of b. d) 4™ order fSOFI image. The coarseness of the pixel grid prevents standard SOFT to
resolve the emitters. In contrast to interpolation, the fSOFI image captures true information
and correctly resolves the emitters.
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Fig. 5. Two examples from a simulated SOFI experiment illustrating the presented Fourier
interpolation in combination with SOFI. Top panels: 10 emitters in a ring. Bottom panels:
Two emitters with sub-pixel shift (1.75 px, 0.25 px). a) Time average of all frames. b)
4™ order SOFL c) 4™ order SOFI from 4x-super-sampled frames. d) Raw 4 order cross-
correlation SOFL. It is easy to see that the Fourier interpolation improves image quality and
exposes the sub-pixel positioning of the emitters without producing artifacts visible in the
raw cross-correlation approach.

Fig. 6. Fourier interpolation on a images of blinking quantum dots. Rat hippocampal neu-
ron with neurotransmitter receptor subunit GABAgR1 immunostained with commercial
quantum dots QD55 (Invitrogen). The raw stack of images contains 3000 frames recorded
at 20 Hz frame rate. Fluorescence was excited at 401 nm wavelength and about 20 W/cm?
using an laser (Cube401, 100 mW, Coherent). The microscope used was a commercial
epi-fluorescence microscope (IX-71, Olympus) equipped with an 1.4 oil-immersion ob-
jective (UPlanSApo, Olympus), and an emCCD (DU-897-CS0-BV, Andor). Magnifica-
tion was chosen in such a way that the effective pixel size of the recorded images was
100 nm. Fluorescent light was filtered from the excitation light using a dichroic beam split-
ter (FF444/520/590, Semrock). (a) Time average of original images. (b) 20 order SOFI.
(c) 2" order SOFI with 3x Fourier interpolation. The last two images show the raw 2"
cross-correlation SOFI (d) and the artifact corrected image (e) calculated using publicly
available software [20].

#236198 - $15.00 USD  Received 19 Mar 2015; revised 29 Apr 2015; accepted 1 May 2015; published 10 Jun 2015
(C) 2015 OSA 15 Jun 2015 | Vol. 23, No. 12 | DOI:10.1364/0OE.23.016154 | OPTICS EXPRESS 16162



pal neuron. Comparison between the raw image (a) and the simple SOFI image (b) (without
Fourier pixel interpolation) clearly shows the increase in resolution, but also the efficient sup-
pression of background, which is due to the ability of SOFI to cancel the contribution of any
non-fluctuating signal such as autofluorescence or scattering but also to the z-sectioning capa-
bility of SOFI. However, panel (b) also clearly shows strong pixelation because the pixel does
not match the increased resolution provided by SOFI. This pixelation is removed by applying
fSOFI, as shown in panel (c). There, all structural details become clearly visible, without the
introduction of any artifacts such as the infamous ringing (ringlike shadow images around struc-
tures) so often appearing when applying sophisticated deconvolution algorithms in microscopy
image processing. This is due to the fact that fSOFI does not change in any way the information
content of the image, which is only contained within the finite support of the OTF where fSOFI
does not change anything. Also shown are the raw and corrected cross-cumulant SOFI image.
Note that the corrected image still shows artifacts, as they can not be completely corrected,
probably because of the one-focal-plane assumption (see beginning of this section).

4. Conclusion

In the present paper, we have presented an easy and straightforward way ho to solve the “pix-
elation” problem of SOFI. The presented Fourier interpolation scheme is conceptually simple,
easy to implement, and completely artifact-free. One of the open challenges of fSOFI is the
computational demand: with an n-fold reduced pixel size of the input images processed by the
SOFI algorithm, the computational load increases by n”. For the future, we envision the de-
velopment of hardware-based approaches for the rapid calculation of the image cumulants of
the Fourier-interpolated raw images. Due to the simplicity and fundamental immutability of the
fSOFI algorithm, this will be straightforward to achieve by using dedicated hardware such as a
FPGA or a graphics cards. This can speed up calculations by orders of magnitude which could
enable real-time fSOFI calculations.
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