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ABSTRACT

Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission which is stronger for more rapidly
rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to
convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation
periods of 821 stars with masses below 1.4 M. A generalized analysis of the relation between X-ray luminosity
normalized by bolometric luminosity, Lx /Ly, and combinations of rotational period, P, and stellar radius, R,
shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the
relation Lx/Lpo o< P~2R™* optimally describes the non-saturated fraction of the stars. This relation is equivalent
to Lx o« P72, indicating that the rotation period alone determines the total X-ray emission. Since Ly is directly
related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star’s
rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would
be consistent with these results if the convective overturn time scales exactly as Lgoll/ 2 our generalized approach
emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.
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1. INTRODUCTION

Stars exhibit signs of magnetic activity through prominent
emission of non-thermal radiation from coronal and chromo-
spheric regions (Favata & Micela 2003; Gtidel 2004; Hall 2008),
and through significant amounts of magnetic flux detectable on
their surfaces (Donati & Landstreet 2009; Reiners 2012). It is
believed that the chromospheric and coronal regions are mag-
netically heated and that the generation of magnetic energy by
large-scale dynamo action in the stellar convection zone is driven
by rotation and convection (e.g., Charbonneau 2010).

The relationship between stellar rotation and activity is
extensively discussed in the literature. As soon as the first
samples of activity measurements together with information on
stellar rotation became available, it was realized that magnetic
activity is stronger in rapid rotators while slowly rotating
stars (such as the Sun) exhibit relatively low levels of non-
thermal emission and host only weak average magnetic fields.
Pallavicini et al. (1981) found that the X-ray luminosity, Lx,
among cool stars (G-M) strongly depends on rotation rate
with Lx o (vyor 8ini)'**%3 and no dependence on bolometric
luminosity. The rich data set from the Mt. Wilson survey was
used by Noyes et al. (1984) to study the relation between
chromospheric activity and rotation. They showed that the ratio
of chromospheric flux (observed in Ca1r) to bolometric flux
correlates with the ratio of a color-dependent function 7(B — V),
which they identified with the convective overturn time, to the
rotation period, P. /P is proportional to the inverse Rossby
number, 1/Ro (sometimes called the Coriolis number), which
describes the strength of the rotational effect on the convective
flows. Under certain assumptions, the driving of a mean-field
«Q) dynamo is & Ro~2 (Durney & Latour 1978; Montesinos
et al. 2001), which motivates a scaling of the activity in terms
of the Rossby number.

It is clear that comparing 7/P against the ratio of chro-
mospheric or coronal flux to bolometric flux (or luminosity)

involves the possibility that the bolometric flux and overturn
time may actually depend on each other in such a way that they
cancel each other, and hence this comparison might only reflect
the relation between non-thermal flux and rotation period alone,
i.e., Lx/Lyo versus 7/ P simply reflects the relation Lx versus
1/P. It was pointed out early on, e.g., by Basri et al. (1985) and
Basri (1986), that coronal emission and rotation in fact provide
a better correlation, or at least that it cannot be decided which
one is the relevant relation.

The activity—rotation relationship was re-investigated by
Pizzolato et al. (2003) on the basis of a large observational
sample of 259 field and cluster stars with known X-ray emission
and rotation rates. They showed that two emission regimes exist
in cool stars: one for which X-ray luminosity depends on rotation
period and a second regime where the ratio between X-ray and
bolometric luminosity is constant (called the saturated regime).
They also derived an empirical overturn time, 7., to calculate an
empirical Rossby number, Ro, = P /7., for their sample stars.
The function 7.(B — V) was determined such that the scatter
in the relation between normalized X-ray luminosity, Lx /Ly,
and Ro, is minimized for the non-saturated stars. Similar to
Noyes et al. (1984), they found that 7. resembles theoretical
overturn timescales. However, they also note that 7. roughly
scales as L;O']/ 2, which implies that arelation Lx /Ly, o< Ro, Zis
equivalentto Lx o« P~2 without any dependence on other stellar
parameters.> Wright et al. (2011, hereafter W11) extended the
available data and presented a sample of 824 cool stars with
X-ray luminosities and rotation periods. Similar to Pizzolato
et al. (2003), they determined an empirical overturn time by
minimizing the scatter between normalized X-ray luminosity
and a fit in terms of a power law in the (empirical) Rossby
number. For the unsaturated stars in their sample, they found
that Lx /Ly depends on Ro with an exponent of —2.18 +0.16

3 Similar results were found for the total Cair surface flux (Middelkoop 1982;
Catalano & Marilli 1983).
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if all stars are used. The authors point out that the sample suffers
from biases due to the selection of only X-ray detected sources,
and they aim to overcome this bias by restricting the fit to an
‘unbiased’ subsample. From this sample, they found that the
slope of the relation between Lx /Ly, and Ro has an exponent
of —2.70 £ 0.13.

A potential problem of empirically determined convective
overturn times is that the physical meaning of this quantity is
rather unclear since the overturn time varies with depth and
it is not clear at which location the dynamo is most efficient.
Furthermore, convective overturn times are likely to depend on
other parameters, e.g., metallicity, and change as stars age (e.g.,
Landin et al. 2010; Spada et al. 2013).

While it is obvious that one can always derive a function 7
that minimizes the scatter of the activity—rotation relation, it is
not clear whether the similarity of the empirical overturn times
to those resulting from mixing-length models of convection
justifies conclusions concerning the nature of the dynamo
process. In this paper, we therefore reduce the freedom of
choosing this function by assuming that it is a power law of
a fundamental stellar parameter that can, at least in principle,
be determined independently for each sample star. For this we
choose the stellar radius, R. Similarly, we assume a power
law for the dependence of Lx/Lpe on the rotational period,
P. A fitting procedure based on minimizing scatter then yields
optimal values for the two exponents of the power laws for the
unsaturated part of the stellar sample. Our main result is that
this procedure leads to a better fit of the data (less scatter)
than the introduction of the empirical Rossby number. The
resulting power-law exponents indicate that Lx o< 1/P? in the
unsaturated regime. Since Ly is found to be directly related to
the magnetic flux on the stellar surface (Pevtsov et al. 2003;
Vidotto et al. 2014), this means that the generation of magnetic
flux by the stellar dynamo in cool stars is a function only of the
rotation period, independent of other stellar parameters (such as
radius or mass). Above a critical rotation period, Lx saturates
at a level of 1073 L, for each star. Since our results are free
from any assumption about the dynamo mechanism, they can
be used to assess predictions from dynamo theory in the most
general way.

2. DATA
2.1. Stellar Sample

We use the comprehensive sample analyzed by W11. It is
based on a compilation started by Pizzolato et al. (2003) and
was extended by further data from the literature and from
observations of stellar clusters. In total, the sample comprises
824 stars, of which we consider the 821 stars with masses
below 1.4 M.

The sample contains stars of very different age, representing
the evolution of stars from a few 107 years up to the ages of field
stars. Specifically, the sample contains members of NGC 2547
(60 stars), IC 2602 (28), IC 2391 (13), « Persei (40), the Pleiades
(146), NGC 2516 (14), Praesepe (20), the Hyades (49), as well
as 445 field stars. More details on the references for individual
measurements together with cluster ages and distances are
provided in W11. Here, we adopt the ages collected in that work.
In our figures, we distinguish four groups of stellar ages, which
we define as very young (up to 50 Myr; NGC 2547, IC 2602,
IC 2391), young (between 85 and 150 Myr; o Persei, Pleiades,
NGC 2516), intermediate (600700 Myr; Praesepe and Hyades),
and field stars.

REINERS, SCHUSSLER, & PASSEGGER

Table 1
Updated Rotation Periods
Star Period (days) Reference
Old Updated
GJ 182 1.86 441 (ks07)
GJ 494 1.54 2.889 (ks07)
GJ 551 42.00 82.53 (ks07)
GJ 2123A 7.79 0.32 (ks07)
GJ 669A 19.81 0.95 (ks07)
HD 95650/GJ410 2.94 14.81 (fh00)
GJ 388/AD Leo 2.6 223 (en09)
G99-49 0.5 1.81 (irll)
GJ 1156 0.87 0.491 (irl1)
GJ 493.1 0.21 0.6 (irl1)
GJ791.2 0.32 0.346 (irl1)

References. (ksO7): Kiraga & Stepien 2007; (fh00): Fekel &
Henry 2000; (ir11): Irwin et al. 2011; (en09): Engle et al. 2009.

2.2. Updated Stellar Parameters
2.2.1. Parameters Derived from Models

The catalog of W11 contains measured data for rotation,
X-ray luminosity, and color, together with several other indi-
cators. In addition, stellar parameters such as mass, effective
temperature, radius, and depth of the convective envelope were
calculated from the models of Siess et al. (2000). We updated
these parameters by interpolating the tables from Siess et al.
(2000), which led in some cases to values that somewhat differ
from those given in W11. The discrepancy is most pronounced
for the depth of the convective envelope. This is probably due
to the fact that the parameter range is poorly covered for masses
around M = 0.35 My in the tables of Siess et al. (2000).
The minimum mass for the appearance of a radiative core is
M = 0.35 M (Chabrier & Baraffe 1997) and we set the stars
to be fully convective for M < 0.35 Mg, thus extending the
tabulated points in Siess et al. (2000). For consistency, we also
updated the stellar parameter mass, radius, and effective tem-
perature, and we redetermined the bolometric luminosity and
used these values for our analysis.

2.2.2. Rotation Periods

For some of the stars in the sample, improved measurements
of rotation periods became available in recent years, and some of
them significantly differ from those collected in W11. The new
periods used for the analysis in this paper are listed in Table 1.

Figure 1 shows an overview of the sample. We plot the rotation
period (left) and radius (normalized by the solar radius; right)
versus the effective temperature for all sample stars, indicating
ages by different colors and symbols. The sample shows the
typical signatures of mass-dependent rotational evolution (see,
e.g., Barnes & Kim 2010; Reiners & Mohanty 2012).

We note that none of the results shown in the following
changes qualitatively if the original stellar parameters and
periods from W11 are adopted.

3. RESULTS
3.1. The Generalized Rotation—Activity Relation

We assume that the normalized X-ray luminosity, Lx /Lo,
depends on the rotation period and on a combination of
parameters given by the structure of the star, such as mass,
radius, temperature, or depth of the convection zone. Because
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Figure 1. Rotation period (left panel) and radius (right panel) vs. effective temperature for all sample stars. Blue squares: very young stars (up to 50 Myr); green
triangles: young stars (between 85 and 150 Myr); magenta triangles: intermediate-age stars (600-700 Myr); red circles: field stars.

(A color version of this figure is available in the online journal.)

they all scale in some way with the mass or the radius of the star,
we condense the dependence on stellar parameters in the radius
R, and search for an optimal representation that minimizes the
scatter in Lx /Ly, . For a generalized dependence of Lx /Lo on
P and R in the form of a combination of power laws,

Lx

bol

o R* PP, ey
we considered fits through the resulting distributions of points in
the plane log(Lx /L) versus log(k R* P?), where k represents
the constant of proportionality in Equation (1). The fit curves are
composed of two linear parts: one for the unsaturated regime,
which should follow the relationship given by Equation (1) and
therefore must have a slope of unity; and another linear fit for
the saturated part of the sample. The best fit is then defined as
the one showing the minimum scatter of the data points with
respect to the fit curve. The location of the break in the slope
of the fit curve between the unsaturated and saturated parts is
found by including the break point in the minimization process.

The linear regression curves are calculated using an adapted
version of a procedure studied by Isobe et al. (1990), who
provide algorithms for five methods for linear regression fits
to bivariate data.* The different methods are useful for taking
into account different distributions of uncertainties in the data.
The “standard” way of fitting a slope in a variable Y to another
variable X is the ordinary least squares method, OLS (Y|X). This
method assumes that ¥ measures (with uncertainty) the value of
a parameter that depends on a known variable X (with no or very
little uncertainty). A second method, OLS (X1Y), calculates the
fit under the assumption that Y is the variable that is well defined
and the scatter in the observed sample is due to a distribution
(or measurement uncertainties) in X. A third method, the OLS
bisector, performs the fit under the assumption that the scatter
in the distribution is due to scatter in both variables X and Y
with symmetrically distributed scatter. This relation provides
the regression that produces the “best-looking” fit, i.e., a line
that lies closest to all data points. In our situation, typical
uncertainties in the variables X and Y are not symmetric. The
intrinsic scatter in Lx of a Sun-like star due to stellar variability
is typically on the order of a factor of two but higher during flare

4 http://idlastro.gsfc.nasa.gov/ftp/pro/math/sixlin.pro

events (Schmitt et al. 1995). Uncertainties in Ly and differences
between X-ray calibrations from different instruments can add
more uncertainty so that a factor of two is probably a lower limit
for the uncertainty in Lx /Ly in our sample. Stellar radii are
derived in a consistent way, so that residual errors are probably
only a few percent. The rotation periods in the sample are also
relatively well constrained. We do not expect any systematic
differences between periods measured by different authors, and
the variability of observed rotation periods in Sun-like stars is
reported to be on the order of 10%—20% or lower (Donahue et al.
1996), i.e., the uncertainty in our variable X is a factor of 10-20
less than the uncertainty in our variable Y. Thus, we conclude
that OLS (Y|X) is the appropriate method for the calculation in
our case. We thereby ignore the uncertainty in P, which probably
leads to a slight underestimate of the slope (Isobe et al. 1990).
We estimate this effect to be less than 0.1 from tests using the
OLS (Y |X) and OLS bisector methods.

For the optimal solution with a scatter of 0.346 dex, we find
values of « = —4.3, 8 = —2.2,k = 1.86 x 107> d? R", and
the break point at log(Lx/Lyo) = log(kR* P#) = —3.14. Up
to three digits, the scatter is also the same for the combination
a = —4 and B = —2. For simplicity, we will consider these
values as our optimal solution in what follows.’

In order to determine a confidence interval for the optimal
solution, we note that the nature of the assumed power-law
relationship in the unsaturated part implies that the scatter of
the data points around Equation (1) on the log-log plane, and
hence the quality of the fit, depends only on the ratio of the
exponents, o/B. We thus calculated the scatter as a function
of «/p by determining the standard deviation of the data points
from the broken power-law fit, using the value of the break point
that minimizes the standard deviation for each given value of
o/ B. We carried out this procedure for 101 values for each of
the parameters o and 8 with —6 < o < Oand —6 < 8 < 0.
The resulting relation between the scatter (in dex) and o/
is shown in Figure 2. We find a smooth distribution with a
minimum located at /8 = 1.93 (2.06 for the original sample).
We estimate a confidence interval of this solution assuming that

5 For the original sample, i.e., if we use all periods and luminosities reported
inWIl,wefinda = —4.1, 8 = =2.0,k = 1.23 x 1073d~# Ro%, and the
break point at log(Lx/Lpo1) = log(kR“ PPy = —3.20.
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Figure 2. Scatter (1o) of Lx/Lyo around Equation (1) for different values of
the ratio «/ 8. The blue dashed line marks the 20 interval for « /8 assuming that
the statistical uncertainty in the measurement of Lx /Ly equals the minimum
scatter of 0.346 dex. The red dotted line shows the approximate location derived
in W11 from the Rossby formulation based on their “unbiased” subsample of
stars (see text).

(A color version of this figure is available in the online journal.)

the uncertainties in Ly /Ly follow a normal distribution around
our fit. In other words, we assume that the uncertainty of each
individual measurement is equal to the minimum of the scatter.
With a minimum scatter of 0.346 dex and a total number of 349
measurements of stars in the unsaturated regime, we estimate
(see Press et al. 1986) as the 20 confidence interval of the ratio
o/ B the range

153 < % < 2.66, )

which is indicated by the blue dashed line in Figure 2. For the
individual values of o and 8, we find the 2o intervals

—5.04 < a < —3.54, 3)
and
—2.37 < B8 < —1.88. @

We note that the assumption of normally distributed uncertain-
ties in the individual measurements of Lx /Ly is probably not
entirely correct. Nevertheless, a 1o uncertainty of 0.346 dex
(more than a factor of two) appears to be a realistic estimate that
captures several systematic effects, such as instrument differ-
ences, flares (occurring statistically), and contamination from
binaries. Ratios outside the confidence interval can therefore be
regarded as statistically unlikely, even if we do not fully under-
stand the sources of the measurement uncertainties. The dotted
red vertical line in Figure 2 indicates the value of «/f = 1.1
that we infer for the formulation of W11 in terms of the Rossby
number (see Section 3.2 below); it is clearly outside the 2o
confidence interval.

Our result provides information on the dependence between
the parameters used in Equation (1). It is important to note
that in the available sample, rotation, color, mass, radius,
age, etc., are severely degenerate, for example, because very
few Sun-like stars are rapidly rotating. Our result is that the
rotation period, P, and radius, R, can explain the existing
activity observations but underlying physical relations may be
hidden by sample degeneracies. Further data on stars occupying
sparsely populated parameter ranges would help to remove this
degeneracy.

REINERS, SCHUSSLER, & PASSEGGER

Table 2
Slope y in the Unsaturated Regime for the Three Cases in W11
Sample OLS (Y|X) OLS bisector OLS (X]Y)
0.13 <Ro —2.16 £0.08 —2.58 £0.08 —3.17+0.12
0.2 <Ro < 3.0 —2.36 +£0.09 —2.90 +£0.09 —-3.71+0.17
“unbiased” sample® —-1.91+0.18 —2.24+0.16 —2.67+0.25

Note. ? Valid in the range 0.3 < Ro < 3; HD 81809 is not in the catalog.

3.2. Comparison to Wright et al. (2011)

Wright et al. used the same sample of stars to obtain a power-
law relation between Lx /Lo and an empirical Rossby number
by considering the convective overturn time, 7, as an adjustable
function of stellar mass. By minimizing the scatter of the data
points with respect to the power-law fit, they determined the

slope y in
L P\’
X« (—) (5)
Lol T

in the unsaturated regime. Including all 824 stars in their sample,
they report y = —2.18 £ 0.16 for the best-fitting slope. The
authors argue that an OLS bisector fit is appropriate for this
sample. We question this choice because of the asymmetric
distribution of the uncertainties (see Section 3). To compare
the results from different fit methods, we recalculated the slope
using three different methods: OLS (Y]X), OLS bisector, and
OLS (X|Y). The results are shown in Table 2.° We include
three subsamples that are mentioned in W11, the full sample
(with Ro > 0.13), a sample with Ro > 0.2, and their “unbiased”
sample (see below). We observe rather large inconsistencies
between our results and their findings, which may be partly
because we cannot reconstruct the overturn times W11 used for
their fit. These overturn times follow the relation from Pizzolato
et al. (2003), but W11 convert V — K into B — V based on a
relation that is not provided for all stars. We therefore used the
convective overturn times as determined in W11 as a function of
mass, which do not significantly differ from those of Pizzolato
et al. as shown in W11.

An important point in the results from W11 is their construc-
tion of an “unbiased” sample. The authors argue that X-ray
bright sources are easier to detect and may therefore be over-
represented with respect to stars that are X-ray dim. This could
be particularly important for the mean Lx for a given value of
P because slow rotators with low X-ray brightness may be sys-
tematically underrepresented. To construct an X-ray complete
sample, they chose the 36 stars from Donahue et al. (1996) for
which rotation periods could be measured over five or more
seasons. According to W11, the 36 stars all show measurable
X-ray emission and W11 argue that the sample therefore does
not suffer from X-ray luminosity bias.” We do not agree that this
particular sample should be less biased than others, in particular
because it is a sample of 36 selected out of 100 stars based on
the detectability of photometric periods. We calculated the slope
for this sample and include our results in Table 2. We cannot
reproduce the value of y = —2.7 for the OLS bisector method.
We revisit the question of luminosity bias in Section 3.6.

6 For this comparison, we use the original values for P and Lx as reported

in W11.

7 We note that HD 81809 is a member of the 36 stars from Donahue et al.
(1996), but we could not find it in either the sample of W11 or in the NEXXUS
database (Liefke & Schmitt 2005).
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(A color version of this figure is available in the online journal.)

For completeness, we compare the scaling reported in W11
(y = —2.7) to our solution. We note that this is not comparing
the same samples, but we find it helpful to discuss the y = —2.7
scaling to our generalized results. The convective overturn time
for the W11 solution was parameterized in terms of stellar mass,
M, by a second-order double-logarithmic polynomial (see their
Equation (11)). For the stars considered in the unsaturated part
of the sample, the values of M/Mg and R/Rq are almost
identical, so that we can replace M /Mg in their relation by
R/ R without introducing significant scatter. Furthermore, we
can approximate their Equation (11) by the first-order relation

logr =1.19 — 1.08log M /Mg, ©6)
so that we can rewrite Equation (5) in the form
L R—1.08\ 27
X < > — P’2'7R’2'9, (7
Lol P

which is equivalent to Equation (1) with /8 =2.9/2.7 = 1.1.
This value is indicated by the red dotted line in Figure 2; it is
outside the 20 confidence interval for the optimal value of /.
The expected scatter for /8 = 1.1 is approximately 0.38 dex.
A more direct comparison of the fit qualities can be achieved
if we use the original Rossby scaling provided by W11 and
compare its scatter to the one determined from the distribution
usinga = —4 and § = —2. In Figure 3, we show the normalized
X-ray luminosity as a function of the Rossby number (left panel)
and as a function of k P~2 R~ for minimal scatter (right panel).
In both panels, we overplot broken power-law fits to the data. For
the values from W11, we break the power law at Rog,e = 0.13,
as reported in that work. For the values of k and the power-law
break in the « = —4 and § = —2 solution, we take the values
of the optimal solution.

From both descriptions, we determined the scatter around
the power-law fit by calculating the standard deviations of the
distributions shown in the insets of the panels of Figure 3. For the
Rossby formulation, the standard deviation is o = 0.371 dex,
while for the generalized formulation (right panel in Figure 3)
we have 0 = 0.346 dex (as found in Section 3.1). Compared
to the simplified approach using Equation (6), the value for the
optimized Rossby formulation is closer to, but still considerably
higher than, the minimum from our generalized formulation.

3.3. Comparison to Pizzolato et al. (2003)

A quadratic dependence of X-ray luminosity on rotation rate
alone was already suggested by Pallavicini et al. (1981). More

recently, Pizzolato et al. (2003) pointed out that the empirical
turnover time approximately scales as 7 Ll:oll/ *. With a

rotation—activity relation of the form Lx/Lp, Ro~2, they

then obtain L :
X xRo2 5 ,
Lol P= Ly

®)

which is equivalent to Lx o« P~2. This relation is consistent
with the result of our generalized approach, which can be seen
as follows. Since Lyy o RzTe‘tf, and for the non-saturated stars
approximately T oc R!/2, with o = —4 and B = —2 we find
the relation

LX 2 p—4 1 1
X PR « X s
Lol P2(R?T*) ~ P2Lyo

€))

which is identical to the relation in Equation (8). The factor
of R™* effectively compensates for the normalization by the
bolometric luminosity, indicating that the normalization is in
fact unwarranted in the unsaturated regime.

Since we have the values of Ly, for the stars in our sample, we
can also directly consider the relation Lx /Ly o< 1/(P?Lyg). It
turns out that the scatter from this relation is 0.340 dex, which
is even slightly lower than the minimum scatter of 0.346 dex for
the relation given in Equation (1). This supports the conclusion
that the relation between Ly and P2 is better constrained than
the relation between Lx /Ly, and some combination of P and
other stellar parameters.

3.4. Saturation

We have seen that the total X-ray luminosity in the unsaturated
regime scales with P~2 and does not depend on any other
stellar parameter. When the total X-ray luminosity reaches a
critical value of about 1073 Ly, it does not grow further for
shorter rotational periods, i.e., activity saturates. The critical
period at which saturation sets in therefore depends on the
stellar luminosity, Ly,. We can use our optimal solution to
determine the value of the critical period. For ¢ = —4,
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Figure 4. Separate representations of X-ray activity vs. rotation period in
the unsaturated (lower part) and saturated (upper part) regimes. Activity is
represented in terms of Ly in the unsaturated regime and in terms of Lx /Lol
in the saturated regime.

(A color version of this figure is available in the online journal.)
B = —2, and k = 1.86 x 107> d* R}, saturation sets in at
about lc)ng’zR’4 = —3.14. With Ly, o« R* and Ly =
3.853 x 10¥ ergs™!, we find
—1/2
) . (10

Loo \ /2 L
Py (days) = 1.6( b“) - ( bol
. This result is similar to

Lo 1.1 x 103
where Ly, is in units of ergs™
Equation (6) of Pizzolato et al. (2003).

For this value of the critical period, we show the distribution
of log Lx versus P for the unsaturated regime together with
log(Lx/Lyo) versus P for the saturated regime in the lower
and upper panels of Figure 4, respectively. For the unsaturated
regime, we find the relation

log Lx = (30.71 £ 0.05) — (2.01 £ 0.05)log P, (11)

which is consistent with our optimal value g = —2.%

3.5. A Slope in the Saturated Regime

All three representations shown in Figures 3 and 4 indicate a
slight slope of the rotation—activity relationship in the saturated
regime, i.e., some remnant dependence of the activity on
rotation (or other parameters) even for very rapidly rotating
stars. Quantitatively, we find the following for the different
representations:

L
log =X = (—3.37 £ 0.06) — (0.16 & 0.03) log Ro,
bol
Lx 2 pd
log 7= = (=3.04 £0.02) — (0.07 % 0.01) log (kP* R,
bol
L
log X —(=3.124£0.01) — (0.11 £ 0.03) log P.
bol

There is a statistically significant slope in all three cases.
The slope is least significant (but still above 3o0) in the
parameterization with P, while itis at > 5o and more in the other
two cases. The slope is likely due to a remaining dependence
of the dynamo on rotation period even when saturation is
reached, but it may also be influenced by small differences
in the saturation level between stars of different mass.

8 For the original sample, we find 8 = 1.97 & 0.08.
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Figure 5. Slope § for subsamples that contain stars out to a maximum distance.
Error bars show 1o uncertainties.
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3.6. Luminosity Bias

W11 pointed out that the slope of the rotation—activity relation
may suffer from a luminosity bias. A possible consequence
is that the least X-ray bright stars are systematically missed,
so that the average X-ray luminosity among the least active
stars (the slowest rotators) is overestimated. This would lead
to a slope that is shallower than the true relation. We lack a
statistically unbiased, complete sample of stars with X-ray and
rotation period measurements. Nevertheless, the large sample
of targets allows us to test whether the slope § that we derive
in the unsaturated regime depends on the distance to the stars
in the sample. A luminosity bias would be less pronounced in
a sample of nearby stars and would become more important if
we include increasingly distant objects. We carried out this test
by computing the slope § for stars in the sample with distances
out to 15, 30, 60, 120, 240, and 480 pc. The results are shown
in Figure 5. We find no significant trend of B as a function
of distance limit. There is a marginal trend towards higher
absolute values of the slope at large distances, but it is dominated
by the sample limited to 15 pc which has large uncertainties.
We conclude that our results do not show evidence of a
luminosity bias.

4. DISCUSSION

The result of our generalized analysis of the rotation—activity
relation can be summarized as follows. The total X-ray lumi-
nosity scales with the rotation period (P~2) as long as the stel-
lar activity is not saturated, and X-ray activity saturates for a
given star when Lx /Ly reaches a level of about 1073, In the
unsaturated regime, this description is equivalent to a scaling
of Lx/Lyot & P™2R™*, which could be written as a Rossby
number scaling of the form Lx/Lpo Ro~? if the convective
overturn time scales as T o« R™% o L;}/ ?. Furthermore, for a
given star in the saturated regime, Lx /Ly, still shows a weak but
significant dependence on rotation. In what follows, we discuss
some physical implications of these results.

4.1. Ly < P72

This relationship means that two stars with the same rotation
period emit the same X-ray luminosity, irrespective of their mass
or radius. Since observations indicate that Lx is proportional to
@, the total magnetic flux at the stellar surface (Pevtsov et al.
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2003), this implies that ®g depends only on the rotation rate
and not on any other stellar parameter. This is consistent with a
recent study by Vidotto et al. (2014) of the relationship between
the large-scale surface magnetic flux determined by Zeeman
Doppler Imaging, @y, and X-ray luminosity: the two relations,
Lx versus @y, and Lx/Ly, versus @y, yield nearly the same
power-law exponents (1.80 and 1.82, respectively). This means
that ®v is uncorrelated with Ly, and, therefore, uncorrelated
with stellar radius or mass. Similarly, the scalings with a rotation
period of @y and magnetic flux density (®y divided by surface
area) show the same power-law exponent, which means that the
rotation rate is uncorrelated with radius or mass (consistent with
our value ¢ = —4).

The absence of a dependence of Lx on stellar parameters
apart from rotation means that a bigger star shows the same
magnetic surface flux as a smaller star at the same rotation rate.
One would have naively expected that the bigger volume of the
convection zone available for dynamo action would also lead to
more magnetic flux being produced by the dynamo, so that more
flux also emerges at the surface. Also, bigger scales could imply
less dissipation of the large-scale field by turbulent diffusion,
thus effectively increasing the net driving of the dynamo. On
the other hand, the turbulent magnetic diffusivity probably
decreases towards cooler (smaller) stars since the convective
motions are slower; the net effect on dynamo driving is unclear.

4.2. Saturation

The existence of a limiting value Lx /Ly, ~ 1073 for very
fast rotators lends itself to at least three possible interpretations.

First, it can be seen as indicating that there is a maximum
fraction of the total energy flux of the star that can be converted
into X-ray flux. This could be related to an upper limit of the
efficiency of converting the energy flux into magnetic energy
(e.g., Reiners et al. 2009; Christensen et al. 2009), although the
relation between the X-ray flux and magnetic energy generation
in the convection zone is unclear.

A second possible interpretation can be inferred from the
scaling of the critical rotation period for saturation given in
Equation (10): Pgy Lgoll/ 2 & R~2. This relation implies that
the critical rotation rate, 27/ Py, is proportional to the surface
area of the star, so that it can be interpreted as the rotation
rate at which the magnetic surface flux in bipolar regions fills
the complete stellar surface (e.g., Vilhu 1984). If the X-ray
flux ultimately results from the interaction of surface magnetic
flux with near-surface flows, saturation could be a result of this
situation. In this picture, the filling of the surface would also
need to imply that the total surface magnetic flux is saturated,
evidence of which is reported in Reiners et al. (2009). For a solar-
type star, saturation occurs at Lx &~ 4 x 10*° ergs™!, roughly a
factor of 10° above the value at the activity maxima of the Sun
today, during which the area fraction of the active regions is a
few percent. For Lx o @, (Pevtsov et al. 2003), the saturated
X-ray luminosity would not be reached for a Sun fully covered
by active regions (e.g., Vaiana & Rosner 1978; Drake et al.
2000); however, it would be consistent for a steeper relationship,
such as Lx o« @!® proposed by Vidotto et al. (2014).

Another interpretation can be given in terms of the nonlineari-
ties that determine the amplitude of the dynamo-generated mag-
netic field (R.H. Cameron 2014, private communication). The
present Sun is located in the lower part of the unsaturated regime
and its differential rotation is almost invariant during the activity
cycle. This means that the magnetic energy is small compared
to the kinetic energy in the differential rotation, which therefore
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does not experience a strong back reaction of the toroidal mag-
netic field it generates. The field amplitude in the unsaturated
regime is thus determined by a nonlinearity affecting the gen-
eration of the poloidal field (¢ quenching). As the rotation rate
grows along the unsaturated branch, at some stage the magnetic
energy becomes comparable to the kinetic energy of differential
rotation so that a strong back reaction occurs (“€2 quenching”).
If the corresponding nonlinearity is sufficiently hard, it results
in a quasi-saturated regime that is (almost) independent of the
rotation rate.

4.3. Dynamo Models

Given the present state of our understanding of solar and
stellar dynamos (see, e.g., Charbonneau 2010), drawing a
quantitative connection between the dynamo mechanism and
the observed activity indices is by no means straightforward. It
seems uncontroversial that the toroidal flux is generated (from
poloidal flux) by differential rotation (the € effect) while the
poloidal flux is regenerated by some kind of « effect. The latter
could be due to the action of cyclonic convection on the toroidal
field, i.e., the classical Parker loop, which would bring the
Rossby number into consideration. However, it could also result
from the Babcock-Leighton mechanism, i.e., the systematic tilt
of bipolar regions with respect to the direction of rotation. This
tilt can result from the action of the Coriolis force on flows along
rising flux tubes (Fan 2009). These flows are not of a convective
nature, and thus are independent from a Rossby number.

The combination of « effect and € effect provides the driving
of the dynamo, but the relation of this driving to rotation
is uncertain. Since the o effect is due to the action of the
Coriolis force, one can argue that it should be proportional to
the rotation rate, at least for not-too-rapid rotation. The relation
of differential rotation to the overall rotation rate is much more
unclear, so that the scaling of dynamo driving (expressed by a
non-dimensional dynamo number involving the product of & and
Q effect) with rotation is rather uncertain. The dependence on
other stellar parameters is unclear as well and mostly addressed
by crude dimensional arguments.

The scaling of the amplitude of the dynamo-generated field
with the driving dynamo number depends crucially on the kind
of nonlinear back reaction of the magnetic field on its sources,
which limits the growth of the magnetic energy. There are
various nonlinearities that could play arole here, e.g., quenching
of the o effect and differential rotation, flux loss by magnetic
buoyancy, and driving of large-scale flows, all of which are
not well understood quantitatively. As a consequence, dynamo
models mostly consider them in an ad hoc fashion. Keeping
in mind these severe uncertainties, it is interesting to note that
at least some models show roughly similar dependencies of the
field amplitude on the dynamo driving (dynamo number, Np):
N];/ % for simple one-dimensional models (Stix 1972; Schmitt
& Schiissler 1989), and oc N3 for a state of the art two-
dimensional flux-transport dynamo model (Karak et al. 2014);
the latter is also consistent with the result from an earlier model
by Jouve et al. (2010). However, quite different dependencies are
found with other models (e.g., Robinson & Durney 1982) and a
dynamo model with an « effect and differential rotation taken
from global three-dimensional simulations even fails to show
an increase of activity with rotation rate (Dubé & Charbonneau
2013).

Eventually, the observed activity indices (such as Lx) are
related to the surface flux emerging in bipolar magnetic regions.
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How this flux is connected quantitatively with the general
dynamo amplitude, i.e., the amount of magnetic flux or magnetic
energy generated in the convection zone, depends on the
detailed processes leading to flux emergence. Again, these
processes are not well understood and different mechanisms
are possible: instability of strong magnetic flux tubes (Fan
2009) or buoyant local flux concentrations compressed to super-
equipartition by turbulent convective flows (Nelson et al. 2011,
2014).

5. CONCLUDING REMARKS

We used activity and rotation measurements of 821 stars,
compiled in the sample of W11, to perform a generalized
analysis of the rotation—activity relation. The sample was
updated with recent period measurements from the literature.
We considered the relation of normalized X-ray luminosity,
Lx /Ly, to rotation period, P, and stellar parameters condensed
in the radius, R, in the functional form R® P#. In the unsaturated
regime, we found the representation with the least scatter for
o = —4 and B = —2. Since approximately Ly, o R*, this
solution is equivalent to Lx P2 a relation that had already
been found by Pallavicini et al. (1981) and Pizzolato et al.
(2003). On the other hand, the most recent parameterization
of the activity—rotation relation in terms of the Rossby number
by W11 does show a significantly higher scatter.

In the subsample of stars that are in the saturated regime,
we found a slight but significant growth of Lx /Ly, with faster
rotation. It is unclear whether this trend is due to an effect of P
beyond the saturation limit or results from a degeneracy between
stellar mass and rotation rate reflecting that Lx /Ly is slightly
larger for more luminous stars.

Formally, we can rewritt R~*P~2 in terms of a Rossby
number, Ro = P/t, if the convective overturn time scales
as T x R? « L,:nll/z. We then obtain Lyx/Ly, Ro2.
Unless we have a reliable determination of the Rossby number
in stellar convection zones (provided that this is possible at
all), we cannot decide whether the physical mechanism behind
the rotation—activity relation is better represented by a Rossby-
number scaling of Lx/Ly, or by a purely rotational scaling
of Lx independent of other stellar parameters. However, since
the latter involves no assumptions on physical conditions to be
valid in the star, we favor this description and find it unnecessary
to explain the rotation—activity relation in terms of the Rossby
formulation.

The dependence of dynamo driving (as possibly expressed by
adynamo number), its nonlinearity, and the amount of magnetic
flux emerging at the stellar surface on rotation and other stellar
parameters (such as radius) is quite unclear. The various factors
may well combine for a result that makes the surface flux
independent of stellar radius as indicated by our analysis.
One possible method to condense this independence into a
physical model is to assume a Rossby scaling with a convective
overturn time that is (exactly) proportional to the square-root of
the stellar luminosity. One can think of many other families
of models that can potentially lead to this result, and this
opens room for more general descriptions of the magnetic
dynamo.
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