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Fuel cells - basics

• Principle known since 1838
Electro chemical combustion“• Electro chemical „combustion“ 
separated by an electrolyte

• Example of a proton exchanging 
l lelectrolyte

• Also oxygen ions exchanging 
electrolytes

• Basic construction: anode, 
electrolytes and cathode

• These three parts can consist of• These three parts can consist of 
different materials depending of 
the fuel cell type
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Fuel cells - basics

Advantages
• High efficiency
• No emissions (NOx SO2 CO)

Disadvantages
• Cleanness of fuel required
• Technology still under R&D• No emissions (NOx, SO2, CO)

• Low abrasion 
• Low vibrations and silent

• Technology still under R&D
• High costs and low lifespan
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• Good  scalability of power



Fuel cells - basics
• under normal conditions (25 °C, 1 bar) only 1,23 Volt
• to less for a technical application but voltage can be increasedto less for a technical application, but voltage can be increased 

by a serial connection of single elements  so-called „stacks“
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Types of fuell cellsyp

Differences in:
• Operating temperature
• Electrolytes
• Possible fuels
• Charge carrier
• Electrode/catalyst 

materials
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Capabilitiesp

1 32

Kordesch Austin, 1960er Hydrogen fuelling station
BMW with combustion engine, 2000

5 Cryoplane4 Hydrogen Challenger
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Resumé 

Fuel cells allow an electricity generation with:
• high electrical efficiency
• Possibility of waste heat utilisation
• Renewable fuels 

Challenge
• Cost reduction
• Increase of lifespan
• Demonstration of suitability for daily use
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Demonstration of suitability for daily use



Gasifier:

Definitions:

Combustion: Pyrolysis:Gasification:
• λ ≥ 1 
• exothermal

• λ = 0
• endothermal 

• 0 < λ < 1 
• endothermal / 

th l• excess oxygen 
with air, pure 02

• oxygen 
exclusion

exothermal 
• oxygen 

deficiency withdeficiency with 
air, pure O2, 
steam
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Sub processes of the gasificationp g

ReductionOxidationPyrolysisHeating and 
Drying

800-1100 °C500-2000 °C150-500 °C100-200 °C

y g

steam

product
volatile
pyrolytic

Biomass waste gas
product 

gasdry
Biomass

carbon

pyrolytic
products

heat inputoxygen inputheat inputheat input

carbon
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heat inputoxygen inputheat inputheat input
Refernce: Kaltschmidt, Hartmann



Chemical reactions of the gasificationg

Gas/Solids-Reactions
Partial combustion C + O ↔ CO 123 kJ/molPartial combustion C + O2 ↔ CO2 - 123 kJ/mol
Heterogeneous water gas 
reaction C + H2O ↔ CO+ H2 +119 kJ/molreaction C + H2O ↔ CO+ H2 +119 kJ/mol
Boudouard-Reaction C + CO2 ↔ 2CO +162 kJ/mol
Hydrogenated yd oge ated
gasification C + 2 H2 ↔ CH4 - 87 kJ/mol

Gas/Gas-Reactions
WGS-Reaction CO + H2O ↔ CO2 + H2 - 41 kJ/mol
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Methanation CO + 3H2 ↔ CH4 + H2O -206 kJ/mol



Dryingy g

Evaporation of the water, which is included in the 
biomass
• Temperatures until 200°C
• Water vapour is transformed in the following water 

gas reaction 
• No chemical transformation of the biomass
• Transformation of the structure of the material by Transformation of the structure of the material by 

macro- and microscopical cracks

12 2nd of November 2009



Pyrolysis
Decomposition of the organic 
macromolecules
• Temperatures are dependent on 

the process: 200-500 °C
D i i f• Determinative factors: 
– Temperature

Rate of heating– Rate of heating
– Dimension of the fuel particle

• Tar creation up to 280 °CTar creation up to 280 C 
• 350-400 °C creation capacity on its 

peak
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• Tar concentration in the pyrolyses 
on its peak



Oxidation

Oxidation of the carbon and the water vapour for covering of the 
heat demandheat demand 

• exothermal reactions, temperatures between 500 and 2000°C
• Heat producing for the endothermal reactions and heat loss of 

the reactor
• Combustion of only a part of the biomassCombustion of only a part of the biomass
• Important reactions:

C + O2 → CO2 ∆H = -393,5 kJ/mol
C + ½ O2 ↔ CO ∆H = -123,1 kJ/mol
H2 + ½ O2 ↔ H2O ∆H = - 68,3 kJ/mol
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Reduction 
Reduction of the Oxidation products CO2 and H20
• This products react with carbonThis products react with carbon
• endothermal reactions, Temperatures between 600 and 800°C
• Boudouard-Reaction

2 C + CO2 ↔ 2 CO ∆H = 159,9 kJ/mol
C + H2O ↔ CO + H2 ∆H = 118,5 kJ/mol
H t t ti• Heterogeneous water gas reaction 
CO + H2O ↔ CO2 + H2 ∆H = - 40,9 kJ/mol
C + 2 H2 ↔ CH4 ∆H = - 87 5 kJ/molC + 2 H2 ↔ CH4 ∆H  87,5 kJ/mol

• Homogeneous water gas reaction
2 CO +  ½ O2 ↔ CO2 ∆H = - 283,0 kJ/mol
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H2 +  ½ O2 ↔ H2O ∆H = - 285,9 kJ/mol



Gasification processesp
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Functionality Fluidized bed reactory

• Bed material: mostly quartz sand
• Fluidized bed: the fumigator flows through the reactor disperses the• Fluidized bed: the fumigator flows through the reactor, disperses the 

interior bed material and circulates around the combustible
• Mixture of the combustible particles with themselves and with the bed p

material
• No distinctive temperature and reactions zones
• Constant temperatures between 700 and 900 °C
• Differantiation between following process techniques:

Stationary fluidized bed reactor– Stationary fluidized bed reactor 
– Circulating fluidized bed reactor
– Combination of more than one fluidized beds
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– Combination of more than one fluidized beds



CUTEC-Gasifier 

Circulating fluidized bed reactor

• Constant temperature distribution
• Good interior heat transfer

Easy technology no moving• Easy technology, no moving 
particles

• Security, high availability, stable 
processprocess

• Reduced tar formation during 
gasification of water vapour
C t t lit b f• Constant gas quality because of 
constant conditions in the reactor

• Stationary fluidized bed  possible
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• Good Scale-Up possibilities



Fluidized bed reactor

Advantages
• Heterogeneous and difficult combustibles can be 

used
• Long resistance time of the solid matters
• Robust system operation

Disadvantagesg
• High tar concentration in the product gas
• Heat transfer very complex
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Heat transfer very complex



Utilization of the gasg

G ifi
Gas 

Gas turbine
Engine

G f f

Gasifier purification Fuel Cell
Steam process

Gas purification necessary because of:
1. Particle burden
2. Tar content
3. Residual components (NH3, H2S, COS, Alkalis)

 Primary arrangements: Modification of the gasifier
 Secondary arrangements: Secondary arrangements:  

• Hot gas filter, cyclone, E-trap
• Scrubber
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• Catalysts, e.g. nickel
• Dolomite as cracker



Fischer-Tropsch Synthesep y

• 1925 developed by Fischer and Tropsch
1934 th fi t ti d i l l• 1934 the first time used in a large scale

• Transformation of synthesis gas (CO, H2) into carbon 
hydrideshydrides
– Temperatures between 200°C and 400°C
– Pressure between 20bar and 40bar
– Special catalysts

• Intention: production of  von synthetic fuels (XtL)
• Basic material: Residual biomass (straw, wooden 

residuals, ...)
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Wood gas powered carsg p

1941
today
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Requirements on renewable fuelsq

• Low exhaust gas emission (CO, NOx, HC etc.)
• Good combustion
• High energy density
• Low residues
• Resistance to corrosion
• Secure manageability
• Acceptable costs
• Use of the petrol station infrastructure
• Compatibility to conventional fuels
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Desired reactions

Fischer-Tropsch reactions
CO 2 H ( CH ) H O ∆H 159 kJ/ lCO+2 H2 ↔ (-CH2-)+H2O ∆H = -159 kJ/mol
2 CO+H2 ↔ (-CH2-)+CO2 ∆H = -198 kJ/mol

Water gas conversion
CO+H O ↔ CO +H ∆H = -40 kJ/molCO+H2O ↔ CO2+H2 ∆H = -40 kJ/mol

Others possible reactionsOthers possible reactions
3 CO+H2O ↔ (-CH2-)+2 CO2 ∆H = -238 kJ/mol
CO2+3 H2 ↔ (-CH2-)+2 H2O ∆H = -119 kJ/mol
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Fischer-Tropsch-CUTEC pilot installationp p
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Practical Example: Sun fuel (Choren)p ( )

Out of 1 ton wood isOut of 1 ton wood is 
produced 100 l Sunfuel

Optimization for the 
future:future:
210 l Sunfuel / t wood
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Advantages and disadvantages of FTS-Dieselg g
Advantages:
• Colour- and odourless, low toxicity
• Reduction of defect components during the combustion
• Fuels offered in the petrol station net
• No loss of engine power• No loss of engine power
• Possible use as airplane fuel
• Mixable with conventional Diesel in every ratio
• Synthetic fuels can be adopted to the desires of the engine 

manufacturers

Disadvantages:Disadvantages:
• Bad cooling capacities
• Low flashpoint
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• Complex process



CUTEC Project: Energy Park in Clausthalj gy

• Complete supply of the block of buildings
• Completely of renewable resources
• Interconnection of relevant energy conversion processes
• Combination of non influenceable components with 

controllable components
R ti i d i ll ti t (i d )• Reporting in dynamic small time segments (in seconds)

• Operation in isolated network
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Overview Energy park Clausthalgy p
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Integrated energy resourcesg gy
Thermal use of wood chips

Biogas engine-cogeneration unit 

PV-plant

30 2nd of November 2009PPO-engine-cogeneration unit


