# Model Choice and Variable Selection in Geoadditive Regression Models

Thomas Kneib

### Department of Statistics Ludwig-Maximilians-University Munich

joint work with

Torsten Hothorn

Gerhard Tutz

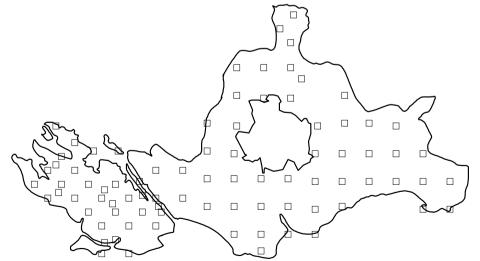


11.2.2008



### **Geoadditive Regression: Forest Health Example**

- Aim of the study: Identify factors influencing the health status of trees.
- Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a northern Bavarian forest district.
- 83 observation plots of beeches within a 15 km times 10 km area.
- Response: binary defoliation indicator  $y_{it}$  of plot i in year t (1 = defoliation higher than 25%).
- Spatially structured longitudinal data.



#### • Covariates:

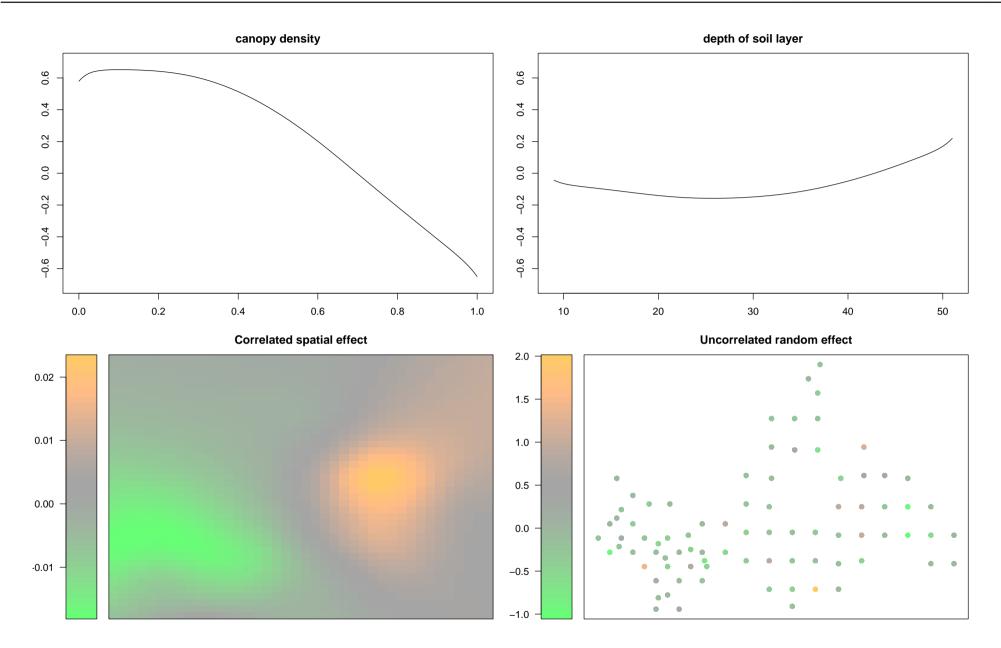
| Continuous: | average age of trees at the observation plot<br>elevation above sea level in meters<br>inclination of slope in percent<br>depth of soil layer in centimeters<br>pH-value in 0 – 2cm depth<br>density of forest canopy in percent |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Categorical | thickness of humus layer in 5 ordered categories<br>level of soil moisture<br>base saturation in 4 ordered categories                                                                                                            |
| Binary      | type of stand<br>application of fertilisation                                                                                                                                                                                    |

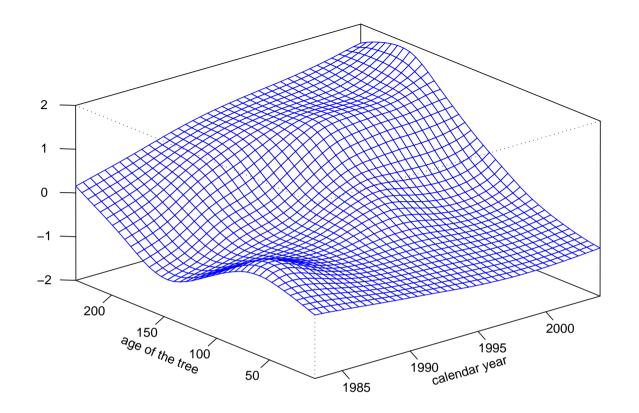
• Possible model:

$$P(y_{it} = 1) = \frac{\exp(\eta_{it})}{1 + \exp(\eta_{it})}$$

where  $\eta_{it}$  is a geoadditive predictor of the form

$$\begin{array}{lll} \eta_{it} &=& f_1(\mathsf{age}_{it},t) + & \text{interaction between age and calendar time.} \\ & f_2(\mathsf{canopy}_{it}) + & \mathsf{smooth effects of the canopy density and} \\ & f_3(\mathsf{soil}_{it}) + & \text{the depth of the soil layer.} \\ & f_{spat}(s_{ix},s_{iy}) + & \mathsf{structured and} \\ & b_i + & \text{unstructured spatial random effects.} \\ & x'_{it}\beta & & \mathsf{parametric effects of type of stand, fertilisation,} \\ & \mathsf{thickness of humus layer, level of soil moisture} \\ & \mathsf{and base saturation.} \end{array}$$





- Questions:
  - How do we estimate the model?  $\Rightarrow$  Inference
  - How do we come up with the model specification?  $\Rightarrow$  Model choice and variable selection

### $\Rightarrow$ Componentwise boosting for geoadditive regression models.

### **Base-Learners For Geoadditive Regression Models**

• Base-learning procedures for geoadditive regression models can be derived from univariate Gaussian smoothing approaches, e.g.

$$y = g(x) + \varepsilon$$

where  $\varepsilon \sim N(0, \sigma^2 I)$  and g(x) is smooth.

• Spline smoothing: Approximate a function g(x) by a linear combination of B-spline basis functions, i.e.

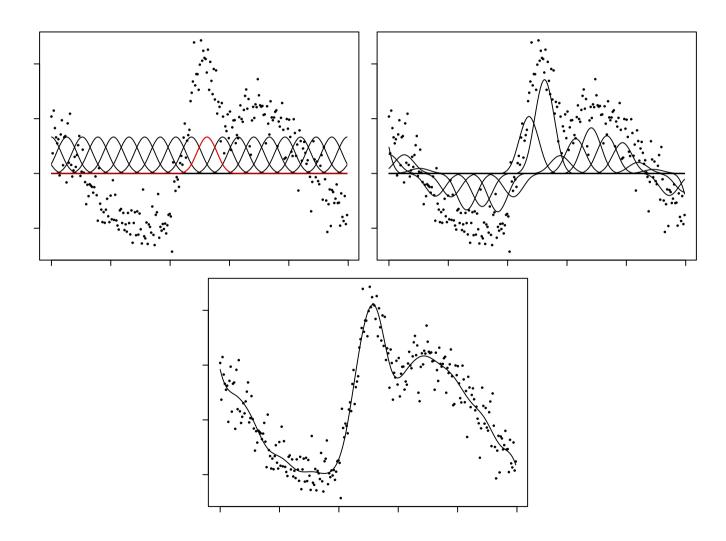
$$g(x) = \sum_{j} \beta_{j} B_{j}(x)$$

• In matrix notation:

$$y = X\beta + \varepsilon$$

• Least squares estimate for  $\beta$  and predicted values:

$$\hat{\beta} = (X'X)^{-1}X'y$$
  $\hat{y} = X'(X'X)^{-1}X'y$ 



• B-spline fit depends on the number and location of basis functions

 $\Rightarrow$  Difficult to obtain a suitable compromise between smoothness and fidelity to the data.

- Add a roughness penalty term to the least squares criterion.
- Simple approximation to squared derivative penalties: Difference penalties

pen(
$$\beta$$
) =  $\lambda \sum_{j} (\beta_j - \beta_{j-1})^2$  or pen( $\beta$ ) =  $\lambda \sum_{j} (\beta_j - 2\beta_{j-1} + \beta_{j-2})^2$ .

• Can be written as quadratic forms

$$\lambda\beta' D' D\beta = \lambda\beta' K\beta$$

based on difference matrices D.

• Replace the least-squares estimate and fit with penalised least squares (PLS) variants:

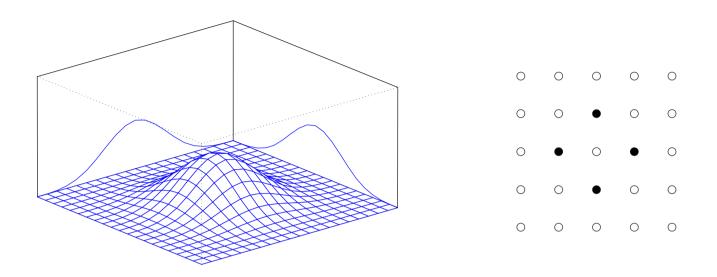
$$\hat{\beta} = (X'X + \lambda K)^{-1}X'y \qquad \hat{y} = X'(X'X + \lambda K)^{-1}X'y$$

• The base-learner is characterised by the hat matrix

$$S_{\lambda} = X'(X'X + \lambda K)^{-1}X'.$$

- PLS base-learners can also be derived for
  - Interaction surfaces  $f(x_1, x_2)$  and spatial effects  $f(s_x, s_y)$ ,
  - Varying coefficient terms  $x_1f(x_2)$  or  $x_1f(s_x,s_y)$ ,
  - Random intercepts  $b_i$  and random slopes  $xb_i$ , and
  - Fixed effects  $x\beta$ .

• Interaction surfaces  $f(x_1, x_2)$  and spatial effects  $f(s_x, s_y)$ :



• Define bivariate Tensor product basis functions

$$B_{jk}(x_1, x_2) = B_j(x_1)B_k(x_2).$$

• Based on penalty matrices  $K_1$  and  $K_2$  for univariate fits define rowwise and columnwise penalties as

$$pen_{row}(\beta) = \lambda \beta' (I \otimes K_1) \beta$$
$$pen_{col}(\beta) = \lambda \beta' (K_2 \otimes I) \beta.$$

• The overall penalty is then given by

$$pen(\beta) = \lambda \beta' \underbrace{(I \otimes K_1 + K_1 \otimes I)}_{K_1 = K\beta} = K\beta.$$

• Varying coefficient terms  $x_1 f(x_2)$  or  $x_1 f(s_x, s_y)$ :

 $X = \operatorname{diag}(x_{11}, \dots, x_{n1})X^*$ 

where  $X^*$  is the design matrix representing  $f(x_2)$  or  $f(s_x, s_y)$ .

- Cluster-specific random intercepts: The design matrix is a zero/one incidence matrix linking observations to clusters and the penalty matrix is a diagonal matrix.
- Fixed effects: Set the smoothing parameter to zero (unpenalised least squares fit).
- All base-learners can be described in terms of a penalised hat matrix

$$S_{\lambda} = X'(X'X + \lambda K)^{-1}X'$$

with suitably chosen design matrix X and penalty matrix K.

### **Complexity Adjustment**

- The flexibility of penalised least squares base-learners depends on the choice of the smoothing parameter.
- Typical strategy: fix the smoothing parameter at a large pre-specified value.
- Difficult when comparing fixed effects, nonparametric effects and spatial effects.

 $\Rightarrow$  More flexible base-learners will be preferred in the boosting iterations leading to potential selection (and estimation) bias.

• We need an intuitive measure of complexity.

• The complexity of a linear model can be assessed by the trace of the hat matrix, since

$$\operatorname{trace}(X(X'X)^{-1}X') = \operatorname{ncol}(X).$$

• In analogy, the effective degrees of freedom of a penalised least-squares base-learner are given by

$$df(\lambda_j) = trace(X_j(X'_jX_j + \lambda_jK_j)^{-1}X'_j).$$

• Choose the smoothing parameters for the base-learners such that

$$\mathrm{df}(\lambda_j) = 1.$$

• Difficulty: For most PLS base-learners, the penalty matrix K has a non-trivial null space, i.e.

$$\dim(\mathcal{N}(K)) \ge 1.$$

• For example, a polynomial of order k-1 remains unpenalised for penalised splines with k-th order difference penalty.

 $\Rightarrow df(\lambda_j) = 1$  can not be achieved.

• A reparameterisation has to be applied, leading for example to

$$f(x) = \beta_0 + \beta_1 x + \ldots + \beta_{k-1} x^{k-1} + f_{\text{centered}}(x).$$

- Assign separate base-learners to the parametric components and a one degree of freedom PLS base-learner to the centered effect.
- This will also allow to choose between linear and nonlinear effects within the boosting algorithm.

# **A Generic Boosting Algorithm**

• Generic representation of geoadditive models:

$$\eta(\cdot) = \beta_0 + \sum_{j=1}^r f_j(\cdot)$$

where the functions  $f_j(\cdot)$  represent the candidate functions of the predictor.

- Componentwise boosting procedure based on the loss function  $\varrho(\cdot)$ :
  - 1. Initialize the model components as  $\hat{f}_j^{[0]}(\cdot) \equiv 0$ ,  $j = 1, \ldots, r$ . Set the iteration index to m = 0.
  - 2. Increase m by 1. Compute the current negative gradient

$$u_i = -\frac{\partial}{\partial \eta} \varrho(y_i, \eta) \Big|_{\eta = \hat{\eta}^{[m-1]}(\cdot)}, \quad i = 1, \dots, n.$$

3. Choose the base-learner  $g_{j^*}$  that minimizes the  $L_2$ -loss, i.e. the best-fitting function according to

$$j^* = \operatorname*{argmin}_{1 \le j \le r} \sum_{i=1}^n (u_i - \hat{g}_j(\cdot))^2$$

where  $\hat{g}_j = S_j u$ .

4. Update the corresponding function estimate to

$$\hat{f}_{j^*}^{[m]}(\cdot) = \hat{f}_{j^*}^{[m-1]}(\cdot) + \nu S_{j^*} u,$$

where  $\nu \in (0,1]$  is a step size. For all remaining functions set

$$\hat{f}_{j}^{[m]}(\cdot) = \hat{f}_{j}^{[m-1]}(\cdot), \quad j \neq j^{*}.$$

5. Iterate steps 2 to 4 until  $m = m_{\text{stop}}$ .

- Determine  $m_{\text{stop}}$  based on AIC reduction or cross-validation.
- Boosting implements both variable selection and model choice:
  - Variable selection: Stop the boosting procedure after an appropriate number of iterations (for example based on AIC reduction).
  - Model choice: Consider concurring base-learning procedures for the same covariate, e.g. linear vs. nonlinear modeling.

# Habitat Suitability Analyses

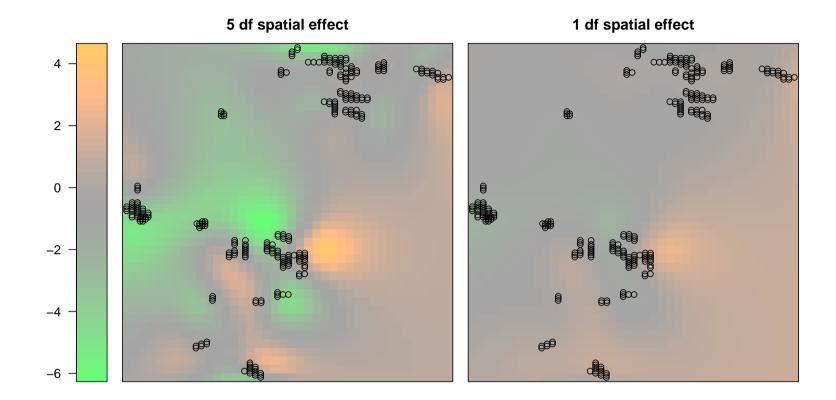
- Identify factors influencing habitat suitability for breeding bird communities collected in seven structural guilds (SG).
- Variable of interest: Counts of subjects from a specific structural guild collected at 258 observation plots in a Northern Bavarian forest district.
- Research questions:
  - a) Which covariates influence habitat suitability (31 covariates in total)? Does spatial correlation have an impact on variable selection?
  - b) Are there nonlinear effects of some of the covariates?
  - c) Are effects varying spatially?
- All questions can be addressed with the boosting approach.

#### Variable Selection in the presence of spatial correlation

• Selection frequencies in a spatial Poisson-GLM:

|                   | GST  | DBH  | AOT  | AFS  | DWC  | LOG | SNA  | COO     |
|-------------------|------|------|------|------|------|-----|------|---------|
| non-spatial GLM   | 0    | 0    | 0    | 0.06 | 0.3  | 0   | 0.01 | 0       |
| spatial with 5 df | 0    | 0.02 | 0    | 0.01 | 0.05 | 0   | 0.01 | 0       |
| spatial with 1 df | 0    | 0    | 0    | 0.06 | 0.15 | 0   | 0    | 0       |
|                   | СОМ  | CRS  | HRS  | OAK  | СОТ  | PIO | ALA  | MAT     |
| non-spatial GLM   | 0.03 | 0.04 | 0.03 | 0.05 | 0.06 | 0   | 0.04 | 0.06    |
| spatial with 5 df | 0    | 0.01 | 0    | 0    | 0    | 0   | 0.01 | 0.05    |
| spatial with 1 df | 0.03 | 0.02 | 0.02 | 0.04 | 0.05 | 0   | 0.03 | 0.04    |
|                   | GAP  | AGR  | ROA  | LCA  | SCA  | НОТ | CTR  | RLL     |
| non-spatial GLM   | 0.03 | 0    | 0    | 0.1  | 0.07 | 0   | 0    | 0       |
| spatial with 5 df | 0.01 | 0    | 0.01 | 0.01 | 0.01 | 0   | 0    | 0       |
| spatial with 1 df | 0.03 | 0    | 0    | 0.07 | 0.06 | 0   | 0    | 0       |
|                   | BOL  | MSP  | MDT  | MAD  | COL  | AGL | SUL  | spatial |
| non-spatial GLM   | 0    | 0.06 | 0    | 0    | 0.05 | 0   | 0    | 0       |
| spatial with 5 df | 0    | 0    | 0    | 0    | 0.03 | 0   | 0    | 0.76    |
| spatial with 1 df | 0    | 0.04 | 0    | 0    | 0.04 | 0   | 0    | 0.3     |

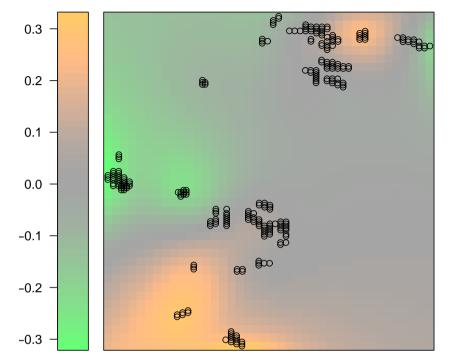
• Spatial effects for high and low degrees of freedom (SG4):



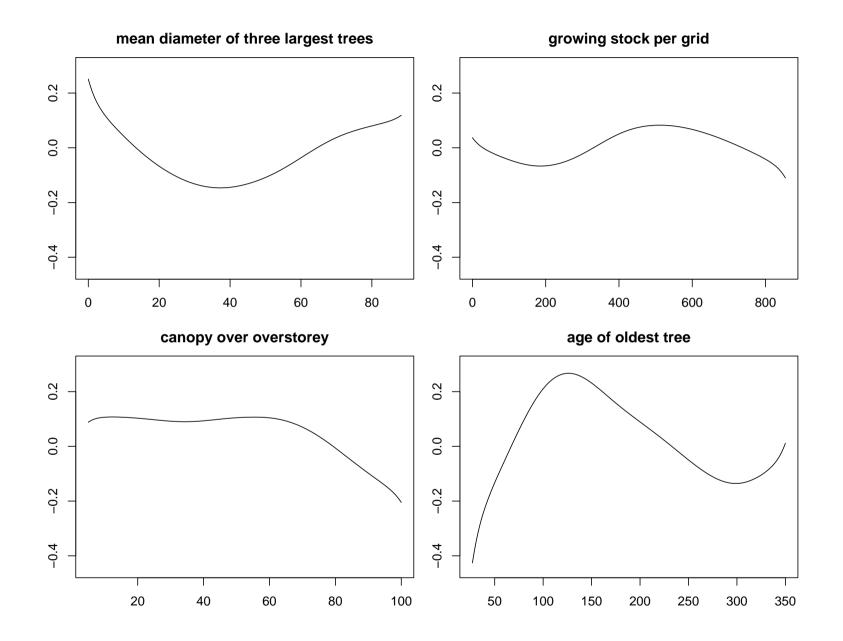
- Spatial correlation has non-negligible influence on variable selection.
- Making terms comparable in terms of complexity is essential to obtain valid results.

#### **Geoadditive Models**

- Instead of linear modelling, allow for nonlinear effects of all 31 covariates.
- Decompose nonlinear effects into a linear part and a nonlinear part with one degree of freedom.
- Variable selection for SG5 results in 7 variables without any influence, 3 linear effects, and 21 nonlinear effects.

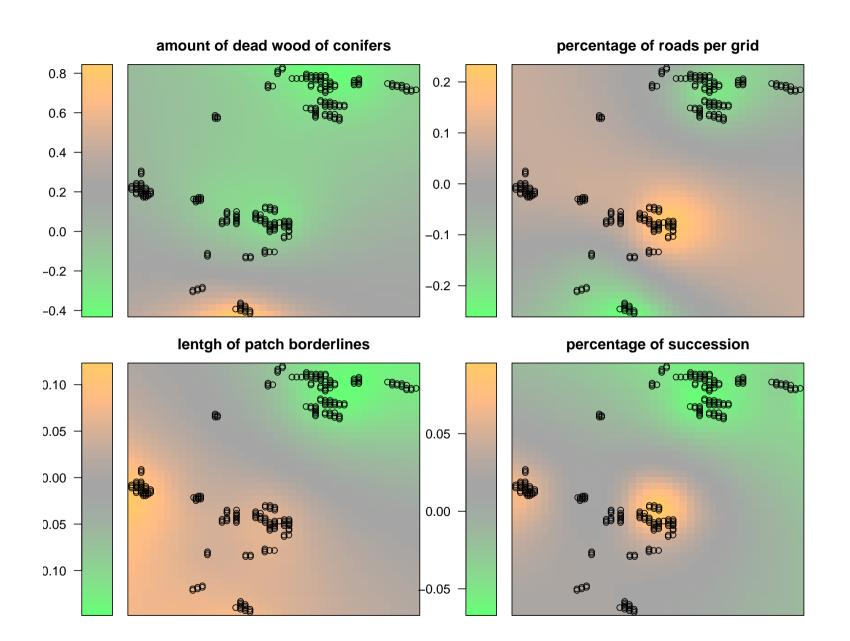


SG5: Geoadditive Model



### **Space-varying effects**

- Instead of allowing for nonlinear effects, consider space-varying effects  $xg(s_x, s_y)$  for all covariates.
- Decompose space-varying effects into a linear part and a space-varying part with one degree of freedom.
- For SG3, 6 variables have no influence at all, 13 variables have linear effects, and 12 variables are associated with space-varying effects.
- The spatial effect is completely explained by the space-varying effects of the covariates.



### **Summary & Extensions**

- Generic boosting algorithm for model choice and variable selection in geoadditive regression models.
- Avoid selection bias by careful parameterisation.
- Implemented in the R-package **mboost**.
- Future plans:
  - Derive base-learning procedures for other types of spatial effects (regional data, anisotropic spatial effects).
  - Construct spatio-temporal base-learners based on tensor product approaches.
  - Extend methodology to model selection in continuous time survival models.

- Reference: Kneib, T., Hothorn, T. and Tutz, G.: Model Choice and Variable Selection in Geoadditive Regression. Under revision for *Biometrics*.
- Find out more:

http://www.stat.uni-muenchen.de/~kneib