A mixed model approach for structured hazard regression with interval censored survival times

Thomas Kneib Department of Statistics Ludwig-Maximilians-University Munich

- 1. Childhood mortality in Nigeria
- 2. Interval censored survival times
- 3. Structured hazard regression
- 4. Mixed model based inference
- 5. Software
- 6. Childhood mortality in Nigeria II

Childhood mortality in Nigeria

- Data from the 2003 Demographic and Health Survey (DHS) in Nigeria.
- Retrospective questionnaire on the health status of women in reproductive age and their children.
- Survival time of n = 5323 children.
- Numerous covariates including spatial information.
- Analysis based on the Cox model:

 $\lambda(t; u) = \lambda_0(t) \exp(u'\gamma).$

- Limitations of the classical Cox model:
 - Restricted to right censored observations.
 - Post-estimation of the baseline hazard.
 - Proportional hazards assumption.
 - Parametric form of the predictor.
 - No spatial correlations.
- Extensions usually deal with single issues but do not allow for a simultaneous treatment of all problems.

Interval censored survival times

- In theory, survival times should be available in days.
- Retrospective questionnaire \Rightarrow most uncensored survival times are rounded (Heaping).

- In contrast: censoring times are given in days.
- \Rightarrow Treat survival times as interval censored.

• Likelihood contributions:

$$P(T > C) = S(C)$$

= $\exp\left[-\int_{0}^{C} \lambda(t)dt\right].$

$$P(T \in [T_{lower}, T_{upper}]) = S(T_{lower}) - S(T_{upper})$$
$$= \exp\left[-\int_{0}^{T_{lower}} \lambda(t)dt\right] - \exp\left[-\int_{0}^{T_{upper}} \lambda(t)dt\right].$$

- Derivatives of the log-likelihood become much more complicated for interval censored survival times.
- Numerical integration techniques have to be used in both cases.
- Piecewise constant time-varying covariates and left truncation can easily be included.

Structured hazard regression

• Introduce a more flexible, semiparametric hazard rate model

$$\lambda(t; \cdot) = \exp\left[g_0(t) + \sum_{j=1}^q g_j(t) z_j(t) + \sum_{k=1}^p f_k(x_k(t)) + f_{spat}(s) + u(t)'\gamma\right]$$

where

- $g_0(t) = \log(\lambda_0(t))$ is the log-baseline-hazard,
- g_j are time varying effects of covariates $z_j(t)$,
- f_k are nonparametric functions of continuous covariates $x_k(t)$,
- f_{spat} is a spatial function,
- $u(t)'\gamma$ are parametric effects.

- Log-baseline, time-varying effects and nonparametric effects can be estimated based on penalized splines.
 - Approximate g_j (or f_k) by a weighted sum of B-spline basis functions.
 - Employ a large number of basis functions to enable flexibility.
 - Penalize differences between adjacent parameters of adjacent basis functions to ensure smoothness.
- Spatial effect for regional data: Markov random fields.
 - Define appropriate neighborhoods for the regions.
 - Assume that the expected value of $f_{spat}(s)$ is the average of the function evaluations of adjacent sites.
 - Can be considered a bivariate extension of a first order random walk on the real line.

- Spatial effect for point-referenced data: Stationary Gaussian random fields.
 - Spatial effect follows a zero mean stationary Gaussian stochastic process.
 - Correlation of two arbitrary sites is defined by an intrinsic correlation function.
 - Well-known as Kriging in the geostatistics literature.
- Extensions:
 - Interaction surfaces (2d P-splines).
 - Varying coefficient terms (continuous and spatial effect modifiers).
 - Frailties (i.i.d. random effects).
- All effects can be cast into one general framework.

Mixed model based inference

• Each term in the predictor is associated with a vector of regression coefficients with multivariate Gaussian prior / random effects distribution:

$$p(\xi_j | \tau_j^2) \propto \exp\left(-\frac{1}{2\tau_j^2} \xi_j' K_j \xi_j\right)$$

- K_j is a penalty matrix, τ_j^2 a smoothing parameter.
- In most cases K_j is rank-deficient.
- \Rightarrow Reparametrize the model to obtain a mixed model with proper distributions.

• Decompose

$$\xi_j = X_j \beta_j + Z_j b_j,$$

where

$$p(\beta_j) \propto const$$
 and $b_j \sim N(0, \tau_j^2 I).$

 $\Rightarrow \beta_j$ is a fixed effect and b_j is an i.i.d. random effect.

• This yields the variance components model

$$\lambda(t; \cdot) = \exp\left[x'\beta + z'b\right],\,$$

where in turn

$$p(\beta) \propto const$$
 and $b \sim N(0,Q)$.

- Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
 - Penalized maximum likelihood for the regression coefficients β and b.
 - Restricted Maximum / Marginal likelihood for the variance parameters in Q:

$$L(Q) = \int L(\beta, b, Q) p(b) d\beta db \to \max_Q$$
.

- Involves Laplace approximation to the marginal likelihood.
- These approximations have proven to be quite accurate in simulation studies.

Software

• Implemented in the software package BayesX.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

Discussion

- Empirical Bayesian treatment of complex hazard regression models:
 - Combines geoadditive predictor with general censoring schemes.
 - Does not rely on MCMC simulation techniques.

 \Rightarrow No questions on convergence and mixing of Markov chains, no hyperpriors.

- Closely related to penalized likelihood estimation in a frequentist setting.
- Future work:
 - Multi state models.
 - Competing risks models.
 - Inclusion of interval censoring in these more general frameworks.

References

- Kneib, T. and Fahrmeir, L. (2004): A mixed model approach for structured hazard regression. SFB 386 Discussion Paper 400, University of Munich.
- Kneib, T. (2005): Geoadditive hazard regression for interval censored survival times. SFB 386 Discussion Paper 447, University of Munich.
- Available from

http://www.stat.uni-muenchen.de/~kneib