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Reconstruction of Non-Stationary Signals by the Generalized Prony
Method
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We derive a method for the reconstruction of non-stationary signals with structured phase functions using only a small number
of signal measurements. Our approach employs generalized shift operators as well as the generalized Prony method. Our goal
is to reconstruct a variety of sparse signal models using a small number of signal measurements.
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1 Introduction

We consider the problem of recovering structured functions of the form

f(x) =

M∑
j=1

cjH(x)eαjG(x) (1)

where G : [a, b] → R is a known continuous and strictly monotone phase function and H : R → C is a known continuous
function that has no zeros in [a, b]. Signals of the form (1) are called non-stationary if H(x) is not a constant function and/or
the phase function G(x) is not of the form mx + d with m, d ∈ R. For the special case H(x) ≡ 1 and G(x) = x this
reconstruction problem can be solved with the Prony method [3] thereby using only 2M functional values.

2 Generalized Shift Operators and the Prony method

The generalized Prony method in [1, 2, 4] enables us to reconstruct sparse expansions of eigenfunctions of a linear operator.
Therefore, we try to find a linear shift operator possessing eigenfunctions of the form H(x) eαjG(x).

For h ∈ R \ {0}, we consider the following generalized shift operator

SH,G,hf(x) :=
H(x)

H (G−1 (G(x) + h))
f
(
G−1 (G(x) + h)

)
. (2)

Theorem 2.1 Let SH,G,h be of the form (2) with H and G as in (1). Then SH,G,h possesses eigenfunctions of the form
H(x) eαG(x) corresponding to the eigenvalue eαh for α ∈ R.

P r o o f. Employing the definition of SH,G,h yields

SH,G,h

(
H(·) eαG(·)

)
(x) =

H(x)

H (G−1 (G(x) + h))
H
(
G−1 (G(x) + h)

)
eαG(G

−1(G(x)+h))

= H(x) eα(G(x)+h) = eαhH(x) eαG(x),

i.e., H(x) eαG(x) is an eigenfunction of SH,G,h corresponding to the eigenvalue eαh.

Theorem 2.2 Let f be of the form (1). Then f can be uniquely reconstructed from the function values f
(
G−1 (G(x0) + kh)

)
for k = 0, . . . , 2M − 1, where x0 ∈ R and h ∈ R \ {0} are chosen such that G(x0) + kh is in the domain of G−1.

P r o o f. We define the Prony polynomial P (z) :=
∏M
j=1(z − eαjh) =

∑M
k=0 pkz

k. In a first step, we want to recover this
polynomial from the given function values. We use Theorem 2.1 and observe for m = 0, . . . ,M − 1,

M∑
k=0

pkS
(k+m)
H,G,h f(x0) =

M∑
k=0

pkS
(k+m)
H,G,h

 M∑
j=1

cjH(x0)e
αjG(x0)

 =

M∑
j=1

cj

M∑
k=0

pkS
(k+m)
H,G,h

(
H(x0)e

αjG(x0)
)

=

M∑
j=1

cj

M∑
k=0

pk e
αjh(k+m)H(x0)e

αjG(x0) =

M∑
j=1

cjH(x0)e
αjG(x0)eαjhmP (eαjh) = 0.
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Exploiting that pM = 1, and that SkH,G,hf = SH,G,khf , we derive the linear system Hp = −fM with the vector p =

(p0, . . . , pM−1)
T of coefficients of the Prony polynomial and

H :=
(
dk+m f(G

−1(G(x0) + (k +m)h))
)M−1

k,m=0
, fM =

(
dk+M f(G−1(G(x0) + (k +M)h)

)M−1

k=0
,

where d` :=
H(x0)

H(G−1(G(x0)+`h))
, ` = 0, . . . , 2M − 1 can be precomputed. The Hankel matrix H admits the factorization

H = H(x0)Vλ diag(c1e
α1G(x0), . . . , cMeαMG(x0))VT

λ

with the Vandermonde matrix Vλ =
(
eαjhk

)M−1,M

k=0,j=1
. Since H(x0) 6= 0 and Vλ has full rank, we conclude that H is

invertible. Having found the coefficients pk of the Prony polynomial, we can compute its roots eαjh, j = 1, . . . ,M , and then
determine the parameters cj by solving the linear system

1

H (G−1(G(x0) + hk))
f
(
G−1(G(x0) + hk)

)
=

M∑
j=1

cj e
αjhk eαjG(x0), k = 0, . . . , 2M − 1.

The idea can be extended even further using symmetric generalized shift operators.

Corollary 2.3 Let f(x) =
∑M
j=1 cj cos(αjx

p+βj) with given odd integer p > 0, and unknown coefficients cj ∈ R \ {0},
βj ∈ [0, π] \ {π2 }, and pairwise different αj ∈ [0,K) for some K > 0 for all j = 1, . . . ,M . Then αj , βj , cj , j = 1, . . . ,M ,
can be reconstructed from f(± p

√
kh), k = 0, . . . , 2M − 1, where 0 < h ≤ π

2K .

P r o o f. For a detailed proof for the recovery of the αj ,j = 1, . . . ,M see [2]. For the recovery of the cj and βj we use that
cos (x+ y)− cos (x− y) = −2 sin (x) sin (y) and that Ṽ = (sin (αj lh))

M−1,M
l=0,j=1 is invertible for αj and h for j = 1, . . . ,M

as above.

3 Numerical Example

We illustrate the recovery method in Corollary 2.3 with a numerical example. Let f(x) =
∑M
j=1 cj cos(αjx

p + βj) with
M = 2, p = 3, α1 = 2.5305, α2 = 1.8118, c1 = 0.9146, c2 = 1.1997 and β1 = 0.5378, β2 = 2.0592. We use the 7 sample
values f(± 3

√
k) for k = 0, . . . , 3.

The reconstruction errors are

max
j
|cj − c̃j | = 1.998 · 10−15, max

j
|α− α̃j | = 1.33 · 10−15, max

j
|βj − β̃j | = 1.44 · 10−15.
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Fig. 1: The blue line represents the
original signal. The reconstructed sig-
nal is plotted in red.The black dots indi-
cate the used signal values of f .
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