Reconstruction of Non-Stationary Signals by the Generalized Prony Method

Ingeborg Keller ${ }^{1, *}$, Gerlind Plonka ${ }^{1}$, and Kilian Stampfer ${ }^{1}$
${ }^{1}$ Institute for Numerical and Applied Mathematics, University of Göttingen, Lotzestr. 16-18, 37083 Göttingen, Germany

Abstract

We derive a method for the reconstruction of non-stationary signals with structured phase functions using only a small number of signal measurements. Our approach employs generalized shift operators as well as the generalized Prony method. Our goal is to reconstruct a variety of sparse signal models using a small number of signal measurements.

1 Introduction

We consider the problem of recovering structured functions of the form

$$
\begin{equation*}
f(x)=\sum_{j=1}^{M} c_{j} H(x) \mathrm{e}^{\alpha_{j} G(x)} \tag{1}
\end{equation*}
$$

where $G:[a, b] \rightarrow \mathbb{R}$ is a known continuous and strictly monotone phase function and $H: \mathbb{R} \rightarrow \mathbb{C}$ is a known continuous function that has no zeros in $[a, b]$. Signals of the form (1) are called non-stationary if $H(x)$ is not a constant function and/or the phase function $G(x)$ is not of the form $m x+d$ with $m, d \in \mathbb{R}$. For the special case $H(x) \equiv 1$ and $G(x)=x$ this reconstruction problem can be solved with the Prony method [3] thereby using only $2 M$ functional values.

2 Generalized Shift Operators and the Prony method

The generalized Prony method in [1,2,4] enables us to reconstruct sparse expansions of eigenfunctions of a linear operator. Therefore, we try to find a linear shift operator possessing eigenfunctions of the form $H(x) \mathrm{e}^{\alpha_{j} G(x)}$.

For $h \in \mathbb{R} \backslash\{0\}$, we consider the following generalized shift operator

$$
\begin{equation*}
S_{H, G, h} f(x):=\frac{H(x)}{H\left(G^{-1}(G(x)+h)\right)} f\left(G^{-1}(G(x)+h)\right) . \tag{2}
\end{equation*}
$$

Theorem 2.1 Let $S_{H, G, h}$ be of the form (2) with H and G as in (1). Then $S_{H, G, h}$ possesses eigenfunctions of the form $H(x) \mathrm{e}^{\alpha G(x)}$ corresponding to the eigenvalue $\mathrm{e}^{\alpha h}$ for $\alpha \in \mathbb{R}$.

Proof. Employing the definition of $S_{H, G, h}$ yields

$$
\begin{aligned}
S_{H, G, h}\left(H(\cdot) \mathrm{e}^{\alpha G(\cdot)}\right)(x) & =\frac{H(x)}{H\left(G^{-1}(G(x)+h)\right)} H\left(G^{-1}(G(x)+h)\right) \mathrm{e}^{\alpha G\left(G^{-1}(G(x)+h)\right)} \\
& =H(x) e^{\alpha(G(x)+h)}=\mathrm{e}^{\alpha h} H(x) \mathrm{e}^{\alpha G(x)}
\end{aligned}
$$

i.e., $H(x) \mathrm{e}^{\alpha G(x)}$ is an eigenfunction of $S_{H, G, h}$ corresponding to the eigenvalue $\mathrm{e}^{\alpha h}$.

Theorem 2.2 Let f be of the form (1). Then f can be uniquely reconstructed from the function values $f\left(G^{-1}\left(G\left(x_{0}\right)+k h\right)\right)$ for $k=0, \ldots, 2 M-1$, where $x_{0} \in \mathbb{R}$ and $h \in \mathbb{R} \backslash\{0\}$ are chosen such that $G\left(x_{0}\right)+k h$ is in the domain of G^{-1}.

Proof. We define the Prony polynomial $P(z):=\prod_{j=1}^{M}\left(z-e^{\alpha_{j} h}\right)=\sum_{k=0}^{M} p_{k} z^{k}$. In a first step, we want to recover this polynomial from the given function values. We use Theorem 2.1 and observe for $m=0, \ldots, M-1$,

$$
\begin{aligned}
\sum_{k=0}^{M} p_{k} S_{H, G, h}^{(k+m)} f\left(x_{0}\right) & =\sum_{k=0}^{M} p_{k} S_{H, G, h}^{(k+m)}\left(\sum_{j=1}^{M} c_{j} H\left(x_{0}\right) \mathrm{e}^{\alpha_{j} G\left(x_{0}\right)}\right)=\sum_{j=1}^{M} c_{j} \sum_{k=0}^{M} p_{k} S_{H, G, h}^{(k+m)}\left(H\left(x_{0}\right) \mathrm{e}^{\alpha_{j} G\left(x_{0}\right)}\right) \\
& =\sum_{j=1}^{M} c_{j} \sum_{k=0}^{M} p_{k} \mathrm{e}^{\alpha_{j} h(k+m)} H\left(x_{0}\right) \mathrm{e}^{\alpha_{j} G\left(x_{0}\right)}=\sum_{j=1}^{M} c_{j} H\left(x_{0}\right) \mathrm{e}^{\alpha_{j} G\left(x_{0}\right)} \mathrm{e}^{\alpha_{j} h m} P\left(e^{\alpha_{j} h}\right)=0
\end{aligned}
$$

[^0]Exploiting that $p_{M}=1$, and that $S_{H, G, h}^{k} f=S_{H, G, k h} f$, we derive the linear system $\mathbf{H p}=-\mathbf{f}_{M}$ with the vector $\mathbf{p}=$ $\left(p_{0}, \ldots, p_{M-1}\right)^{T}$ of coefficients of the Prony polynomial and

$$
\mathbf{H}:=\left(d_{k+m} f\left(G^{-1}\left(G\left(x_{0}\right)+(k+m) h\right)\right)\right)_{k, m=0}^{M-1}, \quad \mathbf{f}_{M}=\left(d_{k+M} f\left(G^{-1}\left(G\left(x_{0}\right)+(k+M) h\right)\right)_{k=0}^{M-1}\right.
$$

where $d_{\ell}:=\frac{H\left(x_{0}\right)}{H\left(G^{-1}\left(G\left(x_{0}\right)+\ell h\right)\right)}, \ell=0, \ldots, 2 M-1$ can be precomputed. The Hankel matrix \mathbf{H} admits the factorization

$$
\mathbf{H}=H\left(x_{0}\right) \mathbf{V}_{\lambda} \operatorname{diag}\left(c_{1} \mathrm{e}^{\alpha_{1} G\left(x_{0}\right)}, \ldots, c_{M} \mathrm{e}^{\alpha_{M} G\left(x_{0}\right)}\right) \mathbf{V}_{\lambda}^{T}
$$

with the Vandermonde matrix $\mathbf{V}_{\lambda}=\left(\mathrm{e}^{\alpha_{j} h k}\right)_{k=0, j=1}^{M-1, M}$. Since $H\left(x_{0}\right) \neq 0$ and \mathbf{V}_{λ} has full rank, we conclude that \mathbf{H} is invertible. Having found the coefficients p_{k} of the Prony polynomial, we can compute its roots $\mathrm{e}^{\alpha_{j} h}, j=1, \ldots, M$, and then determine the parameters c_{j} by solving the linear system

$$
\frac{1}{H\left(G^{-1}\left(G\left(x_{0}\right)+h k\right)\right)} f\left(G^{-1}\left(G\left(x_{0}\right)+h k\right)\right)=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\alpha_{j} h k} \mathrm{e}^{\alpha_{j} G\left(x_{0}\right)}, \quad k=0, \ldots, 2 M-1 .
$$

The idea can be extended even further using symmetric generalized shift operators.
Corollary 2.3 Let $f(x)=\sum_{j=1}^{M} c_{j} \cos \left(\alpha_{j} x^{p}+\beta_{j}\right)$ with given odd integer $p>0$, and unknown coefficients $c_{j} \in \mathbb{R} \backslash\{0\}$, $\beta_{j} \in[0, \pi] \backslash\left\{\frac{\pi}{2}\right\}$, and pairwise different $\alpha_{j} \in[0, K)$ for some $K>0$ for all $j=1, \ldots, M$. Then $\alpha_{j}, \beta_{j}, c_{j}, j=1, \ldots, M$, can be reconstructed from $f(\pm \sqrt[p]{k h}), k=0, \ldots, 2 M-1$, where $0<h \leq \frac{\pi}{2 K}$.

Proof. For a detailed proof for the recovery of the $\alpha_{j}, j=1, \ldots, M$ see [2]. For the recovery of the c_{j} and β_{j} we use that $\cos (x+y)-\cos (x-y)=-2 \sin (x) \sin (y)$ and that $\widetilde{V}=\left(\sin \left(\alpha_{j} l h\right)\right)_{l=0, j=1}^{M-1, M}$ is invertible for α_{j} and h for $j=1, \ldots, M$ as above.

3 Numerical Example

We illustrate the recovery method in Corollary 2.3 with a numerical example. Let $f(x)=\sum_{j=1}^{M} c_{j} \cos \left(\alpha_{j} x^{p}+\beta_{j}\right)$ with $M=2, p=3, \alpha_{1}=2.5305, \alpha_{2}=1.8118, c_{1}=0.9146, c_{2}=1.1997$ and $\beta_{1}=0.5378, \beta_{2}=2.0592$. We use the 7 sample values $f(\pm \sqrt[3]{k})$ for $k=0, \ldots, 3$.
The reconstruction errors are

$$
\max _{j}\left|c_{j}-\tilde{c}_{j}\right|=1.998 \cdot 10^{-15}, \quad \max _{j}\left|\alpha-\tilde{\alpha}_{j}\right|=1.33 \cdot 10^{-15}, \quad \max _{j}\left|\beta_{j}-\tilde{\beta}_{j}\right|=1.44 \cdot 10^{-15}
$$

Fig. 1: The blue line represents the original signal. The reconstructed signal is plotted in red. The black dots indicate the used signal values of f.

Acknowledgements We gratefully acknowledge the funding of this work by the German Research Foundation (DFG) in the framework of GRK 2088 'Discovering structure in complex data: Statistics meets Optimization and Inverse Problems'.

References

[1] T. Peter and G. Plonka, Inverse Problems 29, (2013).
[2] G. Plonka, K. Stampfer, and I. Keller, Anal. Appl. 17(2), 179-210, (2019).
[3] G. Plonka and M. Tasche, GAMM-Mitt. 37(2), 239-258, (2014).
[4] K. Stampfer and G. Plonka, arXiv:1901.08778, (2019)

[^0]: * Corresponding author: e-mail i.keller@math.uni-goettingen.de, phone +49551 39-24515

