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We describe a novel method to measure rotational diffusion of large biomolecules in solution based on
fluorescence correlation on the nanosecond time scale. In contrast to conventional fluorescence
anisotropy measurements, a correlation-based method will also work if the rotational diffusion time is
much longer than the fluorescence decay time. Thus, the method is suited to study the rotational
diffusion of macromolecules having rotational diffusion times of dozens to hundreds of nanoseconds,
which is considerably larger than the fluorescence lifetime of most commercially available dyes or
auto-fluorescent proteins. A pulsed interleaved excitation scheme with crossed excitation polarization
maximizes the time-dependent amplitude of the measured correlation curve as caused by rotational
diffusion. Using the determined rotational diffusion coefficient, precise values of the hydrodynamic
radius can be obtained. The method is exemplified on sizing a set of common globular proteins.

Introduction

Thermally induced translational and rotational diffusion are
fundamental dynamic processes of molecules within a solution.
The Stokes–Einstein relation,
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connects the translational diffusion coefficient Dtrans of a molecule
with its hydrodynamic radius Rtrans,1 where, in the above equation,
kB is Boltzmann’s constant, T the absolute temperature, and
h the solvent’s viscosity. Dual-focus fluorescence correlation
spectroscopy (2fFCS)2 allows the measurement of precise absolute
values of the translational diffusion coefficient of macromolecules
close to the infinite dilution limit

Also the rotational diffusion coefficient Drot of a molecule is
connected to a value of its hydrodynamic radius Rrot, via the
Stokes–Einstein–Debye equation,3

(2)

Rotational diffusion is usually determined by static or dynamic
fluorescence anisotropy measurements.4 This method requires
fluorescent labels with a fluorescence lifetime in the order of the
rotational diffusion time. However, the rotational diffusion time of
macromolecules such as globular proteins is in the order of several
dozen nanoseconds, which requires the use of rather uncommon
long-lifetime probes. Here, we will use fluorescence correlation
measurements in the nanosecond time-range to obtain rotational
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diffusion coefficients. Theoretical and experimental studies to
determine rotational diffusion coefficients using fluorescence
correlation spectroscopy (FCS) have been published before.5–9 The
method has the advantage of being independent of the label’s
fluorescence lifetime and is also rather independent of the details
of excitation and detection polarization. Moreover, one can use
the same fluorescent label and same optical set-up for measuring
both translational and rotational diffusion and directly compare
both values. The conventional approach to measure rotational
diffusion using FCS is to excite the sample with a linearly
polarized continuous-wave excitation laser, and to monitor the
fluorescence through either linear polarizers, or in non-polarized
detection mode. Here, we propose a more complex but also more
efficient excitation/detection scheme: fluorescence is excited by a
train of laser pulses with alternating polarization. Fluorescence
detection is done by time-correlated single photon counting in
two detection channels with crossed detection polarization. High-
speed detection electronics independently times photon detection
events in both detection channels with picosecond accuracy. By
this we can unequivocally assign each detected photon to its excit-
ing laser pulse (and thus excitation polarization), and calculate
the cross correlation between photons from the two detection
channels down to picosecond correlation times. The advantages
of using such an excitation/detection scheme are two-fold: using
a pulsed excitation improves the signal-to-noise statistics due to
photon bunching, and one can extract a correlation function
that has largest rotational-diffusion related amplitude (see Theory
section).

In this paper, we apply the new method to size four different
globular proteins; two of them belong to a large family of
serum albumins: bovine serum albumin (BSA) and human serum
albumin (HSA). BSA is the most studied example of a serum
albumin, which has attracted considerable attention over the
past decades (see ref. 10 and references therein). The other two
proteins studied here are aldolase from rabbit muscles, and hen
egg ovalbumin.

This journal is © The Royal Society of Chemistry and Owner Societies 2010 Photochem. Photobiol. Sci., 2010, 9, 627–636 | 627



Theory

Autocorrelation function (ACF)

On a pico- to nanosecond timescale, the ACF is characterized by
fluorescence antibunching and rotational diffusion. Fluorescence
antibunching is caused by the fact that a single emitter with a
finite lifetime of its excited state can just emit one single photon
at a time. It can be used to obtain the average number of emitters
within the detection volume.11–15 Rotational diffusion will be seen
in the ACF if one excites/detects fluorescence in a polarization-
sensitive manner. Due to the rotation of a molecule between
different photon excitation and emission events and thus rotation
of the molecule’s dipole axis into or out of the polarization plane
of the detector, the correlation of the recorded fluorescence signal
will show a temporal component that is related to the rotational
diffusion of the molecule.5–9

Let us consider an experiment where the sample is excited
with two consecutive pulses of negligible pulse width. In such
a measurement, what is the probability of detecting two photons
from one and the same molecule with lag time t between them?
If we assume that the fluorescence decay is mono-exponential
with decay time t , and if we take further into account that a
molecule can emit, after one excitation pulse, only one photon,
this probability will be proportional to

(3)

where we have introduced the function

(4)

d is the time delay between the two pulses, and k 1 and k 2 quantify
the chance that the first and the second pulse lead to a photon
detection event, respectively. Eqn (3) can be understood as the
product of the probabilities (i) that the molecule is excited at time
zero, (ii) that it emits a photon at time t1, (iii) that the molecule
is re-excited by a second pulse at time d , and (iv) that it emits
a second photon at time t1 + t. Generally, the values of k 1 and
k 2 depend on the excitation pulse and detection polarization as
well as the orientation of a molecule’s excitation dipole. For a
temporal distance between the two pulses that is much larger
than the fluorescence decay time, d � t , and for lag time values
much larger than the fluorescence decay time, t � t , this function
approaches the simple form

(5)

The chance to detect two photons with lag time t from two
different molecules is similar to eqn (5), but with the distinction
that the upper integration limit is now extended to infinity, leading
to

(6)

Eqn (6) is also the defining equation for F 2(t,t ,d).
The value of F 1(t,t ,d), in contrast to that of F 2(t,t ,d), tends to

zero when the pulse delay d goes to zero, which is the essence
of fluorescence antibunching, reflecting the fact that a single
molecule cannot emit more than a single photon per excitation.
However, the function F 1(t,t ,d) does not take into account
the rotational diffusion of the molecule (i.e. the rotation of its
absorption/emission dipole). These contributions are contained
in the pre-factors k 1 and k 2 in eqn (3) and will be considered in
detail in the next sections.

Rotational diffusion equation

The general theory of rotational diffusion of an anisotropic rotor
can be found in several textbooks on quantum mechanics and was,
in the context of correlation spectroscopy and light scattering,
developed by Aragón and Pecora6 (see also ref. 16). However, the
mathematical approach presented there is highly involved. Thus,
for the sake of completeness, we present here a brief review of the
theory of rotational diffusion.

Let us start from the rotational diffusion equation

(7)

where a, b, and c denote the principal axes of rotation of the
molecule, P = P(y ,q,f) is the probability of finding the molecule’s
principal axes rotated by Euler angles y , q and f with respect to
the lab frame, Da,b,c are the generally different rotational diffusion
coefficients around the molecule’s principal axes, and Ĵa,b,c are the
three angular momentum operators around these axes. Eqn (7) is
derived analogously to the more familiar translational diffusion
equation. The difficulty with eqn (7) is that the angular momentum
operators relate to the intrinsic frame of the molecule’s principal
axes which is rotating in time with respect to the fixed lab frame. To
simplify matters, one can first rotate the molecule back to the lab’s
frame so that its axes align with the fixed Cartesian coordinate
axes of the lab frame, then apply the operator, and finally rotate
the molecule back, i.e.

(8)

where R denotes the operation of rotating the molecule’s frame
from an orientation aligned with the lab’s Cartesian x,y,z-
coordinates to its actual orientation as specified by the Euler angles
f, q and y , see Fig. 1.

The rotation operator R can be decomposed into

R = Rz(f)Ry(q)Rz(y ) (9)

where Ry,z(b) denotes a rotation by angle b around axis y or z,
respectively. The advantage of eqn (8) is that the angular momen-
tum operators are now referring to the fixed lab frame.

To further analyze eqn (8), let us consider the special case that
the function P is replaced by

P = R|l,m〉 (10)

where |l,m〉 is an eigenfunction of the angular momentum
operator obeying the two relations

(11)
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Fig. 1 Geometric meaning of the three Euler angles f, q, and y . Shown
are the molecule’s three principal (and orthogonal) axes of rotation a, b,
and c, and the three Cartesian axes x, y, and z of the lab frame.

and

(12)

Inserting eqn (10) into eqn (8) yields

(13)

Next, one has to clarify how the rotation operator R acts on
|l,m〉. One of the most lucid derivations of this action is given
by Feynman in ref. 17 using the possibility of representing any
state |l,m〉 through a combination of spin 1

2
states for which the

transformation relations under action of R are well known, see e.g.
chapter 3.3 in ref. 18. Here, we will give only the final result,

(14)

The functions Sl
mk are Wigner’s rotation matrices defined by

(15)

Here, we have introduced the abbreviations C = cos(q/2) and S =
sin(q/2).

For the sake of simplicity, we will further consider the special
case of a symmetric top rotor where one has Da = Db = D^ and
D‖ = Dc. The general case of the fully asymmetric rotor will be
shortly discussed later. For the symmetric top rotor, one finds, by
multiplying eqn (13) with 〈l,k|, that the functions

(16)

with

(17)

are eigenfunctions of the rotational diffusion equation. In eqn (17)
we have introduced a normalizing factor cl

mk so that Cl
mk(f,q,y )

represents a complete orthonormal system of eigenfunctions
obeying the relations

(18)

d l,l¢ are Kronecker symbols taking the value one for l = l¢ and zero
otherwise. The orthogonality of the functions Cl

mk(f,q,y ) with
respect to the variables f and y is obvious from their definition
in eqn (17). The orthogonality with respect to q is less obvious,
but is a consequence of the fundamental orthogonality theorem of
group theory (see e.g. ref. 19) which is applied here to the functional
representation of the three-dimensional rotation group as given by
the functions Cl

mk(f,q,y ). With this complete orthonormal system
of eigenfunctions, the probability that a molecule has rotated,
within time t, from an initial orientation X¢ described by the Euler
angles f¢, q¢ and y ¢ into a final orientation X described by Euler
angles f, q and y is given by Green’s function in the standard
way20 as

(19)

where a star superscript denotes complex conjugation.
For the sake of completeness, we will briefly discuss the most

general case of a completely asymmetric rotor. Now, it is not
possible to obtain simple eigenfunctions of the form of eqn (7).
However, it is helpful to introduce the operators

(20)

so that the Ĵx and Ĵy operators on the right hand side of eqn (8)
can be written as

(21)

and

(22)

where the commutation property of the angular momentum
operators

(23)

has been used. When taking into account how the operators Ĵ± act
on the eigenstates |l,m〉 (see, for example, chapter 3.4 in ref. 18):

(24)

it is straightforward to see that eqn (8) separates, for each
value of l, into a set of 2l + 1 coupled ordinary and linear
differential equations on the basis of the 2l + 1 state vectors |l,m〉
(more correctly, into two sets of equations with l + 1 equations
coupling the values of m with m Œ [-l, -l + 2, …, l] and l
equations coupling the values of m with m Œ [-l + 1, -l + 3,
…, l - 1]), which can be solved in a standard way.21 This yields
2l + 1 orthonormal eigenfunctions as superpositions of the states
|l,m〉 with corresponding eigenvalues as characteristic temporal
exponents, from which Green’s function can be constructed as
before. Because the case of a fully asymmetric rotor is of rather
little interest for almost all fluorescence-based measurements of
molecular rotation, we will not pursue this topic further.
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Excitation and detection

After having found Green’s function for the rotation diffusion
equation, we have to specify the fluorescence excitation and
detection conditions of the measurement, in particular its polar-
ization properties. Let us assume that the fluorescence lifetime is
considerably shorter than the rotational diffusion time, which is
mostly the case when studying rotational diffusion of large proteins
by using short-lifetime dyes. Then, we need only to consider the so-
called molecule detection function (MDF) describing the chance
to excite and detect a photon for a dye molecule with a given
orientation and position in sample space. The calculation of this
function can be done using a wave-optics approach as described
in ref. 22. For our further considerations it is important that the
MDF can be expanded into a series of spherical harmonics in the
angles a and b which describe the angular orientation w of the
excitation/emission dipole (which are assumed to be collinear) as
depicted in Fig. 2. The coefficients of this series expansion are
functions of the molecule’s position r, and the MDF, which will
be denoted by U(a,b,r), is thus represented through

(25)

where the spherical harmonics Y lm(b,a) are defined by

Y lm(b,a) = Pl
|m|(cos b)exp(ima). (26)

Here, the functions Pl
m(cos b) are associated Legendre

polynomials.23 Using the orthogonality of spherical harmonics,
the coefficients ulm(r) can be found from the full MDF via the
backward transformation

(27)

Fig. 2 Geometric meaning of the orientation angles b and a with respect
to the lab frame.

The importance of representation (25) lies in the fact that
the spherical harmonics themselves are representations of the
three-dimensional rotation group and transform under rotation
according to eqn (14). The MDF depends, of course, on the
peculiarities of the excitation, and can be different for different
excitation pulses (for example, when exciting the sample with a
pulse train of pulses with alternating polarization). A first laser
pulse with corresponding MDF U 1(w,r) thus ‘prepares’ the sample
in such a way that U 1(w,r) describes the chance to detect a
photon from an excitation/emission dipole at position r having

orientation w. A next important thought is that we are interested
in measurements where the protein is tagged with a dye molecule
in such a way that the relative orientation of the dye with respect
to the protein’s principal axes is random but fixed (co-rotation of
dye with protein). Thus, rotating the distribution U 1(w,r) back
into the protein’s frame of principal axes which has orientation
X¢ with respect to the lab frame gives the average chance to excite
and detect a photon from the protein–dye complex. Next, Green’s
function G(X,X¢,t), eqn (19), gives the chance that the protein–dye
complex rotates from orientation X¢ into orientation X within time
t, and, by a similar argument as before, the chance to excite and
detect a photon by a second laser pulse with MDF U 2(w,r) is given
by a back-rotation X of U 2(w,r) into the protein’s frame. Finally,
by integrating over all possible positions and orientations, one ob-
tains the average of the product k 1k 2 (averaged over many repeats
of the double-pulse excitation and many different relative protein–
dye orientations) that we need for proceeding with eqn (5) and (6):

(28)

where R-1 is the back-rotation operator. The integrations run
over all possible initial and final orientations X¢ and X of the
protein, all possible dye-label orientations w, and all possible
positions r. It should be emphasized that the above expression
is quite general, allowing for different excitation and detection
geometries/polarizations for the first and second laser pulse. Now,
using the transformation relation (14), and the orthonormality
of the eigenfunctions Cl

mk(f,q,y ) and of spherical harmonics Y lm,
the integrations over X, X¢ and w can be performed analytically,
resulting in

(29)

For a spherically symmetric molecule with D^ = D‖ ∫ D this
expression simplifies to

(30)

The explicit calculation of the coefficients ua,lm(r) is a formidable
task, and for the details the reader is referred to ref. 22 and citations
therein. Remarkably, when neglecting optical saturation (i.e.
excitation rate is directly proportional to the absolute square of the
scalar product of the excitation light electric field amplitude times
the molecule’s absorption dipole vector), only coefficients with
l = (0,2,4) will differ from zero. Even taking into account
depolarization in excitation and detection caused by objectives
with high numerical aperture24,25 does not change the computation
noticeably. As an example, Fig. 3 shows the result of a numerical
calculation for a 1.2 N.A. water immersion objective as a function
of the laser beam diameter coupled into the objective’s back focal
plane. In these calculations, it was assumed that detection is done
by two detectors looking at orthogonal emission polarizations. With-
out loss of generality, we will denote the detection polarization for
the first photon by the symbol ‖, and that for the second photon
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Fig. 3 Dependence of the (normalized) coefficients [
∑

m

∫
dr u*2,lmu1,lm] in

eqn (30) for l = 0 (solid lines), l = 2 (solid lines with circles), l = 4 (solid
lines with triangles) and for different excitation/detection polarizations as
a function of laser beam diameter (measured at the objective’s back focal
plane). It is assumed that detection is done through two polarizers with
orthogonally aligned polarization axes for the first and the second photon.
The red curves show the case when the first and second laser pulse are
both polarized along the same direction as the first or the second detector
polarizer; the blue curves show the case when both laser pulses have the
same polarization as the corresponding detector polarizers; and the green
curves show the case when both laser pulses are polarized perpendicular
to the corresponding detector polarizers. The calculations were done for a
perfectly aplanatic 1.2 N.A. water immersion objective.

by ^ (‖ ¥ ^ detection polarization mode). Then, there are three
principally different excitation modes: (i) polarization of excitation
for the first and second photon is both parallel to the respective
detection polarization (‖ ¥ ^ excitation polarization mode), (ii)
polarization of excitation for the first and second photon is
both orthogonal to the respective detection polarization (^ ¥ ‖
excitation polarization mode), and (iii) excitation polarization for
both photons is the same (‖ ¥ ‖ or ^ ¥ ^ excitation polarization
mode), so that the first (second) photon is excited with an
excitation polarization parallel to its detection polarization, and
the second (first) orthogonally to its detection polarization.

Fig. 3 shows several remarkable features: Firstly, the amplitude
ratios in the ‖ ¥ ^, the ^ ¥ ‖ and the ‖ ¥ ‖ excitation mode are
close to 9 : 1 : 3 for l = 0, (-18) : 1 : 3 for l = 2, and (-6) : 8 : 9 for
l = 4, which are the values in the limit of zero numerical aperture,
the situation considered by Aragón and Pecora.6 Secondly, one
has always non-zero contributions with l = 4. However, the
relative weight of these contributions when compared to the l =
2 term is smallest for the ‖ ¥ ^ excitation mode, where it is
ca. 1/15th of the amplitude for l = 2. Thirdly, when getting
closer to diffraction-limited focusing (values at the right end
of Fig. 3), depolarization effects have a non-negligible impact
on the different pre-exponential amplitudes in eqn (29). The
lowest impact is observed for the ‖ ¥ ^ excitation mode, which
makes this mode of excitation/detection the most favorable one
for measuring rotational diffusion via fluorescence correlation
spectroscopy in a confocal microscope with high N.A. It yields
maximum amplitude of the lag-time dependent part of the
correlation function with smallest contribution from the l = 4
mode and smallest impact from depolarization effects. As an
example, the modeled correlation functions for a globular protein

(isotropic rotor) with 20 ns rotational diffusion time t rot = 1/6Drot

are shown in Fig. 4.

Fig. 4 Correlation functions for ‖ ¥ ^ (blue), ^ ¥ ‖ (green) and ‖ ¥ ‖
(red) excitation mode for a spherical globular protein with 20 ns rotational
diffusion time.

Often, fluorescent molecules exhibit a non-negligible angle
between absorption and emission dipole. This will change the
amplitudes of the different exponential terms in the autocorre-
lation function, but not the exponents themselves. Because our
data analysis of autocorrelation curves for obtaining rotational
diffusion values will solely rely on these exponents, we will not
consider here how a finite angle between absorption and emission
dipole will modify the pre-exponential amplitudes.

Molecular shape and rotational diffusion

In this section we will briefly consider when it is necessary to take
into account the non-spherical shape of a molecule, and when the
assumption of a rotationally symmetric shape is still sufficient. As
already noted, any molecule can be modeled by an object with
three orthogonal axes of rotation (principal axes) with, in the
most general case, three different rotational diffusion constants
around each of these axes. In almost all cases of practical interest,
it is sufficient to approximate a molecule by a symmetric top,
i.e. an object that has two identical rotational diffusion constants
around two of its principal axes and one different around the
third. This corresponds to approximating the shape of a molecule
by a prolate or oblate ellipsoid of rotation. The question is
how large the axis ratio between the axes of the ellipsoid has
to be so that it is clearly discernible in a rotational diffusion
measurement. Following Perrin26,27 and Koenig,28 the rotational
diffusion coefficients for an oblate ellipsoid of rotation with aspect
ratio e = R^/R‖ < 1 are given by

(31)

and

(32)

whereas for a prolate ellipsoid of rotation (e > 1) they read
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(33)

and

(34)

Here, D0 is the diffusion coefficient of a sphere of radius R0 with
the same volume as the ellipsoid, i.e.

R0
3 = R‖R2

^, (35)

and the value of D0 is given by eqn (2). In all the above
expressions, the subscript ‖ refers to the symmetry axis, and
the subscript ^ to the two transversal axes of the ellipsoid.
Fig. 5 shows the dependence of the two rotational diffusion
coefficients on the eccentricity e of the ellipsoid. As can be seen,
the values of rotational diffusion coefficients change quite quickly
with changing eccentricity. Theoretically, it should be possible
to observe the difference in the rotational diffusion coefficients
around the symmetry and the transverse axes by the emergence
of a more complex multi-exponential behavior of the correlation
function compared to the correlation function produced by an
ideal spherical rotor.

Fig. 5 Dependence of the rotational diffusion coefficients on ellipsoid
eccentricity.

However, in practice the measured correlation curves are usually
too noisy to extract that information if the axis ratio becomes
not exceedingly large. Usually one fits the correlation function
assuming a spherically-shaped molecule and obtains a mean
rotational diffusion coefficient and a mean hydrodynamic radius.
This corresponds to taking the mean of the diffusion coefficients,
〈D〉 = (2D^ + D‖)/3, and to use eqn (2) for obtaining the
hydrodynamic radius. Due to the cubic relationship between radius
and diffusion coefficient, the dependence of the thus-defined
mean value of hydrodynamic radius changes much less with
eccentricity than the individual rotational diffusion coefficients.
This is shown in Fig. 6, where one can see that the mean value
of the hydrodynamic radius changes only slightly in the range
of 0.75 < e < 1.5 at maximum by only 2%. Thus, assuming a
spherical shape is a quite reasonable approach for moderate values
of eccentricity. We will use this assumption when measuring the
rotational diffusion of globular proteins.

Fig. 6 Dependence of the mean hydrodynamic radius on ellipsoid
eccentricity.

Materials and methods

Fluorescent labeling

BSA and HSA (Sigma-Aldrich) were nonspecifically labeled
with Alexa Fluor R© 647 succinimidyl ester (Invitrogen GmbH,
Karlsruhe, Germany). This dye was chosen for two reasons. Firstly,
it has a rather short fluorescence lifetime of ca. 1.2 ns, assuring
that the fluorescence excited by one laser pulse decays completely
before the next excitation pulse (for the inter-pulse time distances
as used in the present study, see below). Secondly, the dye is rather
hydrophobic which leads to its co-rotation with BSA and HSA (as
was checked by static anisotropy measurement). However, for the
two other proteins used in this study, aldolase and ovalbumin (gel
filtration calibration kit HMW, GE Healthcare), the hydrophobic
properties of Alexa647 were not enough to assure its co-rotation
with the protein. Therefore, these proteins were labeled with Cy5
bis-succinimidyl ester (GE Healthcare Europe GmbH, Freiburg,
Germany). The two succinimidyl ester groups can non-specifically
react with two solvent-exposed lysins on a protein’s surface,
assuring a fixed orientation of the dye with respect to the labeled
protein. Furthermore, Cy5 also has a short fluorescence lifetime of
1 ns, assuring complete decay of fluorescence between laser pulses.

Labeled proteins were purified using an HPLC system (Jasco
Labor und Datentechnik GmbH, Groß-Umstadt, Germany), then
kept in phosphate buffered saline (PBS) at pH 7.4, and were used
for the measurements directly after preparation.

Measurement set-up

All measurements were done with a commercial confocal mi-
croscopy system (MicroTime 200 with dual-focus option, Pico-
Quant GmbH, Berlin, Germany) which is similar to the set-up
described in detail in ref. 2. In summary, the light of two identical,
linearly polarized pulsed diode lasers (wavelength 640 nm, pulse
duration 50 ps fwhm) is combined by a polarizing beam splitter.
Both lasers are pulsed synchronously with a repetition rate of
80 MHz. Inserting a time delay of ~6 ns (Ortec Delay 425, AME-
TEK GmbH, Meerbusch, Germany) between the pulse trains of
the first and second laser creates a pulsed interleaved excitation (or
PIE29) with about 6 ns spaced pulses of alternating polarization.
Both beams are coupled into a polarization-maintaining single
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mode fiber. At the fiber output, the light is collimated and
reflected by a dichroic mirror towards the microscope’s objective
(UPLSAPO 60¥ W, 1.2 N.A., Olympus Deutschland GmbH,
Hamburg, Germany).

Fluorescence is collected by the same objective (epi-fluorescence
setup), passed through the dichroic mirror, and focused onto a
single circular aperture (diameter 150 mm). After the pinhole, the
light is collimated, split by a polarizing beam splitter cube and
focused onto two single-photon avalanche diodes (SPCM-AQR-
13, PerkinElmer Optoelectronics, Wiesbaden, Germany). Single-
photon counting electronics (HydraHarp 400, PicoQuant GmbH,
Berlin, Germany) independently records the detected photons
of both detectors with an absolute temporal resolution of two
picoseconds on a common time frame.

All measurements were done in Lab-Tek II chambered cover-
glass systems (Nunc Thermo Electron LED GmbH, Langensel-
bold, Germany) coated with BSA to prevent unspecific adsorption
of the labeled proteins. Sample temperature was controlled with a
HH500 digital thermometer (Omega Newport Electronics GmbH,
Deckenpfronn, Germany). The values of the rotational diffusion
coefficient and resulting hydrodynamic radius were subsequently
recalculated for a temperature of 20 ◦C employing eqn (2), and
using the known dependency of water’s dynamic viscosity on
temperature.

Calculation of the ACF

As described in the theory section, the most advantageous mode
of measuring an ACF for determining rotational diffusion is to
calculate it from photon pairs excited with laser pulses of crossed
polarization and detected with two detectors having detection
polarization collinear to the corresponding excitation pulses. This
is relatively easy to achieve with the experimental set-up and
the described measurement mode. To better understand that,
consider the TCSPC histograms as recorded by both detectors
in our set-up, which are shown in Fig. 7. As can be seen, each
detector observes two consecutive fluorescence decays within
a complete excitation cycle: one with a large and one with a
small amplitude. The large amplitude decay corresponds to a
laser pulse polarization collinear with the detection polarization,
whereas the small amplitude decay corresponds to a laser pulse
polarization orthogonal to the detection polarization. Thus, by
inspecting the TCSPC histograms, one can precisely determine
the relative polarizations of the exciting laser pulse with respect to
the detection polarization.

Using fluorescence dyes showing fluorescence decay times
sufficiently short so that their fluorescence has nearly completely
decayed until the next laser pulse occurs, and exploiting the
TCSPC information of each photon, one can unequivocally
associate each detected photon to the laser pulse which had excited
it, similarly to what is done in pulsed interleaved excitation29 or
dual-focus FCS.2

Now, having the ability to determine, for each detected photon,
the polarization of its exciting laser pulse, and the polarization
of its detector, it is straightforward to calculate the desired ‖ ¥ ^
polarization ACF by correlating all photon pairs where the first
photon is excited by a ‖ polarized laser and detected by the detector
with ‖ detection polarization, and the second photon is excited by
a laser pulse with ^ polarization and detected by the detector with

Fig. 7 Red curve shows TCSPC-histogram of photons detected by
detector #1, in blue is the corresponding curve for detector #2. The maxima
at ~1.75 ns (detector #1) and ~11.5 ns (detector #2) correspond to laser
pulses with their polarization collinear with the detection polarization.
The local maxima at 8.0 ns (detector #1) and 5.25 ns (detector #2)
correspond to laser pulses with their polarization orthogonal to the
detection polarization.

^ detection polarization. This computation is done using a general
algorithm of calculating an ACF on the basis of asynchronous
photon counting data as described in ref. 30.

At this point it is useful to realize that for extracting the
rotational diffusion information from the ACF it is not necessary
to compute the ACF with a temporal resolution better than
that which is given by the laser pulse distances. Therefore, we
associate each detected photon with a ‘virtual’ detection time
equal to the time of its exciting laser pulse. By doing that, the
resulting correlation function loses all information connected with
the fluorescence decay, but maintains the rotational diffusion
information. A resulting ACF is shown in Fig. 8, where the bar
plot shows values only at the discrete lag times corresponding
to all possible time intervals between orthogonal and horizontal
laser pulses. Here, ACF values for t > t0 correspond to photon
pairs where the first photon is detected by the detector #1 and
the second by detector #2, and ACF values for t < t0 to the

Fig. 8 Measured ‖ ¥ ^ correlation function (blue bars) and fitted
mono-exponential lag-time dependence (dashed red line) for HSA.
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reverse order of detection, where t0 is some absolute time offset
determined by the relative temporal position of the laser pulse
trains with respect to the internal clock of the photon counting
electronics. Of course, for both t > t0 and t < t0, only photon
pairs are correlated where the pulse polarization is collinear with
detection polarization. The representation of the ACF as shown
in Fig. 8 considerably simplifies its evaluation, because the visible
temporal dynamics is only due to rotational diffusion but not to
fluorescence decay.

Fitting is done with a mono-exponential function of the form

A + Bexp[-6D|t - t0|] (36)

where A and B are some amplitude factors, and D is the rotational
diffusion coefficient. By adopting this fit function we assume that
the studied molecules are close to spherically symmetric, and that
all terms with l > 2 in eqn (30) are negligible compared with the
l = 2 term.

Results and discussion

First, we measured the rotational diffusion of HSA non-
specifically labeled with Alexa Fluor R© 647. Fig. 8 shows the
ACF for the ‖ ¥ ^ excitation mode, calculated as described in the
previous section. The data are fitted with the mono-exponential
model curve of eqn (36), the exponent of which yields the inverse
rotational diffusion time, t rot = 1/6Drot. As can be seen, the
fit quality is remarkably good, although we assumed spherical
symmetry of the protein and neglected any terms with l = 4. This
exemplifies once more that the l = 4 contribution to the correlation
function in ‖ ¥ ^ excitation mode is indeed negligibly small.

To check the dependence of the obtained rotational diffusion
time t rot on total measurement time, we partitioned the measured
photon stream into subsets of different measurement times,
calculated for each subset the correlation function, fitted the
rotational diffusion time, and averaged these values over subsets
of equal duration. The resulting values of t rot and their standard
deviation (if the total amount of data could be divided into more
than two subsets for the given duration) are shown in Fig. 9. As
can be seen, the obtained value of rotational diffusion quickly
approaches a fixed value if the measurement time becomes lager
than ~2000 s. Because the average photon count rate of our
measurement was ~43 kcps (both detectors), this corresponds to
a value ~108 measured photons.

Using the Stokes–Einstein–Debye equation, eqn (2), and the
known values of temperature and viscosity, our determined rota-
tional diffusion value corresponds to a value of the hydrodynamic
radius Rrot of (3.4 ± 0.2) nm.

Next, we measured the rotational diffusion of the protein bovine
serum albumin (BSA), again non-specifically labeled with Alexa
Fluor R© 647. The resulting ACF is shown in Fig. 10, together with
a mono-exponential fit.

The dependence of the obtained value on measurement time was
similar to that for BSA, and the finally obtained hydrodynamic
radius is (3.5 ± 0.2) nm. which is in good agreement with literature
values for BSA (Rrot = 3.4 nm in ref. 31, and Rrot = 3.5 nm according
to ref. 32), where it was measured via fluorescence anisotropy. In an
extended study,33 Ferrer et al. recently combined both fluorescence
anisotropy measurements with theoretical modeling to elucidate
the anisotropic shape of BSA in solution. They found an average

Fig. 9 Dependence of the determined values of rotational diffusion
on measurement time. The dotted line shows an exponentially decaying
asymptotic fit to the determined values.

Fig. 10 Measured ‖ ¥ ^ correlation function (blue bars) and fitted
mono-exponential lag-time dependence (dashed red line) for BSA.

radius value of ~3.75 nm, which is still in reasonable agreement
with our value here.

Finally, we tried to measure the rotational diffusion of the
non-specifically labeled proteins aldolase and ovalbumin. Here,
the label Alexa Fluor R© 647 is not “sticky” enough to co-rotate
with the proteins. It is assumed that the hydrophobicity of BSA
accidentally assured such a co-rotation, but that it is not granted
when labeling arbitrary proteins. Thus, we chose the bifunctional
fluorescence label Cy5 bis-succinimidyl ester for non-specifically
labeling aldolase and ovalbumin. By fluorescence anisotropy
measurements we checked that this label indeed co-rotates with the
proteins. The measured ACFs are presented in Fig. 11 and 12. For
these two proteins, fit quality was also excellent, and the extracted
hydrodynamic radius values are (4.1 ± 0.1) nm for aldolase and
(2.8 ± 0.1) nm for ovalbumin. For both proteins, we observed a
similar dependence of fitted values on measurement time as those
observed for BSA.

Table 1 summarizes all our results on the hydrodynamic radii
of the studied proteins, and compares it with literature values (as
far as they were available) as well as with theoretical predictions
by HydroPro 7c.35 There is no theoretical value for BSA, because
no crystal structure is known for that protein.
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Table 1 Comparison of our measured values of hydrodynamic radius
with published literature values and theoretical values calculated using the
structural information from protein database (entry indicated in brackets)
and the program HydroPro 7c;35 the last column gives the molecular weight
of the protein

Rrot/nm

Protein FCS Literature HydroPro 7c MW/kDa

HSA 3.4 ± 0.2 3.6 (1bm0) 69.4
BSA 3.5 ± 0.2 3.431 Not available Not available

3.532

3.733

Ovalbumin 2.8 ± 0.1 3.234 3.1 (1vac) 44.2
Aldolase 4.1 ± 0.1 4.9 (1zah) 156.8

Fig. 11 Measured ‖ ¥ ^ correlation function (blue bars) and fitted
mono-exponential lag-time dependence (dashed red line) for aldolase.

Fig. 12 Measured ‖ ¥ ^ correlation function (blue bars) and fitted
mono-exponential lag-time dependence (dashed red line) for ovalbumin.
Due to a slight shift of the relative temporal position of the ‖ laser pulse
train to the ^ laser pulse train (as compared with the other measurements
in Fig. 8, 10, and 11), no antibunching is visible here.

Conclusions

We presented a new variant of fluorescence correlation spec-
troscopy to measure rotational diffusion of macromolecules. Our
approach ensures (i) a maximum amplitude of the rotational-
diffusion related contribution in the correlation function, (ii) a

minimum impact of higher order (l = 4) contributions, allowing
for a mono-exponential fitting of the rotational diffusion time,
and (iii) it works best for rotational diffusion times that are large
compared to the fluorescence decay time, exactly the situation
when fluorescence anisotropy will no longer be useful. Thus, we
hope that fluorescence correlation spectroscopy on the nanosec-
ond timescale will become be an efficient and reliable method for
measuring rotational diffusion of large macromolecules.
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