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Thomas Kneib What is Correlation?

What is Correlation?

• Development economics is often faced with data evolving in both time and space.

• Statistical analyses have to take the special structure into account, i.e.

– account for spatio-temporal correlations,

– account for space- and time-varying effects,

– model unobserved heterogeneity due to spatial and temporal variation.

• Are these really different tasks or merely different phrases for the same goal?
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Thomas Kneib What is Correlation?

• What is (positive) correlation?

⇒ Observations which are positively correlated behave ”similar”.
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• Correlation is commonly assumed to be a stochastic phenomenon.

• The above data have been generated from deterministic models:

yt = t + εt yt = sin(t) + εt
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Thomas Kneib What is Correlation?

• Temporal correlation is often (at least partly) attributable to a trend function.

• The trend itself is typically introduced by unobserved, temporally / spatially varying
covariates.

• Usually the response is not influenced by time or space directly (no causal relationship).
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Mixed Models I: Classical Perspective

• Longitudinal data: Repeated measurements

yit, i = 1, . . . , n, t = 1, . . . , T

on a fixed set of subjects i = 1, . . . , n at time points t = 1, . . . , T .

• Classical model for such data: Mixed effects / random effects models.

• Simplest example: Random intercepts

yit = x′
itβ + bi + εit

where

bi i.i.d. N(0, τ 2),

εit i.i.d. N(0, σ2).
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Thomas Kneib Mixed Models I: Classical Perspective

• Two sources of random variation: Variation on the subject level (bi) and variation on
the measurement level (εit).

• Rationale: The observations i are a random sample from the population of individuals.

• The random effects distribution bi i.i.d. N(0, τ 2) describes the distribution of
individual-specific effects bi in this population.

• Corresponding density:

p(b) ∝ exp

(

−
1

2τ2
b′b

)

where b = (b1, . . . , bn)′.
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Thomas Kneib Mixed Models I: Classical Perspective

• Estimation in mixed models is based on the joint likelihood

p(y, b) = p(y|b)p(b)

∝ exp

(

−
1

2σ2
(y − Xβ − Zb)′(y − Xβ − Zb)

)

exp

(

−
1

2τ2
b′b

)

→ max
β,b

.

• Equivalently, we can consider the joint least-squares criterion

(y − Xβ − Zb)′(y − Xβ − Zb) +
σ2

τ2
b′b → min

β,b
.
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Mixed Models II: Marginal Perspective

• Hierarchical formulation of mixed models:

yit|bi ∼ N(x′
itβ + bi, σ

2)

bi ∼ N(0, τ2).

• What happens, if we marginalize with respect to the bi?

⇒ Correlation between observations on one individual are induced due to the shared
random effects bi.

• To be more specific: An equicorrelation model is obtained

Corr(yit1, yit2) =
Var(bi)

Var(bi) + Var(εit)
=

τ2

τ2 + σ2
= ρ,
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Thomas Kneib Mixed Models II: Marginal Perspective

• Marginal model in matrix notation:

yi ∼ N(Xiβ,Σi),

where

Σi = (σ2 + τ2)
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Mixed Models III: Penalised Likelihood Perspective

• Start with the model equation

yit = x′
itβ + bi + εit

without a distributional assumption for bi.

• The bi are individual-specific regression coefficients that shall capture effects of
unobserved, individual-specific covariates.

• The number of these effects is large

⇒ Add a ridge penalty to stabilise estimation.
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Thomas Kneib Mixed Models III: Penalised Likelihood Perspective

• Instead of the least squares criterion

(y − Xβ − Zb)′(y − Xβ − Zb) → min
β,b

we minimise the penalised least squares criterion

(y − Xβ − Zb)′(y − Xβ − Zb) + λb′b → min
β,b

• The penalty shrinks parameters bi to zero, in particular if the database for individual
i is small.

• The penalised least squares criterion is equivalent to the joint likelihood of the mixed
model with

λ =
σ2

τ2
,

i.e. the error to signal ratio determines the strength of the penalisation.
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Mixed Models IV: Bayesian Perspective

• Bayesian view: The random effects distribution can be considered as a prior
distribution that expresses our knowledge about the individual-specific effects.

• bi ∼ N(0, τ2) a priori implies that

– we expect the effects to be ”not too far” from zero,

– we expect the family of effects in the population to be Gaussian.

⇒ Qualitatively similar to the random effects view.

• No formal differentiation between fixed and random effects: Both are random
quantities but with different a priori knowledge.

p(β) ∝ const p(b) ∝ exp

(

−
1

2τ2
b′b

)
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• Estimation is based on the posterior

p(β, b|y) =
p(y|β, b)p(β)p(b)

p(y)
∝ p(y|β, b)p(b).

• The posterior mode coincides with the penalised least squares estimate.
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Mixed Models V: Summary

• Four views on the model
yit = x′

itβ + bi + εit

for longitudinal data:

– Mixed model perspective: bi is a random effect from the population distribution.

– Marginal perspective: the bi induce equicorrelation.

– Penalised likelihood perspective: the bi are individual-specific regression
coefficients.

– Bayesian perspective: the random effects distribution expresses a priori knowledge.

• Both the mixed model and the Bayesian perspective combine features of the two
further perspectives.

• Different rationales but the same goal: Describe / analyse why observations of one
individual behave more similar than randomly selected measurements.
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• What do we gain by the different perspectives:

– Different estimation schemes have been developed by the different statistical
communities.

– Additional insight in more complicated types of models, e.g. concerning
identifiability problems when modelling both trend functions and correlation.
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Mixed Models VI: Extensions

• Similar considerations can be made for extended models such as

– Models with random slopes:

yit = x′
itβ + z′itbi + εit.

– Nested multi-level models

yijt = x′
ijtβ + bi + bij + εijt.

– Non-Nested multi-level models

yijt = x′
ijtβ + bi + bj + εijt.
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Smoothing and Mixed Models

• Consider trend estimation in the simple model

yt = ftrend(t) + εt, εt i.i.d. N(0, σ2).

• Model the trend function as a polynomial spline (in truncated line representation):

ftrend(t) = β0 + β1t + b1(t − κ1)+ + . . . + bd(t − κd)+.

⇒ Piecewise linear function estimate with changing slopes at the knots κj.

• In matrix notation
y = Xβ + Zb + ε.
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• To avoid overfitting, introduce a penalty term for the truncated polynomials:

λ

d
∑

j=1

b2
j = λb′b.

⇒ Variability of the function estimate is controlled by the smoothing parameter λ.

• λ large ⇒ f̂(x) approaches a linear function.

• λ small ⇒ f̂(x) becomes a very wiggly estimate.
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• Estimate the parameters of the trend function by minimising the penalised least
squares criterion

(y − Xβ − Zb)′(y − Xβ − Zb) + λb′b → min
β,b

with smoothing parameter λ.

• This is the same objective function as for a mixed model

y = Xβ + Zb + ε

with distributional assumptions

[

ε
b

]

∼ N

([

0
0

]

,

[

σ2I 0
0 τ2I

])

where λ = σ2/τ2.

⇒ The smoothing approach for trend estimation can be considered a mixed model
with very specific structure.
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• Consequences:

– Mixed model methodology can be used to estimate the smoothing parameter λ
(the ratio of error variance and random effects variance).

– Conditionally on b we are modelling a trend function but marginally the model
implies correlation of the response.

⇒ Simultaneous modelling of trend functions and correlated errors may cause
identifiability problems.

– All four perspectives can be applied to the model, yielding for example a Bayesian
interpretation.
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Autoregressive Processes as Smoothers

• Consider the model
yit = x′

itβ + bt + εit

where εit i.i.d. N(0, σ2) and bt follows an autoregressive process of order 1 (AR(1))

bt = αbt−1 + ut, ut ∼ N(0, τ2).

• Note: bt is now a temporally correlated effect, not an individual-specific effect.
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Thomas Kneib Autoregressive Processes as Smoothers

• Correlation function of the autoregressive process (with parameter α):

ρ(bt, bs) = α|t−s|.

• This is a correlation function in discrete time. The continuous time analogue is the
exponential correlation function

ρ(bt, bs) = exp

(

−
|t − s|

φ

)

, α = exp

(

−
1

φ

)

• It can be shown that the temporally correlated effect can be rewritten as

bt = f(t) =

T
∑

s=1

ρ(bt, bs)γt.

⇒ The AR(1) assumption is equivalent to a basis function approach.
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• Consequences:

– The AR(1) correlation function can be interpreted as a (radial) basis function.

– A similar relation holds for stochastic processes with different types of correlation
functions.

– The autoregressive process assumption turns into a penalty for the parameter
vector γt.

– The result can be immediately extended to spatial models with spatially
autoregressive errors and spatial trend functions.

– The larger the autoregressive parameter, the smoother the basis function.

– Identifiability problems when including both a highly correlated autoregressive error
and a flexible trend function.
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A Unifying Framework

• Structured additive regression:

– Combines nonparametric regression, spatial regression, random effects, etc.

– General model equation:

y = f1(z1) + . . . + fr(zr) + x′β.

– Examples:

f(z) = f(x) z = x smooth function of a continuous
covariate x,

f(z) = fspat(s) z = s spatial effect,

f(z) = f(x1, x2) z = (x1, x2) interaction surface,

f(z) = bg z = g i.i.d. frailty bg, g is a grouping
index.

– Can be extended to non-Gaussian responses.
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• Generic representation of the different effect types:

– Vectors of function evaluations:

fj = Zjγj

– Prior distribution / random effects distribution / penalty term:

p(γ) ∝ exp

(

−
1

2τ2
γ′Kjγ

)

, Pen(γ) = λγ′Kjγ.
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• Four different perspectives:

– Penalised likelihood setting:



y − Xβ −

r
∑

j=1

Zjγj





′ 

y − Xβ −

r
∑

j=1

Zjγj



 +

r
∑

j=1

λjγ
′
jKjγj → min

β,γ1,...,γr

– Mixed model perspective: The γj are correlated random effects. Estimation is
based on the joint likelihood

p(y|γ1, . . . , γr)p(γ1, . . . , γr) → max
β,γ1,...,γr

– Bayesian view: The mixed model distribution defines a prior for γj.

– Marginal view: After integrating out the random effects γj, we obtain a marginal
model

y ∼ N(Xβ, V ),

where V is a covariance matrix with correlations induced by the random effects.
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Conclusions

• Four different perspectives on semiparametric regression.

• Though looking different at first sight, there is a close connection between all them.

• In particular, semiparametric smoothing and modelling of correlations are related
tasks.

• Identifiability problems can be encountered when flexibly modelling correlations and
temporal / spatial trend functions.

• The different perspectives allow to derive different estimation techniques.

A unifying perspective on smoothing, mixed models and correlated data 29


