A unifying perspective on smoothing, mixed models and correlated data

Thomas Kneib
Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich
joint work with
Stefan Lang (University of Innsbruck)

What is Correlation?

- Development economics is often faced with data evolving in both time and space.
- Statistical analyses have to take the special structure into account, i.e.
- account for spatio-temporal correlations,
- account for space- and time-varying effects,
- model unobserved heterogeneity due to spatial and temporal variation.
- Are these really different tasks or merely different phrases for the same goal?
- What is (positive) correlation?
\Rightarrow Observations which are positively correlated behave "similar".

- Correlation is commonly assumed to be a stochastic phenomenon.
- The above data have been generated from deterministic models:

$$
y_{t}=t+\varepsilon_{t}
$$

$$
y_{t}=\sin (t)+\varepsilon_{t}
$$

- Temporal correlation is often (at least partly) attributable to a trend function.
- The trend itself is typically introduced by unobserved, temporally / spatially varying covariates.
- Usually the response is not influenced by time or space directly (no causal relationship).

Mixed Models I: Classical Perspective

- Longitudinal data: Repeated measurements

$$
y_{i t}, \quad i=1, \ldots, n, \quad t=1, \ldots, T
$$

on a fixed set of subjects $i=1, \ldots, n$ at time points $t=1, \ldots, T$.

- Classical model for such data: Mixed effects / random effects models.
- Simplest example: Random intercepts

$$
y_{i t}=x_{i t}^{\prime} \beta+b_{i}+\varepsilon_{i t}
$$

where

$$
\begin{array}{rll}
b_{i} & \text { i.i.d. } & N\left(0, \tau^{2}\right), \\
\varepsilon_{i t} & \text { i.i.d. } & N\left(0, \sigma^{2}\right) .
\end{array}
$$

- Two sources of random variation: Variation on the subject level $\left(b_{i}\right)$ and variation on the measurement level $\left(\varepsilon_{i t}\right)$.
- Rationale: The observations i are a random sample from the population of individuals.
- The random effects distribution b_{i} i.i.d. $N\left(0, \tau^{2}\right)$ describes the distribution of individual-specific effects b_{i} in this population.
- Corresponding density:

$$
p(b) \propto \exp \left(-\frac{1}{2 \tau^{2}} b^{\prime} b\right)
$$

where $b=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$.

- Estimation in mixed models is based on the joint likelihood

$$
\begin{aligned}
p(y, b) & =p(y \mid b) p(b) \\
& \propto \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta-Z b)^{\prime}(y-X \beta-Z b)\right) \exp \left(-\frac{1}{2 \tau^{2}} b^{\prime} b\right) \rightarrow \max _{\beta, b} .
\end{aligned}
$$

- Equivalently, we can consider the joint least-squares criterion

$$
(y-X \beta-Z b)^{\prime}(y-X \beta-Z b)+\frac{\sigma^{2}}{\tau^{2}} b^{\prime} b \rightarrow \min _{\beta, b} .
$$

Mixed Models II: Marginal Perspective

- Hierarchical formulation of mixed models:

$$
\begin{aligned}
y_{i t} \mid b_{i} & \sim N\left(x_{i t}^{\prime} \beta+b_{i}, \sigma^{2}\right) \\
b_{i} & \sim N\left(0, \tau^{2}\right)
\end{aligned}
$$

- What happens, if we marginalize with respect to the b_{i} ?
\Rightarrow Correlation between observations on one individual are induced due to the shared random effects b_{i}.
- To be more specific: An equicorrelation model is obtained

$$
\operatorname{Corr}\left(y_{i t_{1}}, y_{i t_{2}}\right)=\frac{\operatorname{Var}\left(b_{i}\right)}{\operatorname{Var}\left(b_{i}\right)+\operatorname{Var}\left(\varepsilon_{i t}\right)}=\frac{\tau^{2}}{\tau^{2}+\sigma^{2}}=\rho
$$

- Marginal model in matrix notation:

$$
y_{i} \sim N\left(X_{i} \beta, \Sigma_{i}\right)
$$

where

$$
\Sigma_{i}=\left(\sigma^{2}+\tau^{2}\right)\left(\begin{array}{ccccc}
1 & \rho & \ldots & \ldots & \rho \\
\rho & 1 & \rho & \ldots & \rho \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \rho \\
\rho & \ldots & \cdots & \rho & 1
\end{array}\right) .
$$

Mixed Models III: Penalised Likelihood Perspective

- Start with the model equation

$$
y_{i t}=x_{i t}^{\prime} \beta+b_{i}+\varepsilon_{i t}
$$

without a distributional assumption for b_{i}.

- The b_{i} are individual-specific regression coefficients that shall capture effects of unobserved, individual-specific covariates.
- The number of these effects is large
\Rightarrow Add a ridge penalty to stabilise estimation.
- Instead of the least squares criterion

$$
(y-X \beta-Z b)^{\prime}(y-X \beta-Z b) \rightarrow \min _{\beta, b}
$$

we minimise the penalised least squares criterion

$$
(y-X \beta-Z b)^{\prime}(y-X \beta-Z b)+\lambda b^{\prime} b \rightarrow \min _{\beta, b}
$$

- The penalty shrinks parameters b_{i} to zero, in particular if the database for individual i is small.
- The penalised least squares criterion is equivalent to the joint likelihood of the mixed model with

$$
\lambda=\frac{\sigma^{2}}{\tau^{2}}
$$

i.e. the error to signal ratio determines the strength of the penalisation.

Mixed Models IV: Bayesian Perspective

- Bayesian view: The random effects distribution can be considered as a prior distribution that expresses our knowledge about the individual-specific effects.
- $b_{i} \sim N\left(0, \tau^{2}\right)$ a priori implies that
- we expect the effects to be " not too far" from zero,
- we expect the family of effects in the population to be Gaussian.
\Rightarrow Qualitatively similar to the random effects view.
- No formal differentiation between fixed and random effects: Both are random quantities but with different a priori knowledge.

$$
p(\beta) \propto \text { const } \quad p(b) \propto \exp \left(-\frac{1}{2 \tau^{2}} b^{\prime} b\right)
$$

- Estimation is based on the posterior

$$
p(\beta, b \mid y)=\frac{p(y \mid \beta, b) p(\beta) p(b)}{p(y)} \propto p(y \mid \beta, b) p(b) .
$$

- The posterior mode coincides with the penalised least squares estimate.

Mixed Models V: Summary

- Four views on the model

$$
y_{i t}=x_{i t}^{\prime} \beta+b_{i}+\varepsilon_{i t}
$$

for longitudinal data:

- Mixed model perspective: b_{i} is a random effect from the population distribution.
- Marginal perspective: the b_{i} induce equicorrelation.
- Penalised likelihood perspective: the b_{i} are individual-specific regression coefficients.
- Bayesian perspective: the random effects distribution expresses a priori knowledge.
- Both the mixed model and the Bayesian perspective combine features of the two further perspectives.
- Different rationales but the same goal: Describe / analyse why observations of one individual behave more similar than randomly selected measurements.
- What do we gain by the different perspectives:
- Different estimation schemes have been developed by the different statistical communities.
- Additional insight in more complicated types of models, e.g. concerning identifiability problems when modelling both trend functions and correlation.

Mixed Models VI: Extensions

- Similar considerations can be made for extended models such as
- Models with random slopes:

$$
y_{i t}=x_{i t}^{\prime} \beta+z_{i t}^{\prime} b_{i}+\varepsilon_{i t} .
$$

- Nested multi-level models

$$
y_{i j t}=x_{i j t}^{\prime} \beta+b_{i}+b_{i j}+\varepsilon_{i j t} .
$$

- Non-Nested multi-level models

$$
y_{i j t}=x_{i j t}^{\prime} \beta+b_{i}+b_{j}+\varepsilon_{i j t} .
$$

Smoothing and Mixed Models

- Consider trend estimation in the simple model

$$
y_{t}=f_{\text {trend }}(t)+\varepsilon_{t}, \quad \varepsilon_{t} \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

- Model the trend function as a polynomial spline (in truncated line representation):

$$
f_{\text {trend }}(t)=\beta_{0}+\beta_{1} t+b_{1}\left(t-\kappa_{1}\right)_{+}+\ldots+b_{d}\left(t-\kappa_{d}\right)_{+} .
$$

\Rightarrow Piecewise linear function estimate with changing slopes at the knots κ_{j}.

- In matrix notation

$$
y=X \beta+Z b+\varepsilon
$$

- To avoid overfitting, introduce a penalty term for the truncated polynomials:

$$
\lambda \sum_{j=1}^{d} b_{j}^{2}=\lambda b^{\prime} b
$$

\Rightarrow Variability of the function estimate is controlled by the smoothing parameter λ.

- λ large $\Rightarrow \hat{f}(x)$ approaches a linear function.
- λ small $\Rightarrow \hat{f}(x)$ becomes a very wiggly estimate.
- Estimate the parameters of the trend function by minimising the penalised least squares criterion

$$
(y-X \beta-Z b)^{\prime}(y-X \beta-Z b)+\lambda b^{\prime} b \rightarrow \min _{\beta, b}
$$

with smoothing parameter λ.

- This is the same objective function as for a mixed model

$$
y=X \beta+Z b+\varepsilon
$$

with distributional assumptions

$$
\left[\begin{array}{l}
\varepsilon \\
b
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} I & 0 \\
0 & \tau^{2} I
\end{array}\right]\right)
$$

where $\lambda=\sigma^{2} / \tau^{2}$.
\Rightarrow The smoothing approach for trend estimation can be considered a mixed model with very specific structure.

- Consequences:
- Mixed model methodology can be used to estimate the smoothing parameter λ (the ratio of error variance and random effects variance).
- Conditionally on b we are modelling a trend function but marginally the model implies correlation of the response.
\Rightarrow Simultaneous modelling of trend functions and correlated errors may cause identifiability problems.
- All four perspectives can be applied to the model, yielding for example a Bayesian interpretation.

Autoregressive Processes as Smoothers

- Consider the model

$$
y_{i t}=x_{i t}^{\prime} \beta+b_{t}+\varepsilon_{i t}
$$

where $\varepsilon_{i t}$ i.i.d. $N\left(0, \sigma^{2}\right)$ and b_{t} follows an autoregressive process of order $1(\operatorname{AR}(1))$

$$
b_{t}=\alpha b_{t-1}+u_{t}, \quad u_{t} \sim N\left(0, \tau^{2}\right)
$$

- Note: b_{t} is now a temporally correlated effect, not an individual-specific effect.
- Correlation function of the autoregressive process (with parameter α):

$$
\rho\left(b_{t}, b_{s}\right)=\alpha^{|t-s|} .
$$

- This is a correlation function in discrete time. The continuous time analogue is the exponential correlation function

$$
\rho\left(b_{t}, b_{s}\right)=\exp \left(-\frac{|t-s|}{\phi}\right), \quad \alpha=\exp \left(-\frac{1}{\phi}\right)
$$

- It can be shown that the temporally correlated effect can be rewritten as

$$
b_{t}=f(t)=\sum_{s=1}^{T} \rho\left(b_{t}, b_{s}\right) \gamma_{t}
$$

\Rightarrow The $\operatorname{AR}(1)$ assumption is equivalent to a basis function approach.

- Consequences:
- The $\operatorname{AR}(1)$ correlation function can be interpreted as a (radial) basis function.
- A similar relation holds for stochastic processes with different types of correlation functions.
- The autoregressive process assumption turns into a penalty for the parameter vector γ_{t}.
- The result can be immediately extended to spatial models with spatially autoregressive errors and spatial trend functions.
- The larger the autoregressive parameter, the smoother the basis function.
- Identifiability problems when including both a highly correlated autoregressive error and a flexible trend function.

(b) trend function

(c) autoregressive error

A Unifying Framework

- Structured additive regression:
- Combines nonparametric regression, spatial regression, random effects, etc.
- General model equation:

$$
y=f_{1}\left(z_{1}\right)+\ldots+f_{r}\left(z_{r}\right)+x^{\prime} \beta
$$

- Examples:

$$
\begin{array}{lll}
f(z)=f(x) & z=x & \begin{array}{l}
\text { smooth function of a continuous } \\
\text { covariate } x,
\end{array} \\
f(z)=f_{\text {spat }}(s) & z=s & \text { spatial effect, } \\
f(z)=f\left(x_{1}, x_{2}\right) & z=\left(x_{1}, x_{2}\right) & \text { interaction surface, } \\
f(z)=b_{g} & z=g & \begin{array}{l}
\text { i.i.d. frailty } b_{g}, g \text { is a grouping } \\
\text { index. }
\end{array}
\end{array}
$$

- Can be extended to non-Gaussian responses.
- Generic representation of the different effect types:
- Vectors of function evaluations:

$$
f_{j}=Z_{j} \gamma_{j}
$$

- Prior distribution / random effects distribution / penalty term:

$$
p(\gamma) \propto \exp \left(-\frac{1}{2 \tau^{2}} \gamma^{\prime} K_{j} \gamma\right), \quad \operatorname{Pen}(\gamma)=\lambda \gamma^{\prime} K_{j} \gamma
$$

- Four different perspectives:
- Penalised likelihood setting:

$$
\left(y-X \beta-\sum_{j=1}^{r} Z_{j} \gamma_{j}\right)^{\prime}\left(y-X \beta-\sum_{j=1}^{r} Z_{j} \gamma_{j}\right)+\sum_{j=1}^{r} \lambda_{j} \gamma_{j}^{\prime} K_{j} \gamma_{j} \rightarrow \min _{\beta, \gamma_{1}, \ldots, \gamma_{r}}
$$

- Mixed model perspective: The γ_{j} are correlated random effects. Estimation is based on the joint likelihood

$$
p\left(y \mid \gamma_{1}, \ldots, \gamma_{r}\right) p\left(\gamma_{1}, \ldots, \gamma_{r}\right) \rightarrow \max _{\beta, \gamma_{1}, \ldots, \gamma_{r}}
$$

- Bayesian view: The mixed model distribution defines a prior for γ_{j}.
- Marginal view: After integrating out the random effects γ_{j}, we obtain a marginal model

$$
y \sim N(X \beta, V)
$$

where V is a covariance matrix with correlations induced by the random effects.

Conclusions

- Four different perspectives on semiparametric regression.
- Though looking different at first sight, there is a close connection between all them.
- In particular, semiparametric smoothing and modelling of correlations are related tasks.
- Identifiability problems can be encountered when flexibly modelling correlations and temporal / spatial trend functions.
- The different perspectives allow to derive different estimation techniques.

