A unifying perspective on smoothing, mixed models and correlated data

Thomas Kneib

Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

joint work with Stefan Lang (University of Innsbruck)

19.7.2007

What is Correlation?

- Development economics is often faced with data evolving in both time and space.
- Statistical analyses have to take the special structure into account, i.e.
 - account for spatio-temporal correlations,
 - account for space- and time-varying effects,
 - model unobserved heterogeneity due to spatial and temporal variation.
- Are these really different tasks or merely different phrases for the same goal?

• What is (positive) correlation?

 \Rightarrow Observations which are positively correlated behave "similar".

- Correlation is commonly assumed to be a stochastic phenomenon.
- The above data have been generated from deterministic models:

$$y_t = t + \varepsilon_t \qquad \qquad y_t = \sin(t) + \varepsilon_t$$

- Temporal correlation is often (at least partly) attributable to a trend function.
- The trend itself is typically introduced by unobserved, temporally / spatially varying covariates.
- Usually the response is not influenced by time or space directly (no causal relationship).

Mixed Models I: Classical Perspective

• Longitudinal data: Repeated measurements

$$y_{it}, \quad i=1,\ldots,n, \quad t=1,\ldots,T$$

on a fixed set of subjects i = 1, ..., n at time points t = 1, ..., T.

- Classical model for such data: Mixed effects / random effects models.
- Simplest example: Random intercepts

$$y_{it} = x'_{it}\beta + \frac{\mathbf{b}_i}{\mathbf{b}_i} + \varepsilon_{it}$$

where

$$b_i$$
 i.i.d. $N(0, \tau^2),$
 ε_{it} i.i.d. $N(0, \sigma^2).$

- Two sources of random variation: Variation on the subject level (b_i) and variation on the measurement level (ε_{it}) .
- Rationale: The observations *i* are a random sample from the population of individuals.
- The random effects distribution b_i i.i.d. $N(0, \tau^2)$ describes the distribution of individual-specific effects b_i in this population.
- Corresponding density:

$$p(b) \propto \exp\left(-\frac{1}{2\tau^2}b'b\right)$$

where $b = (b_1, \ldots, b_n)'$.

• Estimation in mixed models is based on the joint likelihood

$$p(y,b) = p(y|b)p(b)$$

$$\propto \exp\left(-\frac{1}{2\sigma^2}(y - X\beta - Zb)'(y - X\beta - Zb)\right)\exp\left(-\frac{1}{2\tau^2}b'b\right) \to \max_{\beta,b}.$$

• Equivalently, we can consider the joint least-squares criterion

$$(y - X\beta - Zb)'(y - X\beta - Zb) + \frac{\sigma^2}{\tau^2}b'b \to \min_{\beta,b}$$

Mixed Models II: Marginal Perspective

• Hierarchical formulation of mixed models:

$$y_{it}|b_i \sim N(x'_{it}\beta + b_i, \sigma^2)$$

 $b_i \sim N(0, \tau^2).$

• What happens, if we marginalize with respect to the b_i ?

 \Rightarrow Correlation between observations on one individual are induced due to the shared random effects b_i .

• To be more specific: An equicorrelation model is obtained

$$\operatorname{Corr}(y_{it_1}, y_{it_2}) = \frac{\operatorname{Var}(b_i)}{\operatorname{Var}(b_i) + \operatorname{Var}(\varepsilon_{it})} = \frac{\tau^2}{\tau^2 + \sigma^2} = \rho,$$

• Marginal model in matrix notation:

$$y_i \sim N(X_i\beta, \Sigma_i),$$

where

$$\Sigma_{i} = (\sigma^{2} + \tau^{2}) \begin{pmatrix} 1 & \rho & \dots & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \rho \\ \rho & \dots & \dots & \rho & 1 \end{pmatrix}.$$

Mixed Models III: Penalised Likelihood Perspective

• Start with the model equation

$$y_{it} = x'_{it}\beta + b_i + \varepsilon_{it}$$

without a distributional assumption for b_i .

- The b_i are individual-specific regression coefficients that shall capture effects of unobserved, individual-specific covariates.
- The number of these effects is large

 \Rightarrow Add a ridge penalty to stabilise estimation.

• Instead of the least squares criterion

$$(y - X\beta - Zb)'(y - X\beta - Zb) \to \min_{\beta, b}$$

we minimise the penalised least squares criterion

$$(y - X\beta - Zb)'(y - X\beta - Zb) + \lambda b'b \to \min_{\beta,b}$$

- The penalty shrinks parameters b_i to zero, in particular if the database for individual i is small.
- The penalised least squares criterion is equivalent to the joint likelihood of the mixed model with

$$\lambda = \frac{\sigma^2}{\tau^2},$$

i.e. the error to signal ratio determines the strength of the penalisation.

Mixed Models IV: Bayesian Perspective

- Bayesian view: The random effects distribution can be considered as a prior distribution that expresses our knowledge about the individual-specific effects.
- $b_i \sim N(0, \tau^2)$ a priori implies that
 - we expect the effects to be "not too far" from zero,
 - we expect the family of effects in the population to be Gaussian.
 - \Rightarrow Qualitatively similar to the random effects view.
- No formal differentiation between fixed and random effects: Both are random quantities but with different a priori knowledge.

$$p(\beta) \propto \text{const}$$
 $p(b) \propto \exp\left(-\frac{1}{2\tau^2}b'b\right)$

• Estimation is based on the posterior

$$p(\beta, b|y) = \frac{p(y|\beta, b)p(\beta)p(b)}{p(y)} \propto p(y|\beta, b)p(b).$$

• The posterior mode coincides with the penalised least squares estimate.

Mixed Models V: Summary

• Four views on the model

$$y_{it} = x'_{it}\beta + b_i + \varepsilon_{it}$$

for longitudinal data:

- Mixed model perspective: b_i is a random effect from the population distribution.
- Marginal perspective: the b_i induce equicorrelation.
- Penalised likelihood perspective: the b_i are individual-specific regression coefficients.
- Bayesian perspective: the random effects distribution expresses a priori knowledge.
- Both the mixed model and the Bayesian perspective combine features of the two further perspectives.
- Different rationales but the same goal: Describe / analyse why observations of one individual behave more similar than randomly selected measurements.

- What do we gain by the different perspectives:
 - Different estimation schemes have been developed by the different statistical communities.
 - Additional insight in more complicated types of models, e.g. concerning identifiability problems when modelling both trend functions and correlation.

Mixed Models VI: Extensions

- Similar considerations can be made for extended models such as
 - Models with random slopes:

$$y_{it} = x'_{it}\beta + z'_{it}b_i + \varepsilon_{it}.$$

- Nested multi-level models

$$y_{ijt} = x'_{ijt}\beta + \mathbf{b}_i + \mathbf{b}_{ij} + \varepsilon_{ijt}.$$

- Non-Nested multi-level models

$$y_{ijt} = x'_{ijt}\beta + \frac{b_i}{b_i} + \frac{b_j}{b_j} + \varepsilon_{ijt}.$$

A unifying perspective on smoothing, mixed models and correlated data

Smoothing and Mixed Models

• Consider trend estimation in the simple model

$$y_t = f_{\text{trend}}(t) + \varepsilon_t, \qquad \varepsilon_t \text{ i.i.d. } N(0, \sigma^2).$$

• Model the trend function as a polynomial spline (in truncated line representation):

$$f_{\text{trend}}(t) = \beta_0 + \beta_1 t + b_1 (t - \kappa_1)_+ + \ldots + b_d (t - \kappa_d)_+.$$

 \Rightarrow Piecewise linear function estimate with changing slopes at the knots κ_j .

• In matrix notation

$$y = X\beta + Zb + \varepsilon.$$

• To avoid overfitting, introduce a penalty term for the truncated polynomials:

$$\lambda \sum_{j=1}^{d} b_j^2 = \lambda b' b.$$

 \Rightarrow Variability of the function estimate is controlled by the smoothing parameter λ .

- $\lambda \text{ large} \Rightarrow \hat{f}(x)$ approaches a linear function.
- $\lambda \text{ small} \Rightarrow \hat{f}(x)$ becomes a very wiggly estimate.

 Estimate the parameters of the trend function by minimising the penalised least squares criterion

$$(y - X\beta - Zb)'(y - X\beta - Zb) + \lambda b'b \to \min_{\beta, b}$$

with smoothing parameter λ .

• This is the same objective function as for a mixed model

$$y = X\beta + Zb + \varepsilon$$

with distributional assumptions

$$\begin{bmatrix} \varepsilon \\ b \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \tau^2 I \end{bmatrix} \right)$$

where $\lambda = \sigma^2 / \tau^2$.

 \Rightarrow The smoothing approach for trend estimation can be considered a mixed model with very specific structure.

- Consequences:
 - Mixed model methodology can be used to estimate the smoothing parameter λ (the ratio of error variance and random effects variance).
 - Conditionally on b we are modelling a trend function but marginally the model implies correlation of the response.

 \Rightarrow Simultaneous modelling of trend functions and correlated errors may cause identifiability problems.

 All four perspectives can be applied to the model, yielding for example a Bayesian interpretation.

Autoregressive Processes as Smoothers

• Consider the model

$$y_{it} = x'_{it}\beta + b_t + \varepsilon_{it}$$

where ε_{it} i.i.d. $N(0, \sigma^2)$ and b_t follows an autoregressive process of order 1 (AR(1))

$$b_t = \alpha b_{t-1} + u_t, \quad u_t \sim N(0, \tau^2).$$

• Note: b_t is now a temporally correlated effect, not an individual-specific effect.

• Correlation function of the autoregressive process (with parameter α):

$$\rho(b_t, b_s) = \alpha^{|t-s|}.$$

• This is a correlation function in discrete time. The continuous time analogue is the exponential correlation function

$$\rho(b_t, b_s) = \exp\left(-\frac{|t-s|}{\phi}\right), \qquad \alpha = \exp\left(-\frac{1}{\phi}\right)$$

• It can be shown that the temporally correlated effect can be rewritten as

$$b_t = f(t) = \sum_{s=1}^T \rho(b_t, b_s) \gamma_t.$$

 \Rightarrow The AR(1) assumption is equivalent to a basis function approach.

- Consequences:
 - The AR(1) correlation function can be interpreted as a (radial) basis function.
 - A similar relation holds for stochastic processes with different types of correlation functions.
 - The autoregressive process assumption turns into a penalty for the parameter vector γ_t .
 - The result can be immediately extended to spatial models with spatially autoregressive errors and spatial trend functions.
 - The larger the autoregressive parameter, the smoother the basis function.
 - Identifiability problems when including both a highly correlated autoregressive error and a flexible trend function.

Thomas Kneib

A Unifying Framework

- Structured additive regression:
 - Combines nonparametric regression, spatial regression, random effects, etc.
 - General model equation:

$$y = f_1(z_1) + \ldots + f_r(z_r) + x'\beta.$$

- Examples:

- $\begin{array}{ll} f(z)=f(x) & z=x & \text{smooth function of a continuous} \\ f(z)=f_{\text{spat}}(s) & z=s & \text{spatial effect,} \\ f(z)=f(x_1,x_2) & z=(x_1,x_2) & \text{interaction surface,} \\ f(z)=b_g & z=g & \text{i.i.d. frailty } b_g, \ g \ \text{is a grouping} \\ \text{index.} \end{array}$
- Can be extended to non-Gaussian responses.

A unifying perspective on smoothing, mixed models and correlated data

- Generic representation of the different effect types:
 - Vectors of function evaluations:

$$f_j = Z_j \gamma_j$$

- Prior distribution / random effects distribution / penalty term:

$$p(\gamma) \propto \exp\left(-\frac{1}{2\tau^2}\gamma' K_j\gamma\right), \qquad \mathsf{Pen}(\gamma) = \lambda\gamma' K_j\gamma.$$

- Four different perspectives:
 - Penalised likelihood setting:

$$\left(y - X\beta - \sum_{j=1}^{r} Z_j \gamma_j\right)' \left(y - X\beta - \sum_{j=1}^{r} Z_j \gamma_j\right) + \sum_{j=1}^{r} \lambda_j \gamma'_j K_j \gamma_j \to \min_{\beta, \gamma_1, \dots, \gamma_r}$$

– Mixed model perspective: The γ_j are correlated random effects. Estimation is based on the joint likelihood

$$p(y|\gamma_1,\ldots,\gamma_r)p(\gamma_1,\ldots,\gamma_r) \to \max_{\beta,\gamma_1,\ldots,\gamma_r}$$

- Bayesian view: The mixed model distribution defines a prior for γ_j .
- Marginal view: After integrating out the random effects γ_j , we obtain a marginal model

$$y \sim N(X\beta, V),$$

where V is a covariance matrix with correlations induced by the random effects.

Conclusions

- Four different perspectives on semiparametric regression.
- Though looking different at first sight, there is a close connection between all them.
- In particular, semiparametric smoothing and modelling of correlations are related tasks.
- Identifiability problems can be encountered when flexibly modelling correlations and temporal / spatial trend functions.
- The different perspectives allow to derive different estimation techniques.