On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

Thomas Kneib

Institute of Statistics and Econometrics Georg-August-University Göttingen Department of Statistics Ludwig-Maximilians-University Munich

joint work with Sonja Greven Department of Biostatistics, Johns Hopkins University

10.2.2009

Overview

- Linear and additive mixed models.
- Akaikes information criterion (AIC).
- Marginal AIC
- Conditional AIC
- Application: Childhood malnutrition in Zambia

Linear and Additive Mixed Models

• Mixed models form a very useful class of regression models with general form

y = Xeta + Zb + arepsilon

where β are usual regression coefficients while b are random effects with distributional assumption

$$\begin{bmatrix} \boldsymbol{\varepsilon} \\ \boldsymbol{b} \end{bmatrix} \sim \mathrm{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma^2 \boldsymbol{I} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{D} \end{bmatrix} \right).$$

- Denote the vector of all unknown variance parameters as θ .
- In the following, we will concentrate on mixed models with only one variance component where

$$m{b} \sim \mathrm{N}(m{0}, au^2 m{I})$$
 or $m{b} \sim \mathrm{N}(m{0}, au^2 m{\Sigma})$

with $\boldsymbol{\Sigma}$ known and therefore $\boldsymbol{\theta} = (\sigma^2, \tau^2)$.

• Special case I: Random intercept model for longitudinal data

$$y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + b_i + \varepsilon_{ij}, \quad j = 1, \dots, J_i, \ i = 1, \dots, I,$$

where i indexes individuals while j indexes repeated observations on the same individual.

- The random intercept b_i accounts for shifts in the individual level of response trajectories and therefore also for intra-subject correlations.
- Extended models include further random (covariate) effects, leading to random slopes.

• Special case II: Penalised spline smoothing for nonparametric function estimation

$$y_i = m(x_i) + \varepsilon_i, \quad i = 1, \dots, n,$$

where m(x) is a smooth, unspecified function.

• Approximating m(x) in terms of a spline basis of degree d leads (for example) to the truncated power series representation

$$m(x) = \sum_{j=0}^{d} \beta_j x^j + \sum_{j=1}^{K} b_j (x - \kappa_j)_+^d$$

where $\kappa_1, \ldots, \kappa_K$ denotes a sequence of knots.

• The spline approximation leads to a piecewise polynomial fit of degree d on the intervals defined by the knots under appropriate smoothness restrictions.

• Penalised estimation to avoid overly wiggly function estimates:

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{b})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{b}) + \lambda \boldsymbol{b}'\boldsymbol{b}
ightarrow \min_{\boldsymbol{\beta}, \boldsymbol{b}}$$

where X and Z correspond to design matrices obtained from the truncated power series representation.

- The smoothness of the curve is determined by the smoothing parameter λ .
- Equivalent to assuming the random effect distribution $b \sim N(0, \tau^2 I)$ and setting the smoothing parameter to

$$\lambda = \frac{\sigma^2}{\tau^2}.$$

• Works also for other basis choices (e.g. B-splines) and other types of flexible modelling components (varying coefficients, surfaces, spatial effects, etc.).

- Additive mixed models consist of a combination of random effects and flexible modelling components such as penalised splines.
- Example: Childhood malnutrition in Zambia.
- Determine the nutritional status of a child in terms of a Z-score.
- We consider chronic malnutrition measured in terms of insufficient height for age (stunting), i.e.

$$zscore_i = \frac{cheight_i - med}{s},$$

where med and s are the median and standard deviation of (age-stratified) height in a reference population.

• Additive mixed model for stunting:

$$zscore_i = \mathbf{x}'_i \mathbf{\beta} + m_1(cage_i) + m_2(cfeed_i) + m_3(mage_i) + m_4(mbmi_i) + m_5(mheight_i) + b_{s_i} + \varepsilon_i,$$

with covariates

csex	gender of the child $(1 = male, 0 = female)$
cfeed	duration of breastfeeding (in months)
cage	age of the child (in months)
mage	age of the mother (at birth, in years)
mheight	height of the mother (in cm)
mbmi	body mass index of the mother
medu	education of the mother $(1 = no education, 2 = primary school, 3 =$
	elementary school, $4 = higher$)
mwork	employment status of the mother (1 = employed, 0 = unemployed)
S	residential district (54 districts in total)

• The random effect b_{s_i} captures spatial variability induced by unobserved spatially varying covariates.

• Marginal perspective on a mixed model:

 $\boldsymbol{y} \sim \mathrm{N}(\boldsymbol{X}\boldsymbol{eta}, \boldsymbol{V})$

where

$$\boldsymbol{V} = \sigma^2 \boldsymbol{I} + \boldsymbol{Z} \boldsymbol{D} \boldsymbol{Z}'$$

- Interpretation: The random effects induce a correlation structure and therefore enable a proper statistical analysis of correlated data.
- Conditional perspective on a mixed model:

$$\boldsymbol{y}|\boldsymbol{b} \sim N(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{b}, \sigma^2 \boldsymbol{I}).$$

• Interpretation: Random effects are additional regression coefficients (for example subject-specific effects in longitudinal data) that are estimated subject to a regularisation penalty.

• Best linear unbiased estimates / predictions in the linear mixed model:

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{y}, \qquad \hat{\boldsymbol{b}} = \boldsymbol{D} \boldsymbol{Z}' \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}).$$

- Unknown variance parameters θ are estimated using maximum likelihood (ML) or restricted maximum likelihood (REML).
- Interest in the following is on model choice in linear mixed models with the special form

$$\boldsymbol{D} = ext{blockdiag}(au_1^2 \boldsymbol{\Sigma}_1, \dots, au_q^2 \boldsymbol{\Sigma}_q)$$

(q independent random effects) for known correlation matrices $\Sigma_1, \ldots, \Sigma_q$ and in particular in models with only one variance component such as

$$\boldsymbol{D} = \tau^2 \boldsymbol{I}.$$

• Without loss of generality, we consider the comparison of

$$M_1: \boldsymbol{D} = \text{blockdiag}(\tau_1^2 \boldsymbol{\Sigma}_1, \dots, \tau_q^2 \boldsymbol{\Sigma}_q)$$

and

$$M_2: \boldsymbol{D} = \text{blockdiag}(\tau_1^2 \boldsymbol{\Sigma}_1, \dots, \tau_{q-1} \boldsymbol{\Sigma}_{q-1}).$$

- The two models are nested since M_1 reduces to M_2 when $\tau_q^2 = 0$.
- Random Intercept: $\tau_q^2 > 0$ versus $\tau_q^2 = 0$ corresponds to the inclusion and exclusion of the random intercept and therefore to the presence or absence of intra-individual correlations.
- Penalised splines: $\tau_q^2 > 0$ versus $\tau_q^2 = 0$ differentiates between a spline model and a simple polynomial model. In particular, we can compare linear versus nonlinear models.

Akaikes Information Criterion

- Data y generated from a true underlying model described in terms of density $g(\cdot)$.
- Approximate the true model by a parametric class of models $f_{\psi}(\cdot) = f(\cdot; \psi)$.
- Measure the discrepancy between a model $f_{\psi}(\cdot)$ and the truth $g(\cdot)$ by the Kullback-Leibler distance

$$\begin{split} K(f_{\boldsymbol{\psi}},g) &= \int \left[\log(g(\boldsymbol{z})) - \log(f_{\boldsymbol{\psi}}(\boldsymbol{z})) \right] g(\boldsymbol{z}) d\boldsymbol{z} \\ &= \operatorname{E}_{\boldsymbol{z}} \left[\log(g(\boldsymbol{z})) - \log(f_{\boldsymbol{\psi}}(\boldsymbol{z})) \right]. \end{split}$$

where z is an independent replicate following the same distribution as y.

• Note that $K(f_{\psi}, g) \ge 0$ and $K(f_{\psi}, g) = 0$ iff $f_{\psi} = g$ almost everywhere.

- Decision rule: Out of a sequence of models, choose the one that minimises $K(f_{\psi}, g)$.
- In practice, the parameter ψ will have to be estimated as $\hat{\psi}(y)$ for the different models.
- To focus on average properties not depending on a specific data realisation, minimise the expected Kullback-Leibler distance

$$\mathbf{E}_{\boldsymbol{y}}[K(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})},g)] = \mathbf{E}_{\boldsymbol{y}}[\mathbf{E}_{\boldsymbol{z}}\left[\log(g(\boldsymbol{z})) - \log(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})}(\boldsymbol{z}))\right]]$$

- Since $g(\cdot)$ does not depend on the data, this is equivalent to minimising

$$-2 \operatorname{E}_{\boldsymbol{y}}[\operatorname{E}_{\boldsymbol{z}}[\log(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})}(\boldsymbol{z}))]]$$
(1)

(the expected relative Kullback-Leibler distance).

• The best available estimate for (1) is given by

 $-2\log(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})}(\boldsymbol{y})).$

While (1) is a predictive quantity depending on both the data y and an independent replication z, the density and the parameter estimate are evaluated for the same data y.

 \Rightarrow Introduce a correction term.

• Let $ilde{\psi}$ denote the parameter vector minimising the Kullback-Leibler distance.

• Then

$$\begin{split} AIC &= -2\log(f_{\hat{\psi}(\boldsymbol{y})}(\boldsymbol{y})) + 2\operatorname{E}_{\boldsymbol{y}}[\log(f_{\hat{\psi}(\boldsymbol{y})}(\boldsymbol{y})) - \log(f_{\tilde{\psi}}(\boldsymbol{y}))] \\ &+ 2\operatorname{E}_{\boldsymbol{y}}[\operatorname{E}_{\boldsymbol{z}}[\log(f_{\tilde{\psi}}(\boldsymbol{z})) - \log(f_{\hat{\psi}(\boldsymbol{y})}(\boldsymbol{z}))]] \end{split}$$

is unbiased for (1).

- Consider the regularity conditions
 - ψ is a k-dimensional parameter with parameter space $\Psi = \mathbb{R}^k$ (possibly achieved by a change of coordinates).
 - y consists of independent and identically distributed replications y_1, \ldots, y_n .
- In this case, the AIC simplifies since

$$2 \operatorname{E}_{\boldsymbol{z}} \left[\log(f_{\tilde{\boldsymbol{\psi}}}(\boldsymbol{z})) - \log(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})}(\boldsymbol{z})) \right] \stackrel{a}{\sim} \chi_k^2,$$
$$2 \left[\log(f_{\hat{\boldsymbol{\psi}}(\boldsymbol{y})}(\boldsymbol{y})) - \log(f_{\tilde{\boldsymbol{\psi}}}(\boldsymbol{y})) \right] \stackrel{a}{\sim} \chi_k^2$$

and therefore an (asymptotically) unbiased estimate for (1) is given by

$$AIC = -2\log(f_{\hat{\psi}(\boldsymbol{y})}(\boldsymbol{y})) + 2k.$$

• In linear mixed models, two variants of AIC are conceivable based on either the marginal or the conditional distribution.

• The marginal AIC relies on the marginal model

 $oldsymbol{y} \sim \mathrm{N}(oldsymbol{X}oldsymbol{eta},oldsymbol{V})$

and is defined as

$$mAIC = -2l(\boldsymbol{y}|\boldsymbol{\hat{\beta}}, \boldsymbol{\hat{\theta}}) + 2(p+q),$$

where the marginal likelihood is given by

$$l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}) = -\frac{1}{2}\log(|\hat{\boldsymbol{V}}|) - \frac{1}{2}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'\hat{\boldsymbol{V}}^{-1}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})$$

and $p = \dim(\boldsymbol{\beta})$, $q = \dim(\boldsymbol{\theta})$.

• The conditional AIC relies on the conditional model

$$\boldsymbol{y}|\boldsymbol{b} \sim N(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{b}, \sigma^2 \boldsymbol{I})$$

and is defined as

$$cAIC = -2l(\boldsymbol{y}|\boldsymbol{\hat{\beta}}, \boldsymbol{\hat{b}}, \boldsymbol{\hat{\theta}}) + 2(\rho+1),$$

where

$$l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}) = -\frac{n}{2}\log(\hat{\sigma}^2) - \frac{1}{2\hat{\sigma}^2}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} - \boldsymbol{Z}\hat{\boldsymbol{b}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} - \boldsymbol{Z}\hat{\boldsymbol{b}})$$

is the conditional likelihood and

$$\rho = \operatorname{trace} \left(\begin{pmatrix} \boldsymbol{X}'\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{Z} \\ \boldsymbol{Z}'\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{Z} + \sigma^2 \boldsymbol{D} \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{X}'\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{Z} \\ \boldsymbol{Z}'\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{Z} \end{pmatrix} \right)$$

are the effective degrees of freedom (trace of the hat matrix).

- The conditional AIC seems to be recommended when the model shall be used for predictions with the same set of random effects (for example in penalised spline smoothing).
- The marginal AIC is more plausible when observations with new random effects shall be predicted (e.g. new individuals in longitudinal studies).
- Still, both variants have been considered in both situations and seem to work reasonably well (see for example Wager, Vaida & Kauermann, 2007).

Marginal AIC

• Consider the special case of comparing

$$M_1: \boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{b} + \boldsymbol{\varepsilon}, \quad \boldsymbol{b} \sim \mathrm{N}(\boldsymbol{0}, \tau^2 \boldsymbol{I})$$

versus

$$M_2: \boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

i.e. decide on the inclusion of a random effect.

• Corresponds to the decision $\tau^2 > 0$ (M_1) versus $\tau^2 = 0$ (M_2) .

• Model M_1 is preferred over M_2 when

$$\begin{split} mAIC_1 < mAIC_2 & \Leftrightarrow -2l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\tau}}^2, \hat{\sigma}_1^2) + 2(p+2) < -2l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}_2, \boldsymbol{0}, \hat{\sigma}_2^2) + 2(p+1) \\ & \Leftrightarrow 2l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\tau}}^2, \hat{\sigma}_1^2) - 2l(\boldsymbol{y}|\hat{\boldsymbol{\beta}}_2, \boldsymbol{0}, \hat{\sigma}_2^2) > 2. \end{split}$$

- The left hand side is simply the test statistic for a likelihood ratio test on $\tau^2 = 0$ versus $\tau^2 > 0$.
- Under standard asymptotics, we would have

$$2l(\boldsymbol{y}|\boldsymbol{\hat{\beta}}_{1}, \hat{\tau}^{2}, \hat{\sigma}_{1}^{2}) - 2l(\boldsymbol{y}|\boldsymbol{\hat{\beta}}_{2}, 0, \hat{\sigma}_{2}^{2}) \overset{a, H_{0}}{\sim} \chi_{1}^{2}$$

and the marginal AIC would have a type 1 error of

 $P(\chi_1^2 > 2) \approx 0.1572992$

• Common interpretation: AIC selects rather too many than too few effects.

- In contrast to the regularity conditions for likelihood ratio tests, we are testing on the boundary of the parameter space!
- The likelihood ratio test statistic is no longer χ^2 -distributed but (approximately) follows a mixture of a point mass in zero and a scaled χ_1^2 variable.
- The point mass in zero corresponds to the probability

$$P(\hat{\tau}^2 = 0)$$

that is typically larger than 50%.

• Similar difficulties appear in more complex models with several variance components when deciding on zero variances.

- The classical assumptions underlying the derivation of AIC are also not fulfilled.
- The high probability of estimating a zero variance yields a bias towards simpler models:
 - The marginal AIC is positively biased for twice the expected relative Kullback-Leibler-Distance.
 - The bias is dependent on the true unknown parameters in the random effects covariance matrix $m{D}$ and this dependence does not vanish asymptotically.
 - Compared to an unbiased criterion, the marginal AIC favors smaller models excluding random effects.
- This contradicts the usual intuition that the AIC picks rather too many than too few effects.

• Simulated example: $y_i = m(x) + \varepsilon$ where

$$m(x) = 1 + x + 2d(0.3 - x)^2.$$

• The parameter d determines the amount of nonlinearity.

Conditional AIC

- Vaida & Blanchard (2005) have shown that the conditional AIC is asymptotically unbiased for the expected relative Kullback Leibler distance for given random effects covariance matrix D.
- If D is estimated consistently, one would hope that their result carries over to the case of estimated \hat{D} .
- Simulation results seem to indicate that this is not the case.

- Surprising result of the simulation study: The complex model including the random effect is chosen whenever $\hat{\tau}^2 > 0$.
- If $\hat{\tau}^2 = 0$, the conditional AICs of the simple and the complex model coincide (despite the additional parameters included in the complex model).
- The observed phenomenon could be shown to be a general property of the conditional AIC:

$$\hat{\tau}^2 > 0 \quad \Leftrightarrow \quad cAIC(\hat{\tau}^2) < cAIC(0)$$

 $\hat{\tau}^2 = 0 \quad \Leftrightarrow \quad cAIC(\hat{\tau}^2) = cAIC(0).$

• Principal difficulty: The degrees of freedom in the cAIC are estimated from the same data as the model parameters.

• Liang et al. (2008) propose a corrected conditional AIC, where the degrees of freedom ρ are replaced by

$$\Phi_0 = \sum_{i=1}^n \frac{\partial \hat{y}_i}{\partial y_i} = \operatorname{trace}\left(\frac{\partial \hat{\boldsymbol{y}}}{\boldsymbol{y}}\right)$$

if σ^2 is known.

• For unknown $\sigma^2,$ they propose to replace $\rho+1$ by

$$\Phi_1 = \frac{\tilde{\sigma}^2}{\hat{\sigma}^2} \operatorname{trace}\left(\frac{\partial \hat{\boldsymbol{y}}}{\boldsymbol{y}}\right) + \tilde{\sigma}^2 (\hat{\boldsymbol{y}} - \boldsymbol{y})' \frac{\partial \hat{\sigma}^{-2}}{\partial \boldsymbol{y}} + \frac{1}{2} \tilde{\sigma}^4 \operatorname{trace}\left(\frac{\partial^2 \hat{\sigma}^{-2}}{\partial \boldsymbol{y} \partial \boldsymbol{y}'}\right),$$

where $\tilde{\sigma}^2$ is an estimate for the true error variance.

- The corrected conditional AIC shows satisfactory theoretical properties.
- However, it is computationally cumbersome:
 - The first and second derivative are not available in closed form and must be approximated numerically (by adding small perturbations to the data).
 - Numerical approximations require n and 2n model fits. In our example, computing the corrected conditional AICs would take about 110 days.
 - In addition, the numerical derivatives were found to be instable in some situations (for example the random intercept model with small cluster sizes).

Application: Childhood Malnutrition in Zambia

• Model equation:

$$zscore_i = \mathbf{x}'_i \mathbf{\beta} + m_1(cage_i) + m_2(cfeed_i) + m_3(mage_i) + m_4(mbmi_i) + m_5(mheight_i) + b_{s_i} + \varepsilon_i.$$

• Parametric effects are not subject to model selection.

 $\Rightarrow 2^6 = 64$ models to consider in the model comparison.

• The six best fitting models:

							ML		REML	
	cfeed	cage	mage	mheight	mbmi	district	cAIC	mAIC	cAIC	mAIC
14	+	+	_	_	_	+	4125.78	4151.10	4125.78	4173.72
34	+	+	+	-	_	+	4125.78	4153.10	4125.78	4175.72
36	+	+	_	+	_	+	4125.78	4153.10	4125.78	4175.72
38	+	+	_	-	+	+	4125.78	4153.10	4125.78	4175.72
54	+	+	+	+	_	+	4125.78	4155.10	4125.78	4177.72
56	+	+	+	-	+	+	4125.78	4155.10	4125.78	4177.72
58	+	+	_	+	+	+	4125.78	4155.10	4125.78	4177.72
64	+	+	+	+	+	+	4125.78	4157.10	4125.78	4179.72

Summary

- The marginal AIC suffers from the same theoretical difficulties as likelihood ratio tests on the boundary of the parameter space.
- The marginal AIC is biased towards simpler models excluding random effects.
- The conventional conditional AIC tends to select too many variables.
- Whenever a random effects variance is estimated to be positive, the corresponding effect will be included.
- The corrected conditional AIC rectifies this difficulty but comes at a high computational price.

- Open questions:
 - Is there a computationally advantageous version / representation of the corrected conditional AIC?
 - Can the marginal AIC be corrected?
 - Is there a working likelihood ratio test based on the corrected conditional AIC?

References

- Greven, S. & Kneib, T. (2009): On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models. Technical Report.
- Liang, H., Wu, H. & Zou, G. (2008): A note on conditional AIC for linear mixedeffects models. Biometrika 95, 773–778.
- Vaida, F. & Blanchard, S. (2005): Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370.
- Wager, C., Vaida, F. & Kauermann, G. (2007): Model selection for penalized spline smoothing using Akaike information criteria. Australian and New Zealand Journal of Statistics 49, 173–190.
- A place called home:

```
http://www.stat.uni-muenchen.de/~kneib
```