The Three Horsemen of Riches:
Plague, War, and Urbanization in Early Modern Europe

Nico Voigtländer‡ Hans-Joachim Voth‡

First draft: September 2007
This draft: May 2009

Abstract

How did Europe overtake China? We construct a simple Malthusian model with two sectors and use it to explain why European per capita incomes and urbanization rates surged ahead of Chinese ones. Productivity growth can only explain a small fraction of the rise in living standards. Population dynamics – changes of the birth and death schedules – were far more important drivers of the long-run Malthusian equilibrium. The Black Death raised wages substantially, creating important knock-on effects. Because of Engel’s Law, demand for urban products increased, raising urban wages and attracting migrants from rural areas. European cities were unhealthy, especially compared to Far Eastern ones. Urbanization pushed up aggregate death rates. This effect was reinforced by more frequent wars (fed by city wealth) and disease spread by trade. Thus, higher wages themselves reduced population pressure. We show in a calibration exercise that our model can account for the sustained rise in European urbanization as well as permanently higher per capita incomes in 1700, without technological change. Wars contributed importantly to the ’Rise of Europe,’ even if they had negative short-run effects.

JEL: E27, N13, N33, O14, O41

Keywords: Malthus to Solow, Long-run Growth, Great Divergence, Epidemics, Demographic Regime

*We would like to thank Steve Broadberry, Greg Clark, Nick Crafts, Angus Deaton, Matthias Doepke, Oded Galor, Bob Hall, Nobu Kiyotaki, Kiminori Matsuyama, Joel Mokyr, Rachel Ngai, Ron Lee, Ed Prescott, Diego Puga, Michèle Tertilt, Jaume Vento- ra, David Weil, and Fabrizio Zilibotti for helpful comments and suggestions. Seminar audiences at Brown University, Humboldt University, the Minnesota Macro Workshop, Northwestern University, Pompeu Fabra, UC Berkeley, UCLA, Princeton, and Zürich University offered helpful advice. Morgan Kelly shared unpublished results; Mrdjan Mladjan provided outstanding research assistance. Financial support by the Center for International Economics at UPF (CREI) is gratefully acknowledged.

†UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA 90095. Email: nico.v@anderson.ucla.edu
‡Department of Economics, Universitat Pompeu Fabra, c/Ramon Trias Fargas 25-27, E-08005 Barcelona, Spain. Email: voth@mit.edu
1 Introduction

In 1400, Europe’s potential to overtake the rest of the world must have seemed limited. The continent was politically fragmented, torn by military conflict, and dominated by feudal elites. Literacy was low. Other regions, such as China, appeared more promising. It had a track record of useful inventions, from ocean-going ships to gunpowder and advanced clocks (Mokyr, 1990). The country was politically unified, and governed by a career bureaucracy chosen by competitive exam (Pomeranz, 2000). In 14th century Europe, on the other hand, few if any of the variables that predict modern-day riches would suggest that its starting position was favorable.1 By 1700 however, and long before it industrialized, Europe had pulled ahead decisively in terms of per capita income – an early divergence preceded the “Great Divergence” that emerged with the Industrial Revolution (Broadberry and Gupta, 2006; Diamond, 1997).2 By this date, England’s per capita income was more than twice that of China or India, European silver wages were markedly higher, and Western European urbanization rates were more than double those in China (Broadberry and Gupta, 2006; Maddison, 2001).

This early divergence matters in its own right. It laid the foundations for the European conquest of vast parts of the globe (Diamond, 1997). More importantly, it may have contributed to the even greater differences in per capita incomes that followed. In many unified growth models, an initial rise of per capita income is crucial for starting the transition to self-sustaining growth (Galor and Weil, 2000; Hansen and Prescott, 2002). There is growing evidence that a country’s development in the more distant past is a powerful predictor of its current income position (Comin, Easterly, and Gong, 2006). Voigtländer and Voth (2006) develop a model in which greater industrialization probabilities are the direct consequence of higher starting incomes.3 If we are to understand why Europe achieved the transition from "Malthus to Solow" before other regions of the world, explaining the initial divergence of incomes is crucial.

In this paper, we identify the early divergence as a new puzzle, and argue that its solution can help explain why the most advanced parts of Europe in terms of income were far ahead of the rest of the world by 1700 already. The early modern divergence represents a major puzzle for Malthusian models because per capita incomes should not be able to rise substantially above subsistence for an extended period. Before the fertility transition, the ’fertility of wombs’ was necessarily greater than the ’fertility of minds.’ Galor (2005) estimates that TFP grew by no more than 0.05-0.15% p.a. in the pre-industrial era. Over a century, productivity could increase by 5-16%. Maximum fertility rates per female, by contrast, are around 7. Even with only 3 surviving children per woman, a human population growing unconstrained would quadruple after 100 years.4 In the words of HG Wells, earlier generations should have always "spent the great gifts of science as rapidly as it got them in a mere insensate multiplication of the common life" (Wells, 1905).5

1For a recent overview, see Barro (1997); Bosworth and Collins (2003), and Sala-i-Martin, Doppelhofer, and Miller (2004).
2Pomeranz (2000), comparing the Yangtze Delta with England, argues the opposite. The consensus now is that his revisionist arguments do no stand up to scrutiny (Allen, 2004; Allen, Bengtsson, and Dribe, 2005; Broadberry and Gupta, 2006).
3Allen (2006) has argued that high wages of artisans in Britain before 1800 were responsible for skill-replacing technological change during the Industrial Revolution.
4Assuming a generation length of 25 years.
5This is the intuition behind Ashraf and Galor (2008), who test for long-term stagnation of incomes despite variation in soil
Nonetheless, incomes in many European countries increased markedly during the early modern period. Maddison (2007) estimates that Western European per capita incomes on average grew by 30%. In the most successful economies, they more than doubled. When English population returned to pre-plague levels (some time after 1600), GDP was approximately 80 percent higher than it had been on the eve of the plague. The available data are imperfect, but knowledgeable contemporary observers detected the same trend. In 1750s England, Henry Fielding saw a "torrent of luxury which of late years hath poured itself into this nation ..." (Fielding, 1751, p. 6). Overall, and despite the logic of the Malthusian world, higher p.c. production accounted for almost half of the total gain in European output between 1500 and 1700. How could marked rises in living standards be sustained over such a long period, despite the potential for population growth to erode all gains quickly?

We argue that the Black Death in Europe marked a turning point. It created a new mortality regime with permanently higher death rates. Malthus (1826) argued that a number of factors can keep population pressure in check: "vicious customs with respect to women, great cities, unwholesome manufactures, luxury, pestilence, and war." We focus on three – great cities, pestilence, and war. Because the plague shock was large, with up to half of the population dying, land-labor ratios and wages increased substantially. The real wage gains after the plague were so large that even rapid population growth could not reverse them quickly. Wages remained high for more than a generation or two. High wages were partly spent on manufactured goods, largely produced in towns. Cities in early modern Europe were death-traps, with mortality far exceeding fertility rates. Had it not been for steady in-migration from the countryside, they would have disappeared entirely. Thus, new demand for manufactures pushed up average death rates, which in turn made higher incomes sustainable. Growth in per capita incomes in this context implied a transition to a higher equilibrium level; however, it was not an open-ended process. We capture these key elements in a simple two-sector model. Effectively, Engel’s law ensured that the plague’s positive effect on wages did not wear off entirely as a result of higher fertility and lower mortality. Because changes in the composition of demand increased urbanization rates, average death rates rose, resulting in permanently lower population pressure.

This 'benign' direct effect of urbanization was reinforced by two factors – war and trade. Between 1500 and 1800, the continent’s great powers were fighting each other on average for nine years out of every ten (Tilly, 1992). City wealth fueled early modern Europe’s endemic warfare. Growing urban centers could be taxed more easily than farmers in the countryside – the urban economy was highly monetized. Cities also offered a chance to tap credit markets. Many early modern wars were fought with the funds provided by Genoese banking families, Amsterdam financiers, the Fuggers, and the Medici. In contrast to many papers focused on the interaction between domestic armed conflict and income. Many find that civil wars decline in frequency after positive growth shocks (Collier and Hoeffler, 1998, 2004; Miguel, Satyanath, and Sergenti, 2004). In contrast, Grossman (1991) has argued that higher incomes should promote wars ("rapacity" effect), as there is more to fight over. As is generally recognized, inter-state conflict is different – and early modern wars were not money-making ventures; rather, city wealth provided to means for existing rivalries to result in war.

6The rest was driven by population growth. Of the total rise, per capita income gains were responsible for 42% in Western Europe (Maddison, 2007).
7Numerous studies have focused on the interaction between domestic armed conflict and income. Many find that civil wars decline in frequency after positive growth shocks (Collier and Hoeffler, 1998, 2004; Miguel, Satyanath, and Sergenti, 2004). In contrast, Grossman (1991) has argued that higher incomes should promote wars ("rapacity" effect), as there is more to fight over. As is generally recognized, inter-state conflict is different – and early modern wars were not money-making ventures; rather, city wealth provided to means for existing rivalries to result in war.
identifying a negative effect of wars, civil wars, disease, and epidemics on income levels in economies today, we argue that these factors raised wages in early modern times—the Horsemen of the Apocalypse effectively acted as Horsemen of Riches. This is because the effects of early modern warfare were similar to a neutron bomb—it primarily killed people, by spreading disease. Economic devastation was limited. Cities also acted as centers for long-distance trade. Both war and trade spread epidemics. The more effectively they did so, the higher death rates overall were, and the more readily a rise in incomes and in the urban share of the population could be sustained. In this way, the initial rise in wages after the Black Death was made permanent by the ‘Horsemen effect,’ which pushed up mortality rates and produced higher per capita incomes. Thus, Europe experienced a simultaneous rise in war frequency, in deadly disease outbreaks, and in urbanization. Unsurprisingly, where data exist after 1500, the trend in life expectancy was downwards (figure 1). In a calibration exercise, we show that the direct effect of city mortality mattered; yet the effects of war and trade were probably even larger.

The great 14th century plague also affected China, as well as other parts of the world (McNeill, 1977). Why did it not have the same effects there? Similar shocks did not lead to permanently higher death rates for two reasons. Chinese cities were far healthier than European ones, for a number of reasons involving cultural practices and political conditions. Also, political fragmentation in Europe ensured continuous warfare once the growing wealth of cities could be tapped by belligerent princes. This was the case after 1400. China, on the other hand, was politically unified, except for brief spells of turmoil. There was no link between city growth and the frequency of armed conflict. In Western Europe, a unique set of geographical and political starting conditions interacted with the plague shock to make higher per capita living standards sustainable; where these starting conditions were absent, no transition to higher incomes occurred.

The mechanism presented in this paper is not the only one that can deliver a divergence in per capita incomes without technological change. In addition to high death rates, Europeans curtailed birth rates. In contrast to many other regions of the world, socio-economic factors, and not biological fertility, determined the age at first marriage for women. This is what Hajnal (1965) termed the "European Marriage Pattern." While important in raising per capita incomes (Voigtländer and Voth, 2009), it can account for no more than half of the increase in output per head after 1400.

We are not the first to argue that higher death rates can have beneficial economic effects. Young (2005) concludes that HIV in Africa has a silver lining because it reduces fertility rates, increasing the scarcity of labor and thereby boosting future consumption of survivors. Clark (2007) highlights the benign effect of higher death rates on living standards in the Malthusian period. Lagerlöf (2003) also examines the interplay of growth and epidemics, but argues for the opposite causal mechanism. He concludes that a decline in the severity of epidemics can foster growth if they stimulate population growth and human capital acquisition. Brainerd and Siegler (2003) study the outbreak of "Spanish flu" in the US, and conclude that the states worst-hit in 1918 grew markedly faster subsequently. Compared to these papers, we make three

8Murdoch and Sandler (2002); Hoeffler and Reynal-Querol (2003); Hess (2003).
contributions. First, we use the Malthusian model to explain rising wages, not stagnation. Second, we are the first to demonstrate how specific European characteristics – political and geographical – interacted with a large mortality shock to drive up incomes over the long run, leading to the ‘First Divergence.’ Also, we calibrate our model to show that it can account for a large part of the ‘Rise of Europe’ in the early modern period.

Other related literature includes the unified growth models of Galor and Weil (2000) and Galor and Moav (2002). In both, before fertility limitation sets in and growth becomes rapid, a state variable gradually evolves over time during the Malthusian regime, making the final escape from stagnation more and more likely. In Galor and Weil (2000), Jones (2001), and Kremer (1993), the rise in population which in turn produces more ideas is a key factor; in Galor and Moav (2002), it is the quality of the population. Cervellati and Sunde (2005) argue that the mortality decline from the 19th century onwards was an important element in the transition to self-sustaining growth, by reducing fertility and increasing human capital formation. Hansen and Prescott (2002) assume that productivity in the manufacturing sector increases exogenously, until part of the workforce switches out of agriculture; Desmet and Parente (2009) argue that market size was key, interacting with product and process innovation in fostering takeoff. Our model shows that technological change cannot explain rising p.c. income in early modern times, and emphasizes changes in death rates as a key determinant of output per head. One of the key advantages is that it can be applied to the cross-section of growth outcomes. In contrast, the majority of existing unified growth papers implicitly use the world as their unit of observation. We deliberately limit our attention to the early modern divergence between Europe and China. While models such as Kremer (1993) and Hansen and Prescott (2002) try to explain the entire transition to self-sustaining growth, we simply ask what allowed an initial divergence of incomes to occur, long before technological change became rapid.

Our paper adds to the literature on the origins of European exceptionalism. Diamond (1997) argued that a combination of geographical factors with grain and animal endowments in pre-historic times strongly influenced which continent did best after 1500. Mokyr (1990) emphasized Europe’s superior record of invention after 1300. Jones (1981) sees a relatively liberal political environment as key. In contrast to the Far East, European rulers stifled entrepreneurs and traders much less. In the same vein, Acemoglu, Johnson, and Robinson (2005) argued that in Northwestern Europe, Atlantic trade helped to constrain monarchical powers, accelerating growth after 1500. Their contribution reverses the conclusion of an earlier literature, which had questioned the discoveries’ importance for the ‘Rise of Europe’ (O’Brien, 1982; Engerman, 1972). Our paper emphasizes a combination of geographical and political factors, as well as the peculiar conditions of urban life. These starting conditions interact with the exogenous shock of the plague in a unique way that could not have occurred in the consolidated imperial states of the Far East. The large number of European states ensured that higher incomes translated into more wars, and the filth and overcrowding of European cities turned one-off increases in wages into permanently higher incomes.

9Clark (2007) finds some evidence in favor of the Galor-Moav hypothesis, with the rich having more surviving offspring.

10Galor and Weil (2000) distinguish between a Malthusian, a Post-Malthusian, and a Solow period of growth. We argue in effect that a period of Malthusian dynamism superseded aeons of Malthusian stagnation, and that doing so prepared the ground for the Post-Malthusian world.
We proceed as follows. The next section provides a detailed discussion of the historical context. Section 3 introduces a simple two-sector model that highlights the main mechanisms. In section 4, we calibrate our model and show that it captures the salient features of the ‘First Divergence.’ The final section summarizes our findings.

2 Historical Context and Background

A number of factors contributed to the ‘First Divergence’ under Malthusian conditions: The impact of the plague, the peculiarities of European geography and European cities, and interaction effects with the political and geographical environment. In this section, we first describe Europe’s comparative economic performance after 1300, emphasizing its record of urban growth and high per capita incomes, and contrast it with Chinese stagnation. We then discuss the four central elements in our story - the impact of the plague, Europe’s high urban mortality penalty, and the effects of war and trade.

The First Divergence

That Europe had pulled ahead of the rest of the world by 1700 in terms of per capita living standards is now widely accepted. While Pomeranz (2000) argued that farmers in the Yangtze delta in China earned the same wage in terms of calories as English farmers, there is now a broad consensus that overturns this argument. First, better data strongly suggest that English wages expressed as units of grain or rice were markedly higher. Broadberry and Gupta (2006) calculate Chinese grain-equivalent wages were 87% of English ones by 1550-1649, and fell to 38% in 1750-1849. Second, since foodstuffs were largely non-traded goods, they are a poor basis for comparison. Silver wages were much higher in Europe than in China. According to Broadberry and Gupta, they fell from 39% of the English wage to a mere 15%. Finally, urbanization rates have been widely used as an indicator of economic development (e.g., Acemoglu et al., 2005). By this measure, Europe overtook China at some point between 1300 and 1500, extending its lead thereafter (see below, in particular figure 2).

Real-wage gains after the Black Death are well-documented. During the "golden age of labor" (Postan, 1972) in England after 1350, wages approximately doubled (Phelps-Brown and Hopkins, 1981; Clark, 2005). Afterwards, the older Phelps-Brown and Hopkins series suggests a strong decline. Clark (2005) shows that wages fell back from their peak somewhat, but except for crisis years around the English Civil War, they remained above their pre-plague level. Loschky’s (1980) reworking of the data suggest gains of between a quarter and more than sixty percent after 1600. In this sense, the existing wage series offer qualified support to the optimistic GDP figures provided by Maddison (2007), who estimates that European p.c. income grew by one third between 1500 and 1700.

11 While Broadberry and Gupta’s figures for the second period are partly influenced by values from the early 19th century, when industrialization was already under way, it is clear that observations for the 18th century alone would also show a marked advantage.

12 What matters for the predictions of the Malthusian model is per capita output, not wages as such. National income in the aggregate will be equivalent to the sum of wages, rents, and capital payments. Since English population surpassed its 1300 level in the eighteenth century, it is likely that rental payments were higher, too.
Not all of Europe did equally well. Allen (2001) found that real wage gains for craftsmen after the Black Death were only maintained in Northwestern Europe. In Southern Europe – especially Italy, but also Spain – stagnation and decline after 1500 are more noticeable. Described by Acemoglu et al. (2005) as the ’Rise of Atlantic Europe,’ the North-West overtook Southern Europe in terms of urbanization rates and output.

Every European country with the exception of Italy had higher per capita GDP in 1700 than in 1500 - despite rising in population. This indirectly suggests that standard Malthusian predictions did not hold during the period. Maddison assumes that subsistence is equivalent to approximately $400 US-Geary Khamy dollars. Even relatively poor countries like Spain and Portugal had per capita incomes more than twice as high in 1700.

Urbanization

What had been a few urban nuclei in Europe in the medieval period evolved into a dense network of urban centers by 1700. Historians of urban growth have used different definitions of what a town or city is. However, there is a broad consensus that European urbanization rates increased substantially during the early modern period. De Vries (1984) uses a cut-off of 10,000 inhabitants to define cities. He shows that the proportion of Europeans living in cities grew from 5.6 to 9.2 percent between 1500 and 1700 – a gain of 3.6 percent. De Vries’ figures only start in 1500. To provide earlier data, we construct a comprehensive series of European urbanization based on Bairoch, Batou, and Chèvre (1988). Figure 2 shows the data, and appendix A.1 provides a detailed description. The Bairoch et al. numbers – based on cities with a population of more than 5,000 – imply an increase in urbanization of 5.3 percent between 1300 and 1700. They also suggest a marked acceleration of urban growth after 1350. We use our Bairoch et al. based figures to extrapolate De Vries’ numbers. This exercise reveals an increase of urbanization in cities with more than 10,000 inhabitants from about 3 to 9 percent throughout the three centuries after the Black Death. Medieval Europe did not experience a similar upward trend in urban population shares. The period of the so-called ’Commercial Revolution’ (Lopez, 2008), from 1000 to 1300, showed some gains in urbanization rates. However, sustained, rapid increases in the percentage of the population living in urban areas only occurred after the Black Death.13

Other regions of the world also did not experience sustained, rapid urban growth. The proportion of the Chinese population living in cities reached 3 percent in the mid-T’ang dynasty (762), 3.1 percent in the mid-Sung dynasty (1120), and probably stagnated at the 3-4 percent level thereafter until the 19th century (Maddison, 2001; see figure 2). Eastern Europe had low rates of urbanization overall, and it only saw minor increases after 1500. De Vries (1984) shows gains of 1.5% for the period 1500-1700. Similarly, the Middle East – while highly urbanized on some measures – stagnated in terms of urbanization between 1100 and 1800 (Bosker, Buringh, and van Zanden, 2008).

13Urban growth per century was about three times faster in 1300-1700 than in 1000-1300.
European outperformance reflected a number of factors. Urbanization rates indicate overall economic performance. Townsmen need to be fed, and the greater productivity in agriculture, the higher the proportion of population living in cities that can be sustained (Wrigley, 1985). In many European countries, regulations and the threat of wartime destruction pushed manufacturing activities and market exchange into the cities. Even if some manufacturing activity was performed in the countryside ("proto-industrialization," cf. Ogilvie and Cerman, 1996), urbanization is a useful proxy for the rise of non-agricultural output. In China, periodic markets in the countryside served a function monopolized by European cities. This reduced relative urbanization rates (Rozman, 1973). Finally, European cities offered a unique benefit not found in other parts of the world – a chance to escape servitude. As a general rule, staying within the city walls for one year and one day made free men out of peasants bound to the land and their lord. In contrast, as one leading historian put it, "Chinese air made nobody free" (Mark Elvin, cited in Bairoch, 1991).

The Plague

The plague arrived in Europe from the Crimea in December 1347. Tartar troops besieging the Genoese trading outpost of Caffa suffered from the disease. In an early example of biological warfare, the Tartars used trebuchets to throw disease-infected corpses over the city wall. Soon, the defenders caught the disease. It spread with the fleeing Genoese along the main trading routes, first to Constantinople, then to Sicily and Marseille, then mainland Italy, and finally the rest of Europe. By December 1350, it had reached the North of England and the Baltic (McNeill, 1977).

Mortality rates amongst those infected varied from 30 to 95%. Bubonic and pneumonic forms of the plague both contributed to surging mortality. The bubonic form was transmitted by fleas and rats carrying the plague bacterium (Yersinia pestis). Infected fleas would spread the disease from one host to the next. When rats died, fleas tried to feast on humans, infecting them in the process. In contrast, pneumonic plague spread from person to person, via the tiny droplets transmitted by the coughing of the infected. Transmission and mortality rates were particularly high for the pneumonic form of the plague.14

There appear to have been few differences in mortality rates between social classes, age groups, or between rural and urban areas. Some city-dwellers tried to escape the plague, by withdrawing to country residences (described in Boccaccio’s Decameron). It is unclear how often these efforts succeeded. Only a handful of areas in the Low Countries, in Southwest France and in Eastern Europe were spared the effects of the Black Death.

We do not have good estimates of aggregate mortality for medieval Europe. Most estimates put population losses at 15 - 25 mio., out of a total population of roughly 40 mio. people. Approximately half of the English clergy died, and in Florence and Venice, death rates have been estimated as high as 60-75% (Ziegler, 1969; Benedictow, 2004).

14The exact nature of the disease that erupted in 1347 is still debated. For a summary of some of the arguments, cf. Herlihy (1997).
City Mortality

European cities were deadly places. In 1841, when large inflows of labor had put particular pressure on urban infrastructures, life expectancy in Manchester was a mere 25 years. At the same time, the national average was 42, and in rural Surrey, 45 years. While available figures are not as precise, early modern cities were probably just as unhealthy. Life expectancy in London, 1580-1799, fluctuated between 27 and 28 years (Landers, 1993). Nor were provincial towns much more fortunate. York had similar rates of infant mortality (Galley, 1998). Clark (2009) finds that early modern English urban mortality rates may have been up to 1.8 times the level in the countryside. For France, the practice of wet-nursing (sending children from cities for breast-feeding to the countryside) complicates comparisons. A comprehensive survey of rural-urban mortality differences estimates that in early modern Europe, life expectancy was approximately 50 percent higher in the countryside than in cities (Woods, 2003). Thomas Malthus emphasized that city life was a potent force for curtailing population pressure, and that infant mortality responded to the pressures of city life quickly: “There certainly seems to be something in great towns, and even moderate towns, peculiarly unfavourable to the very early stages of life.”

No such differential existed in China. Some mortality estimates have been derived from the family trees of clans (Tsui-Jung, 1990), using data from the 15th to the 19th century. Chinese infant mortality rates were lower in cities than in rural areas, and life expectancy was similar or higher. Members of Beijing’s elite in the 18th century experienced infant mortality rates that were less than half those in France or England. On average, during the period 1644-1899, men born in Beijing had a life expectancy at birth of 31.8 years. In rural Anhui, the corresponding figure was 31. While the data is not necessarily representative, other evidence lends indirect support. For example, life expectancy in Beijing in the 1920s and 1930s was higher than in the countryside.

In Japan, where some data for 18th century Nakahara and some rural villages survives, city dwellers lived as long as their cousins in the countryside. Some recent evidence (Hayami, 2001) on adult mortality questions if Far Eastern cities were indeed healthier than the countryside, as some scholars have argued (Hanley, 1997; Macfarlane, 1997). On balance, it seems unlikely that there was a large urban penalty in China and Japan. Principal reasons probably include the transfer of "night soil" (i.e., human excrement) out of the city and onto the surrounding fields for fertilization, relatively high standards of personal hygiene, and a diet rich in vegetarian food. Since the proximity of animals is a major cause of disease, all these factors probably combined to reduce the urban mortality burden in the Far East.

High urban mortality in Europe also reflected the way in which cities were built. In the words of

15There is not enough data to derive life expectancy. However, infant mortality – a prime determinant of life expectancy – was in the same range in provincial towns and London.

16Malthus (1973, p. 242). In the first edition, he had remarked: "These facts seem to show that population increases exactly in the proportion that the two great checks to it, misery and vice, are removed... The unwholesomeness of towns, to which some persons are necessarily driven from the nature of their trades, must be considered as a species of misery" (Malthus, 1798, p. 34).

17Woods (2003). The average infant mortality rate in the English cities listed before 1800 is 262; for Beijing, it is 104.

18Lee and Feng (1999). They give a range for Beijing from 27.2 to 34.7, depending on the subperiod. The corresponding figures for England were 27-28 for urban areas such as London and York, and 36 for the country as a whole.
one prominent urban historian, in "1600, just as in 1300, Europe was full of cities girded by walls and moats, bristling with the towers of churches" (De Vries, 1976). In China, too, city walls were widely used throughout the early modern period, partly because of their symbolic value for administrative centers of the Empire. However, since the country’s unification under the Qin Dynasty in the third century BC, the defensive function of city walls declined. With relative ease, houses and markets spread outside the city walls. Because Far Eastern cities could expand beyond the old fortifications, city growth did not push up population densities in the same way as in Europe. This reduced overcrowding and kept mortality rates low.

Wars, Trade and Disease

Early modern armies killed many more Europeans by the germs they spread than through warfare. The Black Death had originally arrived with a besieging Tartar army in the Crimea. As a result of troop movements, isolated communities in the countryside would suddenly be exposed to new germs as soldiers foraged or were billeted in farmhouses. The effect could be as deadly as it had been in the New World, where European diseases killed millions (Diamond, 1997). In one famous example, it has been estimated that a single army of 6,000 men, dispatched from La Rochelle to deal with the Mantuan Succession, spread plague that may have killed up to one million people (Landers, 2003). As late as during the Napoleonic wars, typhus, smallpox and other diseases spread by armies marauding across Europe proved far deadlier than guns and swords. In contrast, battlefield casualties were generally low, compared to aggregate death rates. While individual campaigns could be deadly, armies were too small, and their members too old, to influence aggregate mortality rates significantly.

Civilian population losses in wartime could be heavy. The Holy Roman Empire lost 5-6 mio. out of 15 mio. inhabitants during the Thirty Years War; France lost 20% of its population in the late 16th century as a result of civil war. The figures for early 17th century Germany and 16th century France imply that aggregate mortality rates rose by 50 to 100%, and that these rates were sustained for decades. For the early and mid-nineteenth century, we have additional data on the indirect, country-wide rise in mortality from warfare. In the Swedish-Russian war of 1808-09, mortality rates in all of Sweden doubled, almost exclusively through disease. In isolated islands, the presence of Russian troops – without any fighting – led to a tripling of death rates. During the Franco-Prussian and the Austro-Prussian wars later in the 19th century, non-violent death rates increased countrywide by 40-50% (Landers, 2003). These numbers are a lower bound for the impact

19 In some cases, the new suburbs would also be enclosed by city walls (Chang, 1970).

20 Barcelona is one extreme example. After the 1713 uprising, the Bourbon kings did not allow the city to expand beyond its existing walls until 1854. As industrial growth led to an inflow of migrants, living conditions deteriorated considerably (Hughes, 1992).

21 Data on deaths caused by military operations in the early modern period is sketchy. Landers (2003) offers an overview of battlefield deaths. Lindegren (2000) finds that military deaths only raised Sweden’s death rates by 2-3/1000 in most decades between 1620 and 1719, a rise of no more than 5%. Castilian military deaths were 1.3/1000, equivalent to 10 percent of adult male deaths but no more than 3-4% of overall deaths.

22 Since infant mortality was high, by the time men could join the army, many male children had died already. This makes it less likely for military deaths to matter in the aggregate.
of warfare on aggregate death rates before 1700. In the 19th century, warfare was less likely to spread new germs, since areas touched by troop movements were now integrated by extensive road, canal, and railway networks. In our calibrations, we are going to work with conservative assumptions – a rise in death rates by between 40% and 100% during wartime.

The "Great Plague" of 1347-48 was devastating. Less well-known is that a wave of plague outbreaks followed the Black Death. Many of them were linked to warfare, such as the outbreaks in Germany during the Thirty Years War. These plague epidemics only peaked during the early modern period. As shown in figure 3, the number of plague epidemics more than quadrupled between the 14th and the 17th century – from about 150 outbreaks per decade after the "Great Plague" to a peak of 705 in 1630-40. The frequency of outbreaks declined only in the late 17th century and dropped below 50 outbreaks per decade in the 18th century, which occurred mostly in Eastern Europe.

[Insert Figure 3 here]

Warfare is expensive, and it became ever more so during the early modern period. Money formed the sinews of power (Brewer, 1991; Landers, 2003; Tilly, 1992). The "military revolution" produced a need for professional, drilled troops, Italian-style fortifications, ships, muskets, and cannons. To make war, princes needed access to liquid wealth. Silver from the Indies allowed Philip II of Spain to fight in every year of his reign except one. Less fortunate princes tapped cities for the kind of easily mobilized wealth that could be spent on mercenary armies – either directly, through taxation, or through sovereign borrowing. With the growth of urbanization in early modern Europe, the financial means for fighting more, and fighting longer, became more readily accessible.

Compared to warfare, trade in early modern Europe was probably a less effective, but more frequent cause of disease. The Black Death in the 14th century spread along trade routes (Herlihy, 1997). The close link between trade and infectious disease is the reason why quarantine measures became increasingly common as time wore on. The last outbreak in Europe occurred in Marseille in 1720, and is also linked to long-distance trade. A plague ship from the Levant, with sufferers on board, was first quarantined, only to have the restriction lifted as a result of pressure by merchants. It is estimated that 50,000 out of 90,000 inhabitants died in the subsequent outbreak (Mullett, 1936). Since trade increases with per capita incomes, the positive effect of the Black Death on wages created knock-on effects. These raised mortality rates yet further. Finally, there were interaction effects between the channels we have highlighted. The effectiveness of quarantine measures, for example, often declined when wars disrupted administrative procedure (Slack, 1981). All these factors in combination ensured that, after the Black Death, European death rates increased, and stayed high, in a way that is unlikely to have occurred in other parts of the world.

China in the early modern period saw markedly less warfare than Europe. Even on the most generous definition, wars and armed uprisings only occurred in one year out of five, no more than a quarter of the European frequency. Not only were wars fewer in China during the early modern period. They also produced less of a spike in epidemics. Europe is geographically subdivided by rugged mountain ranges and large rivers, with considerable variation in climatic conditions. China overall is more homogenous in geographical
terms. The history of epidemics in China suggests that by 1000 AD, disease pools had become largely integrated (McNeill, 1977). Since linking semi-independent disease pools through migratory movements pushes up death rates in a particularly effective way, it may also be that in every armed conflict, similar troop movements produced less of a surge in Chinese death rates than in Europe.\(^{23}\)

While the period after 1300 saw relatively few wars in China, this was not true of earlier years. The Mongol invasion in the 13\(^{th}\) century led to massive loss of life – perhaps as much as half of the population perished. Whether income increased, as standard Malthusian models predict, is not well-known. What is clear is that in areas with sophisticated, centrally-maintained irrigation systems such as the Yangtze Delta, political turmoil could reduce output markedly.\(^{24}\) In this way, the nature of agriculture – and the importance of political stability to maintain agricultural infrastructure – also distinguished China from Europe. While land-labor ratios improved in both as a result of war shocks, infrequent, devastating ones like the Mongol invasions were much less likely to be a net positive than the constant, low- to medium-intensity warfare that Europe saw between 1500 and 1800.

The Destructiveness of War

Early modern war could be deadly (mostly because of disease), and it could destroy farms, livestock, and infrastructure. The siege and sack of a city, for example, could inflict major damage to civilian property. Since many houses before the 18\(^{th}\) century were constructed out of wood, they burnt easily. In the countryside, cattle and horses were regularly stolen by the raiding parties of advancing armies. Where seed grain was taken, famine in the following year became likely. Murder and rape were common. Long-distance trade became hazardous, and often declined markedly. Mercenary armies, often undisciplined, were particularly feared. Where fighting continued for prolonged periods – such as along the Rhine in Germany during the Thirty Years War, and in Northern Italy – large population losses could coincide with severe economic dislocation (Landers, 2003).

Despite all this, De Vries (1976) concluded in *The Economy of Europe in an Age of Crisis* that "it is hard to prove that military action checked the growth of the European economy’s aggregate output." For all its horrors, the economic losses induced by early modern warfare were often limited, and they did not last long. Malthus himself, in his *Essay on Population*, noted the remarkable ability of early modern economies to bounce back from war-induced destruction (Malthus, 1798):

> The fertile province of Flanders, which has been so often the seat of the most destructive wars, after a respite of a few years, has appeared always as fruitful and as populous as ever. Even the Palatinate lifted up its head again after the execrable ravages of Louis the Fourteenth.

A variety of compensating factors mitigated economic losses. In areas of frequent troop movement, peasants developed sophisticated early warning systems. By 1645, a Franconian official informed the prince

\(^{23}\)We are indebted to David Weil for this point. Weil (2004) shows the marked similarity of agricultural conditions in large parts of modern-day China.

\(^{24}\)The same is true of the Mongol invasion in the Middle East, where it wrought havoc on another "hydraulic empire" (in Wittfogel’s phrase).
that all of his subjects had fled to town in the area, taking every moveable good with them (Parker, 1987). Since advancing troops relied on food and fodder from the countryside, in areas with regular troop movement, plunder and extortion was quickly transformed into a system of tax-like contributions. Destruction of capital mattered less where it could be rebuilt quickly. Houses were often made of timber. These were easy to reconstruct. For example, after the Turkish siege of Vienna in 1683, the Venetian ambassador marvelled at the fact that "the suburbs...as well as the neighbouring countryside...have been completely rebuilt in a short space of time" (Tallett, 1992). A detailed study of the military conflict and rural life in the war-torn Basse-Meuse region in France found that the regional impact was largely mitigated by local adaptation (Gutmann, 1980).

Where fields went untended, fertility subsequently increased – a form of involuntary fallowing facilitated nitrogen fixation in the soil. Farm animals have high fertility rates, and losses of livestock can be made up quickly. Where food production fell, prices soared. This provided a windfall for surviving farmers. Well-disciplined troops also spent funds. Supplying them represented a business opportunity. While the taxes and debts that supported wartime expenditure may have been distortionary, it is not clear how much of it was 'wasted.' Pay constituted the single largest expenditure item, and was recycled in the local economy. Armies were generally small, recruiting no more than 0.5-1.5 percent of total population until the end of the 18th century. Moreover, men serving in the field were rarely drawn from the productive segments of society. Finally, war-induced mortality, where it resulted from poor nutrition, was probably concentrated amongst the more vulnerable groups – the young and the elderly (Tallett, 1992). Thus, war reduced the dependency burden.

Early modern states tried to limit the destructiveness of wars. The Thirty Years War was devastating, but it was not the norm. Italian condottieri leading mercenary armies often avoided pitched battles, reducing the loss of valuable fighting men. As armies grew in size after 1500, they became more disciplined. Articles of war became more common, and were enforced more rigorously. The use of mercenaries declined. Where the armies of Wallenstein and Tilly during the Thirty Years War had often plundered and killed indiscriminately, the well-trained troops of the eighteenth century mainly lived on food supplies from strategically positioned magazines (Parker, 1988). Attrition became less important as a way to subdue the enemy; manoeuvre warfare gained in relative importance.

None of this is to say that war had lost its destructiveness by the end of the early modern period. Yet its impact cannot be compared with that of modern-day conflict. Military technology was too primitive to cause widespread destruction of capital stock. Where conflict was frequent, local economic structures adapted. Negative effects were thus primarily short-run, reflecting the local destruction of livestock, capital, and the disruption of communications. Once hostilities ceased, compensating factors – such as the boost to land productivity from fallowing – made good many of the losses. In our modeling, we will assume that war shifted the mortality schedule, and may have reduced TFP in the short term, but that it did not affect productivity in the long run.
Engel’s Law

Did Engel’s Law operate in medieval Europe? For our story, it is crucial that consumers grown rich(er) after the Black Death spent relatively less on food, and more on luxury goods produced in cities. Evidence on consumption patterns in medieval England suggests that Engel’s Law operated there. Dyer (1988) shows how the proportion of income spent on food falls from very high percentages for peasants to somewhat above half for a clerical household earning £20; a little less than half for esquires earning £50, and less than a quarter for earls earning thousands of pounds sterling per year. Over time, following the shock of the Black Death, the pattern is also clear. Spending by peasants on dwellings, clothing, cooking utensils, ceramics, and furniture all appear to have increased (as reflected in probate inventories). Dyer (1988) also notes that the quality of goods improved:

"Pewter tableware and metal ewers replaced some wood and pottery vessels for more substantial peasants, and ceramic cisterns supplanted wooden casks. Potters began to supply cups, which had all previously been made of wood. There was an element of display in some peasant possessions, like the decorative horse equipment designed to flash and jingle ... The dice, cards, chessmen, footballs, musical instruments and 'nine-men's morris' boards show that resources could be spared..."

For England in the early modern period, Horrell (1996) found an income elasticity of food expenditure of 0.76. This is very similar to recent estimates for present-day India (0.7, as estimated in Subramanian and Deaton, 1996). In combination, there is ample evidence – both in the cross-section, and over time – that Engel’s law operated in the late middle ages, as required by our model.

3 The Model

This section presents a simple two-sector model that shows how shifting mortality determined pre-industrial living standards. The economy is composed of N identical individuals who work, consume, and procreate. N_A individuals work in agriculture (A) and live in the countryside, while N_M agents live in cities producing manufacturing output (M), both under perfect competition. For simplicity, we assume that wages are the only source of income. Mobility of the workforce ensures that rural and urban wages equalize. Agricultural output is produced using labor and a fixed land area. This implies decreasing returns in food production. Manufacturing uses labor only and is subject to constant returns to scale. Preferences over the two goods are non-homothetic and reflect Engel’s law: The share of manufacturing expenditures (and thus the urbanization rate N_M/N) grows with income.

Population growth responds to nutrition. Higher wages, and thus higher food consumption, translate into more births and lower mortality. The economy is Malthusian – per capita income stagnates and depends

\footnote{During the early modern period, a substantial share of manufacturing took place outside cities – a process called "proto-industrialization" by some. We abstract from it since cities still grew, and our key mechanism remains intact, even if some of the additional demand translated into growth for non-urban manufactured goods.}
on the location of the fertility and mortality schedules. In the absence of technological progress, death rates equal birth rates, and \(N \) is constant in equilibrium. An increase in productivity temporarily relieves Malthusian constraints; population can grow. Without ongoing productivity gains, however, the falling land-labor ratio drives wages back to their original equilibrium level. Per-capita income is thus self-equilibrating.

An epidemic like the plague has an economic effect akin to technological progress: it causes land-labor ratios to rise dramatically. This leaves the remaining population with greater per-capita income, which translates into more demand for manufactured goods. As a consequence, urbanization rates have to rise. In the absence of ongoing productivity growth and shifts in the birth or death schedules, subsequent population growth pulls the economy back to its earlier equilibrium – there is no escape from Malthusian stagnation.

However, in our model, the ‘Horsemen of Riches’ start to ride after the plague: Wars become more frequent. Cities grow, and raise aggregate mortality. Increasing trade, linking the urban nuclei, spreads disease, as do wars. As these three factors grow in importance, the aggregate death schedule shifts up. The new long-run equilibrium has higher birth and death rates, but also increased per capita incomes and a higher share of the population living in cities. It is important to note that our model does not deliver ongoing growth of per capita incomes. Rather, it describes the transition from one long-run equilibrium to another.

3.1 Consumption

Each individual supplies one unit of labor inelastically in every period. There is no investment – all income is spent to consume agricultural goods \((c_A) \) and manufactured goods \((c_M) \). Agents choose their workplace in order to maximize income. When migration is unconstrained, this equalizes urban and rural wages: \(w_A = w_M = w \).\(^{26}\) The resulting budget constraint is \(c_A + p_M c_M \leq w \), where \(p_M \) is the price of the manufactured good. The agricultural good serves as the numeraire. Before individuals buy manufactured goods, they need to consume a minimum quantity of food, \(c \). We refer to \(c \) as the subsistence level. Below it, individuals suffer from hunger, but do not necessarily die – mortality increases continuously as \(c_A \) falls below \(c \). While the wage rate is below \(c \), any increase in income is spent on food. Preferences take the Stone-Geary form and imply the composite consumption index:

\[
u(c_A, c_M) = \begin{cases}
(c_A - c)\alpha c_M^{1-\alpha}, & \text{if } w > c \\
\phi(c_A - c), & \text{if } w \leq c
\end{cases}
\]

(1)

Where \(\phi > 0 \) is a constant. Given \(w \), consumers maximize (1) subject to their budget constraint. In a poor economy, where income is not enough to ensure subsistence consumption \(c \), the starving peasants are unwilling to trade food for manufactured goods at any price. Thus, the demand for urban labor is zero and there are no cities. All individuals work in the countryside: \(N_A = N \), while \(c_A = w_A < c \).

\(^{26}\)In the following, the subscripts \(A \) and \(M \) not only represent agricultural and manufacturing goods, but also the locations of production, i.e., countryside and cities, respectively. Higher city mortality arguably lowers the utility of urban workers. In the working paper version (Voigtländer and Voth, 2008) we take this fact into account for endogenous individual workplace decisions. As a result, urban wages are above their rural counterparts, compensating for higher city mortality. While adding historical realism, this more complicated setup does not affect our main results.
When agricultural productivity is large enough to provide above-subsistence consumption \(w_A > \frac{c}{w} \), expenditure shares on agricultural and manufacturing products are:

\[
\frac{c}{w} = \alpha + (1 - \alpha) \left(\frac{c}{w} \right)
\]
\[
\frac{p_M c_M}{w} = (1 - \alpha) - (1 - \alpha) \left(\frac{c}{w} \right)
\]

(2)

Once consumption passes the subsistence level, peasants start to spend on manufacturing products. These are produced in cities, which grow as a result. If income increases further, the share of spending on manufactured goods grows in line with Engel’s law, and cities expand. The relationship between income and urbanization is governed by the parameter \(\alpha \). A higher \(\alpha \) implies more food expenditures and thus less urbanization at any given income level.

3.2 Production

Both agricultural and manufactured goods are homogenous and are produced under perfect competition. In the countryside, peasants use labor \(N_A \) and land \(L \) to produce food. The agricultural production function is

\[
Y_A = A_A N_A^\beta L^{1-\beta}
\]

(3)

where \(A_A \) is a productivity parameter and \(\beta \) is the labor income share in agriculture. Suppose that there are no property rights over land. Thus, the return to land is zero, and agricultural wages are equal to the output per rural worker:

\[
w_A = A_A \left(\frac{L}{N_A} \right)^{1-\beta} = A_A \left(\frac{l}{n_A} \right)^{1-\beta}
\]

(4)

where \(l = L/N \) is the land-labor ratio and \(n_A = N_A/N \) is the labor share in agriculture, or rural population share. Since land supply is fixed, increases in population result in a falling land-labor ratio and ceteris paribus in declining agricultural wages. Manufacturing goods are produced in cities using the technology

\[
Y_M = A_M N_M
\]

(5)

where \(A_M \) is a productivity parameter. Manufacturing firms maximize profits and pay wages \(w_M = p_M A_M \). The manufacturing labor share \(n_M \) is identical to the urban population share.

Figure 4 illustrates the basic income-demand-urbanization mechanism of our model. If the rural wage (horizontal axis) is below subsistence (normalized to \(c = 1 \)), the starving population does not consume any manufacturing goods. Cities do not exist (zero urbanization, left axis), and there are no workers employed in manufacturing (zero urban wages, right axis). Cities emerge once peasants’ productivity is high enough for consumption to rise above subsistence; manufacturing production starts. Under unconstrained migration, which we assume for now, urban and rural wages equalize. As productivity increases further, urbanization and wages grow in tandem. Appendix A.2 describes the model with constrained migration.
3.3 Population Dynamics

Birth and death rates depend on nutrition, measured by food consumption c_A. Individuals procreate at the rate

$$b = b_0 \cdot \left(\frac{c_A}{c}\right)^{\varphi_b}$$

(6)

where $\varphi_b > 0$ is the elasticity of the birth rate with respect to nutrition, and b_0 represents the birth rate at subsistence consumption. In the absence of the 'Horsemen effect,' the aggregate death rate falls with income and is given by

$$d = \min\{1, d_0 \cdot \left(\frac{c_A}{c}\right)^{\varphi_d}\}$$

(7)

where $\varphi_d < 0$ is the elasticity of mortality with respect to food consumption and d_0 is the death rate at subsistence income.

Next, we introduce the Horsemen in our model. These raise mortality. Higher city death rates contribute to this directly. Thus, increasing urbanization leads to higher average mortality. The corresponding impact on aggregate death rates is given by $n_M \triangle d_M$, where $\triangle d_M$ represents city excess mortality. In addition to this direct effect, growing income and urbanization also indirectly increased mortality – by fostering wars and trade, spreading diseases. A poor economy with little urbanization has few funds for warfare, nor demand for goods traded over long distances; germ pools remain largely isolated. Higher p.c. incomes after the plague simultaneously spur trade and wars. Liquid wealth in cities funds wars and attracts traders. Military casualties mount. Armies as well as merchants continuously spread pathogenic germs to cities and countryside. These factors raise background mortality. In combination with $\triangle d_M$, this is what we call the 'Horsemen effect,' h. Because it is driven by growing income and urbanization, we use the urbanization rate n_M as a proxy for its strength. To capture the positive relationship between urbanization and the 'Horsemen effect,' we calculate h as:

$$h(n_M) = \triangle d_M n_M + \left\{ \begin{array}{ll} 0, & \text{if } n_M \leq \frac{n_M}{\delta} \\ \min\{\delta (n_M - \frac{n_M}{\delta}), \overline{n}\}, & \text{if } n_M > \frac{n_M}{\delta} \end{array} \right.$$

(8)

The first term is the direct impact of urbanization on aggregate death rates, while the second term represents the indirect effect following from the spreading of diseases through increased warfare and trade. The maximum additional mortality due to trade and warfare is given by \overline{n}; $\delta > 0$ is a slope parameter, and $\frac{n_M}{\delta}$ is the threshold urbanization rate where the indirect effect sets in. The role of the plague in our model is to introduce germs and to push p.c. income to levels where $n_M > \frac{n_M}{\delta}$. To kill, germs need to be spread. This

\[27\text{In the working paper (Voigtländer and Voth, 2008) we present an alternative modeling strategy, where fertility and mortality depend on a measure of real income. The results are very similar to the ones presented here.} \]

\[28\text{A more detailed justification for } \frac{n_M}{\delta} > 0 \text{ is that it indicates a minimum income level that cannot be expropriated, containing food for elementary nutrition as well as basic cloth and tools produced in city manufacturing. Once this threshold is passed, taxation yields the means for warfare and arouses the Horsemen.}\]
is why the plague can produce a long-term effect. It combines a new disease with higher incomes, which translates into greater mobility (through both warfare and more trade). Only if higher mobility spreads epidemics, background mortality increases and alleviates population pressure.

In the presence of the ‘Horsemen effect,’ aggregate mortality is given by

\[d^h = d + h(n_M) \]

When the Horsemen ride, increasing income has an ambiguous effect on mortality. On the one hand, larger food consumption translates into lower death rates in (7). On the other hand, manufacturing demand rises with income, driving more people into cities where mortality is higher. In addition, urbanization (proxying for the spread of epidemics through trade and wars) also implies larger overall background mortality. The aggregate impact of income on mortality depends on the model parameters. Our calibration in section 4.1 shows that death rates increase in income over some range.

Population growth equals the difference between the average birth and death rate, \[\gamma_{N,t} = b_t - d_t^h \], where the latter can include the 'Horsemen effect,' as indicated by the superscript \((h) \). The law of motion for aggregate population \(N \) is thus

\[N_{t+1} = (1 + b_t - d_t^h)N_t \]

Births and deaths occur at the end of a period, such that all individuals \(N_t \) enter the workforce in period \(t \).

3.4 Equilibria

Equilibrium in our model is a sequence of factor prices, goods prices, and quantities that satisfies the intra-temporal and workplace optimization problems for consumers and firms. In this section, we analyze the economy without technological progress. The long-run equilibrium is characterized by stagnant population, labor shares, wages, prices, and consumption. All depend on how the birth and death rates respond to income. Figure 5 visualizes the schedules. Food consumption \(c_A \) is shown on the horizontal axis. We choose \(c = 1 \). Relatively low death rates give rise to equilibrium A: a poor economy with below-subsistence consumption \((c_A \leq c) \) where all individuals work in agriculture. The long-run level of consumption is independent of productivity parameters; it only depends on the intersection of \(b \) and \(d^L \). For purposes of illustration, assume that there is a one-time major innovation in agriculture, augmenting \(A_A \) in equation (4). The rising wage shifts \(c_A \) to the right of point A, such that population grows \((b > d^L) \). Consequently, the land-labor ratio \(l \) declines. So do wages, which eventually drives the economy back to equilibrium A. For a given technology, land per worker is therefore endogenously determined in the long-run equilibrium.

[Insert Figure 5 here]

In the absence of ongoing technological progress, there are two ways to achieve a permanent rise in per-capita income.\(^{29}\) First, a permanent decline in birth rates. The European Marriage Pattern had such an effect.

\(^{29}\)We discuss the effect of continuous technological progress in detail below.
with delayed marriage for some women and permanent celibacy for others. Alternatively, a permanent rise in mortality can boost incomes. This is the channel we focus on here. Higher death rates (d_H) imply lower population in equilibrium and therefore higher individual income, as represented by point B in figure 5.

Points A and B in figure 5 are long-run equilibria with endogenous population size. For a given technology A_A, output per worker is fixed in the long-run. During the transition to long-run equilibrium, population dynamics influence the land-labor ratio and thus output per worker. In the following, we analyze these dynamics. We first concentrate on the economy with below-subsistence consumption where individuals struggle for survival and produce only food in the countryside. We then turn to the economy with consumption above c.

The Economy with Below-Subsistence Consumption

To check if overall productivity (determined by A_A and the land-labor ratio) is sufficient to ensure above-subsistence consumption, we construct the indicator \hat{w}, assuming that all individuals work in agriculture. Equation (3) with $N_A = N$ gives the corresponding per-capita income:

$$\hat{w} \equiv \frac{Y_A(N)}{N} = A_A \left(\frac{L}{N} \right)^{1-\beta}$$

(11)

If $\hat{w} \leq c$, all individuals work in agriculture and spend their entire income on food. Since there is no demand for manufacturing goods, the manufacturing price is zero. This implies zero urban wages and zero city population. In order to derive the long-run equilibrium, we calculate birth and death rates according to equations (6) and (7).

30 The intersection of the two schedules (point A in figure 5) determines equilibrium income, which we can use to derive the corresponding population size N from (11).

Above-Subsistence Consumption

If $\hat{w} > c$, agricultural productivity is high enough for consumption levels to rise above subsistence. Following (2), well-nourished individuals spend part of their income on manufacturing goods. To produce them, a share n_M of the population lives and works in cities. In each period, individuals choose their profession and workplace based on their observation of income in cities and the countryside. Productivity increases lead to more manufacturing demand and spur migration to cities, which occurs until $w_M = w_A$. For small productivity changes, migration is minor and cities can absorb enough migrants to establish this equality immediately. We refer to this case as equilibrium with unconstrained city growth. Goods market clearing together with equations (2), (3), and (5) implies

$$A_A N_A^\beta L^{1-\beta} = [\alpha w + (1 - \alpha)c] N$$

(12)

$$p_M A_M N_M = [(1 - \alpha)(w - c)] N, \text{ if } \hat{w} > c$$

(13)

30Note that the 'Horsemen effect' is zero because $n_M = 0$.

19
Substituting $w_M = p_M A_M$ into (13) and using $(1 - n_A) = N_M/N$ yields the employment share in agriculture:

$$n_A = \alpha + \frac{(1 - \alpha)c}{w}, \quad \text{if } \hat{w} > \xi$$

Consequently, the share of agricultural employment decreases in wages, while urbanization $n_M = 1 - n_A$ increases. The responsiveness of urbanization to wages is the stronger the smaller α — a result that we use to calibrate this parameter. The missing piece to solve the model is the wage rate. To obtain w, we divide (12) by N. This yields

$$\alpha w + (1 - \alpha)\xi = A_A [n_A(w)]^{\beta} \left(\frac{L}{N} \right)^{1-\beta},$$

which says that per-capita food demand (LHS) equals per-capita production in agriculture (RHS), with the rural employment share n_A depending on wages as given in (14). This equation implicitly determines the wage rate for a given population size N. It has a unique solution, and w increases in A_A and L/N. Given w and $p_M = w/A_M$, food and manufacturing consumption follow from (2), labor shares from (14), and demographic variables from (6)-(8).

All calculations up to now have been for a given N. For small initial population, births outweigh deaths and N grows until diminishing returns bring down p.c. income enough for $b = d$ to hold. The opposite is true for large initial N. To find the long-run equilibrium with constant population, we derive b and d for given N. We then iterate the above system of equations, deriving N_{i+1} in each iteration i from (10), until the birth and death schedules intersect (point B in figure 5). The long-run equilibrium level of population depends on the productivity parameters A_A and A_M, and on the available arable surface, L. Wages in the long run, however, depend only on the intersection of the b and d schedules, and are independent of the levels of A_A, A_M, or L.

4 Calibration and Simulation Results

In this section we calibrate our model and simulate it with and without the additional mortality that comes from urbanization, trade, and war. We choose parameters in order to match historically observed fertility, mortality, and urbanization rates in early modern Europe. We then simulate the impact of the plague and derive the long-run levels of p.c. income and urbanization in the centuries following the Black Death.

4.1 Calibration

The intersection of birth and death schedule determines per-capita income and urbanization rates. We choose parameters to match the latter in our calibration, using $n_M = 2.5\%$ for Europe in the centuries before the Black Death.\(^{31}\) For cities to exist in our model, food consumption has to be above subsistence, i.e., $c_A > \xi$ in

\(^{31}\text{Maddison (2001) reports 0\% in 1000 and 6.1\% in 1500. Our own calculations based on De Vries (1984) and Bairoch et al. (1988), as shown in figure 2, deliver an average urbanization rate of 2.1\% for the period 1000-1300. The number we use in the calibration, 2.5\%, is thus at the upper end of what we expect, given that living standards were under severe downward pressure.}\)
the long-run pre-plague equilibrium. For the intersection of \(b \) and \(d \) to lie to the right of \(c \), death rates must be higher than birth rates at the subsistence level, \(d_0 > b_0 \). The exact parameter values depend on the slope of the birth and death schedules. Kelly and Ó Grada (2008) estimate the elasticity of birth rates with respect to income before the Black Death (1263-1348). We use the average of their results, \(\varphi_b = -0.55 \). This is very similar to the figures estimated by Kelly (2005) for the period 1541-1700.\(^{32}\) For the elasticity of birth rates with respect to real income, we use the estimate in Kelly (2005) of \(\varphi_b = 1.41 \).\(^{33}\) Both \(\varphi_d \) and \(\varphi_b \) rely on estimates for England as a best-guess for Europe. This is a conservative assumption for our purposes, since the Poor Law is likely to have softened Malthus’ "positive check" in England. Without the buffer of income support, death rates elsewhere are likely to have spiked more quickly in response to nutritional deficiencies. Regarding the level of birth and death rates, we use \(b \) and \(d = 3.0\% \) in the pre-plague equilibrium, which is in line with the rates reported by Anderson and Lee (2002). This, together with the elasticities and the pre-plague urbanization rate of 2.5\%, implies \(d_0 = 3.04\% \) and \(b_0 = 2.75\% \).

Scale does not matter in our model. Solely the productivity parameters \(A_{A,t} \) and \(A_{M,t} \), together with the land-labor ratio \(l_t \), determine individual income. Thus, for any equilibrium wage level derived from the intersection of \(b \) and \(d \), we can calculate the corresponding population \(N \).\(^{34}\) We choose parameters such that initial population is unity \((N_0 = 1) \). This involves the initial productivity parameters \(A_{A,0} = 0.465 \), \(A_{M,0} = 1.08 \), and \(L = 8 \), where land is fixed such that its hypothetical rental rate is 5\%.\(^{35}\) Our calibration also implies the desired urbanization rate \(n_{M,0} = 2.5\% \) and a price of manufacturing goods that is equal to the price of agricultural products, i.e., \(p_{M,0} = 1.36 \). Since our baseline calibration refers to Europe, we take city excess mortality into account when deriving aggregate death rates in the pre-plague equilibrium.

For the baseline model, we use the labor income share in agriculture \(\beta = 0.6 \). This is similar to the value implied by Crafts (1985), and is almost identical with the average in Stokey’s (2001) calibrations. We normalize the minimum food consumption \(c \) to unity. For low wage levels, all expenditure goes to agriculture. With higher p.c. income, manufacturing expenditure share and urbanization grow in parallel. To derive this relationship, we pair income data from Maddison (2007) with urbanization rates from De Vries (1984). In the model, the responsiveness of urbanization to wages is governed by the parameter \(\alpha \). Figure 6 plots urbanization rates in Europe and England in the early modern period against per capita income.

\(^{32}\)Kelly and Ó Grada (2008) find \(\varphi_d = -0.59 \) for 20 large manors and \(-0.49\) for the full sample of 66 manors. These numbers coincide with the one estimated by Kelly (2005), who finds \(\varphi_d = -0.55 \) using weather shocks as a source of exogenous variation.

\(^{33}\)These elasticities are bigger than the estimates in, say, Crafts and Mills (2008), or in Anderson and Lee (2002). Because of endogeneity issues in deriving a slope coefficient in a Malthusian setup, the IV-approach by Kelly is more likely to pin down the magnitude of the coefficients, compared to identification through VARs or through Kalman filtering techniques. For the same reason, we are not convinced that Malthusian forces weakened substantially in the early modern period, as argued by Nicolini (2007), Crafts and Mills (2008), and Galloway (1988).

\(^{34}\)For example, rural population is implicitly given by (4), and is the larger (for a given wage) the more land is available. We calculate the long-run equilibrium by solving for birth and death rates for given \(N \), and then iterate over population until \(b = d \). This procedure gives the long-run stable population as a function of fertility and mortality parameters, productivity, and land area.

\(^{35}\)Recall that we assume no property rights to land. The size of \(L \) is therefore not important for our results – it could also be normalized to unity and included in \(A_A \). We leave \(L \) in the equations for the sake of arguments involving the land-labor ratio.

\(^{36}\)Other values of the relative price, resulting from different \(A_{M,0} \) relative to \(A_{A,0} \), do not change our results.
The latter is normalized to unity for the pre-plague period. Note that at this point $n_M = 2.5\%$ in the model, as calibrated above. Rising individual income went hand-in-hand with higher urbanization rates. Our calibration, derived with a model parameter of $\alpha = 0.68$, traces out the pattern in the data. This also implies an income elasticity of food expenditure between 0.7 and 0.8 over the relevant income range in our model, which is almost identical with contemporary figures from India and 18th century England (Subramanian and Deaton, 1996; Horrell, 1996).

[Insert Figure 6 here]

In the centuries before 1700, labor productivity grew at an average rate of roughly 0.05-0.15% per year (Galor, 2005). We use an exogenous growth rate of agricultural and manufacturing TFP, A_A and A_M, of $\gamma_A = 0.1\%$ in our simulations with technological progress.

In Europe, the 'Horsemen effect' raises background mortality. The first Horseman, urbanization, comes into play as soon as people dwell in cities, where death rates are higher. As discussed in the historical overview section, death rates in European cities were approximately 50% higher than in the countryside. This implies a value of $\Delta d_M = 1.5\%$. The first term in equation (8) captures the direct effect of urbanization on background mortality. On average, European urbanization grew from approximately 3 to 9 percent between 1300 and 1700 (see figure 2). We show below that this boosts average death rates by 0.05% - 0.08% in 1300, and by 0.14% - 0.22% in 1700. City mortality is, however, not the biggest contributor to higher average death rates.

After the Black Death, this direct effect is reinforced by rising mobility and the spreading of diseases. Warfare and trade grow with p.c. income, and greater mobility leads to an ongoing dispersion of germs. According to equation (8), these indirect Horsemen are at work when the urbanization rate n_M is larger than the threshold level n_M. We choose $n_M = 3.5\%$, which is above the pre-plague urbanization rate. The indirect 'Horsemen effect' begins to play a role only if city wealth becomes large enough to support the cost of warfare. Below n_M, city income is too low to be taxed or expropriated, serving merely to provide elementary nutrition and basic manufacturing goods. This implies an important non-linearity – even in the face of massive population losses, expropriable surplus may rise considerably. This will be especially true if starting levels are close to subsistence, as they probably were in Europe before the plague. Effectively, war is a "luxury good" for rulers, as a function of per capita income of their subjects. Once cities are large enough, the 'Horsemen effect' increases steadily in the urbanization rate until it reaches its maximum.

In order to derive the maximum impact of warfare on mortality, we use data on war-related deaths and epidemics from Levy (1983). His data show that, in a typical year, more than one European war was in

37 The simulation consistently shows slightly higher urbanization rates for a given income level. This is deliberate – urbanization likely underestimates the production of non-agricultural goods, as many authors have emphasized (cf. Wrigley, 1985).

38 We use De Vries’ cutoff level of 10,000 inhabitants to define a city. Evidence from England suggests that York (12,000 inhabitants) had similar life expectancy as London in the 16th and 17th century. Note that our choice is a conservative one – a cutoff of 5,000 would deliver higher urbanization rates and thus a larger direct city mortality effect.

39 Kelly and Ó Grada (2008) offer evidence on how close to the minimum large parts of the English population were before 1350.

40 Our long-run results would be the same if the 'Horsemen effect' reached its full strength immediately after the plague. However, our modeling choice provides more historical realism during the transition – warfare and death rates increased only gradually with urbanization in early modern Europe.
progress – there were 443 war years during the period 1500-1800, normally involving three or more powers. Since it is the movement of armies, and not just military engagements that caused death, we count the territories of combatant nations as affected if they were the locus of troop movements. Combined with demographic data in Maddison (2007), we obtain the percentage of European population affected by war between 1500 and 1700.41 Figure 7 shows that this measure grows from about 12% in 1500 to roughly 50% around 1700, and decreases in the 18th century. The population share affected by wars mirrors the trend in the number of plague outbreaks shown in figure 3, as it should if wars were one of the main factors spreading disease in early modern Europe. In times of war, death rates nationwide could rise by 40 to 100% (see section 2). The impact of war was local, but we focus on nationwide effects to match the construction of the war frequency variable, which also uses nations as the unit of analysis. Given equilibrium death rates of 3%, this implies an additional 1.2-3 percent under warfare. Throughout the second half of the 17th century, on average 38% of the European population were affected by wars. Based on the period with the largest war frequency in early modern times, we derive the maximum war-related mortality increase:

\[
\text{Excess death under warfare} \times \text{max. share of population affected} = [0.46 - 1.14%]
\]

In the baseline calibration, we use a point estimate close to the center of this interval – a maximum war-related ’Horsemen effect’ of 0.75%.

To this we add an estimate of 0.25% for epidemics spread via trade. We do not know with certainty how many extra deaths were caused by the increase in trade resulting from higher per capita incomes. Modern data can help to gauge the broad effects. Oster (2009) argues that in the case of HIV in Africa, a doubling of trade leads to between a doubling and a quadrupling of infections. If infectious disease in the pre-plague equilibrium accounted for only one death out of eight, an increase in the death rate by 0.25% is plausible.42 This probably constitutes a lower bound on death by diseases spread via trade routes – plague, typhoid, smallpox and influenza are more infectious than HIV. Overall, our best guess for the sum of the two indirect ’Horsemen effects’ – due to warfare and trade – is \(\overline{h} = 1\% \). This value is reached during the 17th century, which saw particularly savage warfare, with troop movements over a very wide area, and for extended periods (Levy, 1983). Urbanization rates reached 8% in the mid-17th century (De Vries, 1984). The implied slope parameter of the indirect ’Horsemen effect’ is therefore \(\delta = \overline{h}/(0.08 - \underline{M}) = 0.2 \).

41Linear interpolation is used for the years where no population data are available. To avoid the confounding effects of shifting borders, we keep these constant. We count all countries at war as affected because troop movements also occur within countries even when there is no fighting on their own soil.

42Our estimate is derived as follows: Trade grows with elasticities of 0.8 and 0.65 with respect to income of country A and B, as in the gravity model estimated by Bergstrand (1985, table 1, column 1). This implies that as overall income doubles, trade rises by 145%. We focus on the period 1500-1700, where income data are available. In order to provide a conservative estimate, we consider only the per capita component of overall income growth. That is, we do not take into account the contribution of population growth to aggregate income increases, because growing population might reflect the convergence back to long-run levels after the Black Death. Using Bergstrand’s elasticity, combined with the fact that p.c. incomes grew by approximately 30%, suggests that trade may have increased by 44% during our period. Using the average elasticity of 1.5 from Oster (2009), infectious disease should have been 65% higher. For the aggregate death rate to increase by 0.25% as a result of more trade in 1700, an annual 0.38% (= 0.25% / 0.65) of the population must have fallen victim to infectious diseases before the plague. This corresponds to approximately one out of every 8 deaths in the pre-plague equilibrium.
Migration from the countryside to cities was not immediate. Cities could not absorb migrants overnight. In the case of larger inflows, new dwellings and infrastructure had to be provided. Building new houses and enlarging cities was one of the costliest undertakings in the early modern economy. The arrival of numerous migrants caused over-crowding, making further migration to the cities less attractive. To capture these difficulties during the transition phase, we assume that city growth was constrained. We explain this extension to the baseline model in Appendix A.2. While none of the long-run results depend on this assumption, we gain historical realism and can compare predicted transitional dynamics to the data. We set maximum urban growth to the highest growth rate observed over the period 1300-1800, equivalent to $\nu = 0.8\%$. Table 1 summarizes the calibrated parameters.

4.2 Plague and Equilibrium without 'Horsemen Effect'

The left panel of figure 8 shows the pre-plague equilibrium without 'Horsemen effect.' This reflects conditions in China, where urbanization did not raise background mortality. The fertility and mortality schedules intersect at a rate of approximately 3% for each, while 2.2% of the population live in cities. The economy is trapped in Malthusian stagnation in point C. One-time increases in productivity lead to higher income and therefore population growth. As a consequence, the land-labor ratio falls and drives per-capita income back to its long-run equilibrium value.

The right panel of figure 8 shows the effect of the Black Death when all model parameters are unchanged. Before the plague, population and urbanization stagnate. The Black Death in our calibration reduces population by 40%. As an immediate consequence, wages and p.c. consumption rise. Urbanization rates increase more slowly because cities cannot immediately grow to their new equilibrium size. In the aftermath of the plague, population grows because the economy is now situated to the right of the long-run equilibrium in point C, with fertility higher than mortality. The falling land-labor ratio eventually drives the economy back to C, with all variables returning to their pre-plague values. We argue that this describes the Chinese experience. Things look different in the presence of the 'Horsemen effect,' which is unique to Europe.

4.3 Long-run Equilibria with 'Horsemen Effect'

'Three Horsemen of Riches' – urbanization, trade and war – increased per capita incomes in early modern Europe. Figure 9 shows their respective contributions in the 17th century, when the 'Horsemen effect'

43 This was observed during the 14th century, according to our data in figure 2.

44 Note that the urbanization rate in equilibrium C is below the pre-plague level of 2.5% for Europe. The reason is that the direct 'Horsemen effect' – excess city mortality – is not at work in China, so that average mortality is slightly lower than in Europe, implying lower equilibrium urbanization. This difference becomes apparent when comparing C and E_0 in figure 10.
reaches its maximum. City mortality alone would have raised urbanization by over one percent. Trade’s effect is similar, but slightly larger. The single biggest contributor to rising incomes, according to our baseline calibration, is war. It alone raises urbanization rates by approximately 4%. In combination, our ‘Three Horsemen’ can account for an increase in the percentage of Europeans living in towns and cities from 2.2% in C to approximately 9% in E_H.

Compared to China, Europe was highly fragmented. Geography threw up greater barriers to political, economic, and trade integration. Overcoming them took a large shock, like the Great Plague. Then, substantially higher incomes generated more trade and provided the means for more wars. These raised European mortality rates more than a similar increase in trade or warfare would have in China, because they connected disparate disease pools. Thus, a one-time increase in p.c. income generated important knock-on effects. The economy can converge to a new equilibrium with higher mortality, but also higher p.c. income and urbanization. The left panel of figure 10 shows two stable equilibria, E_0 and E_H, and an unstable equilibrium, E_U. Initially, the European economy is in E_0, and all variables remain unchanged in the absence of technological progress. In order to initiate the transition from E_0 to E_H, a shock to population (or productivity) must be large enough to push the economy beyond E_U, where Horsemen-augmented death rates exceed birth rates. We argue that early modern Europe underwent such a transition. Following the Black Death, p.c. incomes surged. Surviving individuals and their descendants were substantially better off than their ancestors before the plague. This is in line with historical evidence: It took until the 19th century for wages to recover their post-plague peak (Clark, 2005). The demand for urban goods made cities grow, fostering trade and providing the means for warfare. Enhanced mobility constantly spread epidemics and therefore raised mortality. The size of this ‘Horsemen effect’ grew together with urbanization until the 17th century, as shown in figures 3 and 7, and captured by (8) in our model. The economy converges to the ‘Horsemen equilibrium’ (point E_H in figure 10) in the aftermath of the Great Plague. This equilibrium is characterized by higher birth and death rates (about 3.8%) and higher urbanization (9%). The corresponding dynamics are shown in the right panel of figure 10. Our story can explain the rising urbanization rates in early modern Europe in the absence of technological change. However, in this reduced form it predicts falling population, which contradicts the observed trend. Next, we allow for slowly growing productivity. We find that technological progress can explain rising population, but cannot account for increasing urbanization. The latter is explained largely by the ‘Horsemen effect.’

\[Insert Figure 9 here\]

\[Insert Figure 10 here\]

\footnote{With ongoing technological progress the argument is similar. Continuous technological progress implies rising population at stagnant p.c. income. We analyze this case below.}
4.4 The Role of Technological Progress

Technological progress in pre-modern times alone is not enough to escape from the Malthusian trap. While a growing population eventually reverses the benefits of one-time inventions, ongoing progress implies higher, but still stagnating, long-run p.c. income. Its effects are thus similar to a permanent outward shift of the death schedule. The new long-run equilibrium can be derived from equation (3). Constant p.c. income (and thus a constant agricultural labor share) implies \(\gamma_N = \gamma_A/(1-\beta) \), with \(\gamma_A \) representing TFP growth. Thus, in the long-run equilibrium population growth is proportional to the rate of technological progress, and this relationship is the stronger the larger the labor share \(\beta \) in agricultural production. Intuitively, if \(\beta \) is small the fixed factor land is important – when technology pushes p.c. income up and \(N \) responds, decreasing returns quickly offset any technological gains and keep population in check.

The setup with ongoing technological progress corresponds to a long-run equilibrium in point \(T \) in the left panel of figure 11, where the birth rate exceeds the death rate and technological progress is exactly offset by the falling land-labor ratio. The right panel of figure 11 illustrates the orders of magnitude involved. The rate of technological change before the Industrial Revolution was low, approximately 0.1\% (Galor, 2005). For purposes of illustration, progress is assumed to set in after 50 periods of stagnating technology. As the figure shows, this raises the urbanization rate by less than 2\%. Note that this is an extreme scenario where the economy jumps from complete stagnation to continuous inventions. The corresponding increase of urbanization is thus an upper bound for the impact of technology on individual income. Our calibrated model therefore suggests that the effect of technological progress in early modern Europe was markedly smaller than the impact of rising death rates.

[Insert Figure 11 here]

How fast would technology have to improve to explain the rise of early modern Europe? Based on Maddison’s (2007) figures we derive a lower bound, focusing on the period 1500-1700. Over these two centuries, European p.c. income increased by 30\%. If technological improvements were the sole cause for this rise, the rate of population growth in 1700 would be at least 1.7\%. To sustain per capita incomes at 30\% above the 1500 level, technological progress would have to offset the rapid population growth, which implies TFP growth rates of \(\gamma_A = (1-\beta)\gamma_N \simeq 0.7\% \). TFP increases of this magnitude were not observed before the second half of the 19th century (Crafts and Harley, 1992; Antràs and Voth, 2003). If we assessed the strength of Malthusian responses accurately, technological progress cannot be a candidate to explain the ‘Rise of Europe’ in the early modern period.

46 To derive this number, we normalize p.c. income to unity in 1500, \(y^{1500} = 1 \), and set \(b_0 = d_0 = 3\% \). Together with (6) and (7) this setup implies \(\gamma_N^{1500} = 0 \). We then use a linear approximation to derive the population growth rate, \(\gamma_N^{1700} \), corresponding to the higher level of p.c. income in 1700. This yields \(\gamma_N^{1700} = (\varphi_b - \varphi_d)b_0(y^{1700} - y^{1500}) = (1.41 + 0.5) \cdot 3\% \cdot 0.3 = 1.72\% \).
4.5 Model Fit

How well does the model fit the data? We begin simulations in 1000 AD in order to show both the pre- and post-plague fit of the model. While the ‘Horsemen effect’ alone can account for almost all the observed increase in European urbanization (see figure 10), technological progress is responsible for the growth in population. In other words, technological progress alone, without the Horsemen, translates into rapid population increases, while per capita income stagnates. On the other hand, the Horsemen alone, without TFP growth, deliver higher per capita income (figure 10), but aggregate income decreases because of the substantial population decline. Both mechanisms together deliver growing population and per capita income, and therefore also rising aggregate income. A simple calculation sheds light on the relative importance of the two components. Using Maddison’s (2007) numbers for Europe in 1500 and 1700, we find that rising per capital income accounts for 42 percent of aggregate GDP increases over this period, and population growth explains the remaining 58 percent. Finally, figure 12 shows our simulation results together with the data. Our model performs well in reproducing both population growth and urbanization.

[Insert Figure 12 here]

4.6 Robustness of Calibration Results

Next, we examine the robustness of our calibration results. We test how stable our quantitative findings are if alternative parameter values are used, and explore the impact of adding negative short-run effects of wars on output.

Magnitude of Effects and Sensitivity of Main Results

The size of the ‘Horsemen effect’ is of central importance for our results. To shed light on the margin of error of the overall effect, we discuss the contribution of individual components. Data on excess city mortality are relatively reliable. Table 2 shows the corresponding magnitudes in 1300 and 1700 for various countries and two different city mortality penalties – one corresponding to our baseline calibration and the other representing an upper bound, 80%. The upper bound is derived from the ratio of Northern town mortality and the rural Sussex death rate in 1841 (Szreter and Mooney, 1998). Clark (2009) finds a similar differential between the offspring of urban and rural testators in early modern England. From one country to the next, the magnitude of the direct ‘Horsemen effect’ varies substantially depending on overall urbanization rates.

47We allow technology to grow at $\gamma_A = 0.1\%$ throughout the simulation. The model is calibrated to yield the same pre-plague (1350) values as above for population, urbanization, fertility, mortality, and relative prices (as given in the lower part of table 1). Intuitively, this technology-progress adjusted calibration corresponds to shifting the death schedule downwards by $\gamma_A/(1 - \beta)$ in figure 11. The new equilibrium T then involves the same urbanization rate as the previous C.

48In our calibration, the rate of TFP growth $\gamma_A = 0.1\%$ is sufficiently large for productivity-driven population increases to overcompensate population losses due to the Horsemen.

49Aggregate European GDP grew at rate of 0.31% p.a. between 1500 and 1700, with p.c. income and population growing at 0.13% and 0.18%, respectively.

50The life expectancy at birth in his sample is 41.8; in cities and towns, it falls from 32 to 29. The latter is derived from the weighted average of London mortality and that in other urban centers.
In England it is initially close to zero. As urban centers grow, it increases to 0.2-0.32 percent. In the most urbanized countries in Europe, such as the Netherlands, the direct effect reaches 0.5-0.8%. This is the same order of magnitude as the contribution of warfare in our baseline calibration.

On average in Europe, city mortality contributed 0.05 to 0.22% to overall death rates. Figure 9 shows the effect corresponding to our baseline calibration, 0.14%. Compared to the equilibrium at point C, with no contribution of excess city mortality, this factor alone can account for 1.2% higher urbanization rates, or one fifth of the total.51

Next, we turn to the indirect ‘Horsemen effect’ due to warfare and trade. In section 4.1 we argued that war-related deaths added 0.5-1.0%, based on the war frequency in the second half of the 17th century. For trade we based our estimate of 0.25 percent on an analogy with the trade and HIV in modern-day Africa (Oster, 2009). Even if we use the lower bound of the warfare effect (0.5%), and assume zero for trade, the ‘Horsemen’ play a substantial role. Under these conservative assumptions, the two remaining effects (city death and warfare) raise urbanization rates to about 7 percent.

The responsiveness of population growth to p.c. income changes is also important for our findings. This variable is governed by the elasticity of birth and death rates to nutrition, based on Kelly’s (2005) estimates for early modern Britain. More recent work by Kelly and Ó Grada (2008) confirms the orders of magnitude involved. If the \(b \) and \(d \) schedules are flatter than in our baseline calibration, population growth reacts more slowly to income increases. Consequently, there is more scope for technological progress to improve living standards. On the other hand, the model also becomes more sensitive to an increase in background mortality, which increases the power of the Horsemen. More precisely, if both \(b \) and \(d \) have only half the slope that we used in the baseline calibration, technological progress at 0.1% p.a. delivers a 9% increase in p.c. income (corresponding to roughly 4% increase in urbanization).52 This leaves ample scope for the Horsemen of Riches to contribute to the ‘Rise of Europe.’

Negative Impact of Warfare on Productivity

As discussed in section 2, early modern warfare was destructive, but to a limited extent. Productivity suffered in the short-run, as a result of the destruction of physical capital, slaughter of livestock, and the disruption of communications. These adverse effects normally disappeared quickly once armies moved on.53 We now incorporate this negative impact into our model. In the modified setup, each country will be at war for four

51 With 9.2 percent of the population living in cities in 1700, excess urban mortality adds 0.14% to aggregate death rates (see table 2). Because of lower population pressure, urbanization rates rise by 1.2% above the initial level in C. However, without additional forces contributing to urbanization, the economy would eventually converge back to C. The direct effect alone can therefore not generate a sustainable increase in p.c. income and urbanization.

52 To derive this result, we follow the approximation shown in footnote 46, using the fact that population must grow at \(\gamma_N = \gamma_A / (1 - \beta) \) in steady state.

53 Even if warfare had a negative long-run impact on productivity, our main result would not change. Following the Malthusian logic, with permanently lower productivity levels, population would be lower in equilibrium. But p.c. incomes would still rise with mortality.
consecutive years in each decade. This is equivalent to the highest average observed for a fifty-year period in early modern Europe (see figure 7). Under warfare, TFP decreases by 1% (5%), and returns to the baseline level when hostilities cease. Death rates increase by $\triangle d$. To isolate effects, we assume that neither city mortality nor trade add to background mortality in this exercise. The remainder of the decade is peaceful, and death rates are at their baseline level. During wars, we use conservative values, $\triangle d = 1\%$ and 2%, and simulate the model without migration constraints and without technological progress.54 Figure 13 shows the results.

Initially, the economy is in equilibrium C (see e.g. figure 10). Periodic warfare sets in after 50 years. The left panel shows the effect of negative TFP shocks of 1% during wars; the right one, 5%. In both cases, p.c. income rises and population falls in the long-run. Per capita income fluctuates more strongly when warfare is assumed to have a large negative effect on TFP, but overall development patterns are unaffected. With $\triangle d = 1\%$, p.c. income fluctuates around 1.21, which corresponds to an urbanization rate of 5.6%. For the case of larger mortality rates due to warfare ($\triangle d = 2\%$), it fluctuates around 1.35, which implies urbanization rates of 8.2%. The latter value is very similar to the main result in the baseline calibration.

This modified analysis shows that our results are robust to relaxing two implicit assumptions. First, even with lower productivity under warfare, long-term p.c. income and urbanization rise. This is explained by the quick return of TFP to its pre-war level in early modern times, while population growth takes time to replace the deceased. Second, periodic warfare (with a large mortality increase during wars and zero additional mortality otherwise) delivers similar results as continuous warfare (with a constant average impact on mortality).

5 Conclusion

Europe saw almost continuous warfare during the early modern period. It also suffered numerous disease outbreaks, and its cities were major death traps. Far from undermining the strength of the European economy, we argue that death and disease spelled riches and power in the early modern period, contributing to Europe’s economic ascendancy. We use a simple two-sector Malthusian model in which higher population implies lower incomes due to strongly declining marginal returns to labor. The Black Death marked a turning point for economic fortunes in early modern Europe. It killed between a third and half of the European population. In a Malthusian setting, a boost to incomes following an epidemic should have been transitory. Yet the plague shock was so big that it took several generations for population growth to reverse the substantial wage gains. In the meantime political and structural changes effectively produced a "ratchet effect." Europe’s "golden age of labor" after 1350 saw richer individuals demanding more manufactured goods, produced to a large extent in urban centers. Because early modern European cities were "graveyards" (Bairoch,

54These figures compare to the previous calibration as follows: With a maximum 38% of the European population affected by wars, 1 and 2 percent excess mortality during warfare translate into a 0.38 and 0.76 percent maximum war-related 'Horsemen effect,' respectively. The second value is therefore similar in magnitude to our baseline calibration.
this boost to urbanization rates helped to stabilize incomes, by reducing downward pressure on land-labor ratios. This is particularly true because larger cities acted as catalysts for European belligerence. With more money available for taxation and borrowing as a consequence of greater urban riches, princes fought more often, and for longer. Urban growth also spread disease through trade. We call these indirect repercussions of the Black Death the 'Horsemen of Riches' because they jointly increased mortality, thus helping to preserve post-plague wage gains.

We demonstrate that permanently higher mortality rates, driven by indirect consequences of the Black Death, were empirically important. In our calibrations, the mortality channel alone can account for at least half of the increase in per capita incomes in early modern Europe. Of this increase, the largest component came from more frequent warfare. Trade and excess city mortality made smaller contributions.

Non-reproducible factors of production, such as land, probably still play a role in production in today's Third World (Weil and Wilde, 2009). That is why deadly epidemics such as AIDS may raise per capita incomes (Young, 2005). Oster (2009) shows that HIV in Africa spreads along trade routes. Since trade is linked to incomes, a similar feedback mechanism to the one we identified in early modern Europe may operate in developing countries. Urbanization and war, on the other hand, are unlikely to have similar effects. Military technology has become markedly more destructive. This limits the benign effects of rising land-labor ratios. In addition, cities are no longer notably less healthy than rural areas.

Why did war, disease, and urbanization not yield similar results elsewhere? Neither plagues, war, nor cities were unique to Europe. However, European cities were remarkably unhealthy, for a variety of cultural reasons. This limited the operation of the 'ratchet effect' elsewhere. The plague in China could not produce a similar, self-reinforcing cycle of higher incomes and rising mortality. There, a one-off increase in wages did not produce a lasting rise in death rates via higher urbanization and more war. Similarly, the Justinian Plague that hit Imperial Rome – possibly just as devastating at its 14th century counterpart – occurred at a time when Roman cities were amply provided with clean water. They were also not as overcrowded as early modern European cities. The latter kept concentrating ever larger numbers of people in the same area, protected by massive fortifications. In both 14th century China and in Justinian Rome, another crucial 'Horseman of Riches' – war – was also not available. Both regions were politically unified, and a rise in city wealth did not translate into more frequent warfare.

Economic fortunes diverged markedly within Europe during the early modern period. North-Western Europe pulled decisively ahead of other areas which had been pre-eminent in the medieval period, such as the Mediterranean (Acemoglu et al., 2005). While we do not explore this aspect in detail, the differential impact of the plague also appears to be a good predictor of changes in urbanization. Figure 14 plots the increase in the share of urban population against the population losses as a result of the Black Death. Where the plague shock was largest, subsequent gains in urbanization were strongest.

55Political fragmentation was also much lower in the Middle East, which was hard-hit by the 14th century plague. Much of it was quickly unified under first the Mamluks, then the Ottomans. This limited the potential for death rates to be driven up by continued fighting. In addition, the destruction of irrigation systems in the Middle East by the Mongols did much to undermine production. Europe did not have similarly centralized, vulnerable infrastructure.
One implication of our findings is that urbanization is not simply an indicator for development. City growth also made higher per capita incomes sustainable in a Malthusian setting. Our paper has emphasized the contrast between early modern Europe and the rest of the world. In the final analysis, Europe’s political fragmentation and geographical heterogeneity interacted with the negative shock of the Black Death in a unique way. In combination, urbanization, warfare, and trade produced a mortality regime that was different from the one prevailing in other parts of the world. As a result, death and disease contributed importantly to the ‘Rise of Europe.’

Appendix

A.1. Urbanization Data

We use two data series for urbanization rates. De Vries’ (1984) figures are often considered the most reliable dataset for historical European urbanization. De Vries reports the share of population living in cities larger than 10,000 inhabitants. His data is available after 1500. Second, we derive urban population from Bairoch et al. (1988), who report the size of 2,191 European cities over the period 800-1850. As Bairoch et al. (1988) emphasize, estimates before 1300 are rough and less reliable. For many cities, observations are missing in at least some years. For example, Douai in France is reported to have 10,000 inhabitants in 1500 and 13,000 in 1700; no observation is given for 1600. We use linear interpolation to fill these gaps. When numbers are missing in 1400, we extrapolate the 1300 value with the country-specific population loss between 1300 and 1400, in order to approximate the impact of the Black Death in the mid-14th century. For Cordoba (Spain) in 1000, we use population from Glick (1979), as proposed by Buringh and van Zanden (2009), correcting the unrealistically large number in Bairoch et al. (1988). These steps result in a comprehensive measure of urban population in Europe, which we divide by the population estimates of McEvedy and Jones (1978) to calculate urbanization rates at the country level, as used in figure 14. Finally, in order to provide comparability with our first data series for European averages, we restrict the Bairoch et al. sample to countries covered by De Vries (which means excluding Russia and the Balkans). All urbanization rates that we report reflect weighted averages (by country population).

56 The underlying country-level population data are from McEvedy and Jones (1978). For a number of countries where hard data is not available, McEvedy and Jones give estimates of population. We use the descriptive evidence in Benedictow (2004) to augment the data in McEvedy and Jones. For example, for the case of Norway, McEvedy and Jones do not give an estimate for population in 1400. Benedictow emphasizes the similarity of the plague’s impact in Norway and England. Hence, we assume that the same percentage decline in population that occurred in England also affected Norway.

57 Acemoglu, Johnson, and Robinson (2002) use the same approach to calculate European urbanization rates. However, they do not correct the raw data of Bairoch et al. (1988).
A.2. Congestion and Constrained City Growth

Income increases raise the demand for urban goods and thus manufacturing wages, attracting migration to cities. However, in the short-run migration is constrained because new dwellings and infrastructure must be provided. Too many migrants therefore lead to over-crowding, making further migration to urban centers unattractive. In the interest of simplicity, we capture congestion effects with an upper limit to the growth rate of cities, ν. When shocks are large, and urban-rural wage differentials are substantial, this constraint becomes binding. It then takes time until population shares reach their long-run equilibrium levels n_{LR}^M and n_{LR}^A, as given by the equation for unconstrained migration, (14).

Let $N_{A,t}^*$ and $N_{M,t}^*$ be the number of individuals living in the countryside and cities, respectively, at the beginning of period t. $N_{M,t}^L = n_{LR}^L N$ denotes long-run urban population, i.e., the number of city inhabitants that would be established under unconstrained city growth if overall population is N. Next, we derive the growth of city population that occurs when migration is unconstrained, reaching the long-run equilibrium instantly.58

$$\nu_t \equiv \frac{N_{LR}^M - N_{M,t}^*}{N_{M,t}^*} = \frac{n_{LR}^M - n_{M,t}^*}{n_{M,t}^*} \quad (A.1)$$

The likelihood that congestion constrains migration is the larger the more the long-run population distribution deviates from actual values. If ν_t exceeds the upper bound for the growth rate of urban centers, the constraint $\bar{\nu}$ becomes binding. In this case, replacing ν with $\bar{\nu}$ in (A.1) gives the law of motion for city population:

$$N_{M,t} = (1 + \bar{\nu})N_{M,t}^* \quad (A.2)$$

The remainder of the population works in agriculture: $N_{A,t} = N_t - N_{M,t}$. Equilibrium wages, production, and relative prices under constrained city growth can be derived from the known location-specific employment. Note that urban and rural wages differ in this case. Agricultural wages are given by (4). The manufacturing wage depends on the relative demand for urban goods. Introducing location-specific wages in (2) together with market clearing yields an explicit solution for urban wages.59

$$w_M = \frac{1}{n_M} \frac{1 - \alpha}{\alpha} [w_A n_A - c] \quad (A.3)$$

Manufacturing products are sold at $p_A = w_M/A_M$. Workplace-specific food consumption follows from the corresponding wages and (2). Accordingly, fertility and mortality also vary by location, following from (6) and (7), respectively. Aggregate birth and death rates are weighted averages of the rural and urban rates. The 'Horsemen effect' is calculated as in the unrestricted case. While none of the long-run (or qualitative) results in this paper depend on the assumption of congestion and limited city growth, it is important for

58More precisely, this is the growth rate of city population due to migration only. We implicitly assume that urban offspring do not contribute to congestion because they live with their parents, at least in the short run. In this specification, the growth rate of ν is equal to the growth of the urbanization rate – a fact that we use to calibrate $\bar{\nu}$.

59A detailed solution of the model with location-specific wages and demand is provided in the working paper Voigtländer and Voth (2008).
historical realism in the transitional dynamics.

References

Figure 1: Life expectancy in early modern England

Sources: De Vries (1984) for European urbanization rates 1500-1800, corresponding to cities with more than 10,000 inhabitants. Bairoch et al. (1988) for population in cities larger than 5,000 inhabitants between 1000 and 1800, divided by country-level population from McEvedy and Jones (1978) to obtain urbanization rates; see appendix A.1 for details. A regression-based technique in the spirit of Chow and Lin (1971) is used to extrapolate De Vries’ figures based on Bairoch et al.’s numbers. China: Maddison (2001), tables 1-8c and B-14; the line interpolates in 1100-1400 and 1700.
Figure 3: Plague outbreaks in Europe

Data source: Biraben (1975). Data points represent the number of outbreaks over 10 year periods. The solid line is the median of each data point and the two adjacent ones.

Figure 4: Wages and urbanization
Figure 5: Population dynamics and equilibria

![Figure 5: Population dynamics and equilibria](image)

Figure 6: Urbanization and p.c. income – model vs. data

![Figure 6: Urbanization and p.c. income – model vs. data](image)

Data sources: Per capita income from Maddison (2007) is relative to the 1350 level (obtained with linear interpolation between 1000 and 1500). Urbanization rates from De Vries (1984).
Figure 7: Percentage of European population affected by war

Data sources: War data from Levy (1983); population from Maddison (2007). Data points represent 10-year averages. The solid line is the median of each data point and the two adjacent ones.

Figure 8: Long-run impact of the plague, ceteris paribus

Equilibrium without 'Horsemen effect'

Subsistence level

Death/Birth Rate (%)

Death Rate

Birth Rate

Corresponds to \(n_M = 2.2\% \)

Dynamics

Total population

Urbanization rate (%)

Plague
Figure 9: Contributions to overall 'Horsemen effect'

Figure 10: Long-run impact of the plague with 'Horsemen effect'

Equilibria with 'Horsemen effect'

Dynamics
Figure 11: Effect of ongoing technological progress

New Equilibrium

\[b - d = \gamma A (1 - \beta) \]

Dynamics

\[\frac{dC}{dT} = \frac{b - d}{\gamma A} \]

Figure 12: Europe: Simulation results vs. data

Population (1000 AD = 1)

Urbanization Rate

Figure 13: Robustness of Results: Negative impact of warfare on TFP

Wars decrease TFP by 1%

Wars decrease TFP by 5%
Figure 14: Population losses during the Great Plague and early modern urbanization

Notes: Population change 1300-1400 from McEvedy and Jones (1978), combined with information on the impact of the plague in Benedictow (2004). Change in urbanization from Bairoch et al. (1988), as explained in Appendix A.1. The regression line has a slope parameter of -.258 with a t-statistic of -3.71 (robust standard errors), and an R^2 of .17. When excluding the outlier Netherlands, the slope becomes -.243 (t-statistic -3.33), while the fit improves (R^2 of .37). Finally, when we additionally exclude the zero-population change observations Finland and Russia, both fit and significance increase (slope -.394, t-statistic -3.72, R^2.42).
Table 1: Baseline Calibration

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Responsiveness of urbanization to income</td>
<td>0.68</td>
</tr>
<tr>
<td>β</td>
<td>Labor share in agriculture</td>
<td>0.6</td>
</tr>
<tr>
<td>ζ</td>
<td>Subsistence food consumption</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Land</td>
<td>8</td>
</tr>
<tr>
<td>$A_{A,0}$</td>
<td>Initial TFP in agriculture</td>
<td>0.465</td>
</tr>
<tr>
<td>$A_{M,0}$</td>
<td>Initial TFP in manufacturing</td>
<td>1.080</td>
</tr>
<tr>
<td>γ_A</td>
<td>Rate of technological progress</td>
<td>0.1%</td>
</tr>
<tr>
<td>b_0</td>
<td>Birth rate at $c = \zeta$</td>
<td>2.75%</td>
</tr>
<tr>
<td>d_0</td>
<td>Death rate at $c = \zeta$</td>
<td>3.04%</td>
</tr>
<tr>
<td>φ_b</td>
<td>Elasticity of birth rates wrt. income</td>
<td>1.41</td>
</tr>
<tr>
<td>φ_d</td>
<td>Elasticity of death rates wrt. income</td>
<td>-0.55</td>
</tr>
<tr>
<td>Δd_M</td>
<td>City excess mortality</td>
<td>1.5%</td>
</tr>
<tr>
<td>h</td>
<td>Maximum trade and war effect</td>
<td>0.01</td>
</tr>
<tr>
<td>n_M</td>
<td>Threshold for trade and war effect</td>
<td>0.03</td>
</tr>
<tr>
<td>δ</td>
<td>Slope parameter for trade and war effect</td>
<td>0.20</td>
</tr>
<tr>
<td>ν</td>
<td>Upper bound on city growth due to congestion</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Resulting values in long-run equilibrium before the Great Plague

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>Population</td>
<td>1.0</td>
</tr>
<tr>
<td>$n_{M,0}$</td>
<td>Pre-plague urbanization rate</td>
<td>2.5%</td>
</tr>
<tr>
<td>$b_0 = d_0$</td>
<td>Economy-average birth and death rate</td>
<td>3.0%</td>
</tr>
<tr>
<td>$p_{M,0}$</td>
<td>Relative price of manufacturing goods</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 2: Urbanization and its contribution to average mortality

<table>
<thead>
<tr>
<th>Year</th>
<th>Urbanization rate (n_M)</th>
<th>Europe</th>
<th>NL</th>
<th>Italy</th>
<th>England</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>3.4</td>
<td>6.4</td>
<td>10.6</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>9.2</td>
<td>33.6</td>
<td>13.2</td>
<td>13.3</td>
<td></td>
</tr>
</tbody>
</table>

City penalty Mortality due to n_M (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>$\triangle d_M$</th>
<th>Europe</th>
<th>NL</th>
<th>Italy</th>
<th>England</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>$\triangle d_M = 50%$</td>
<td>0.05</td>
<td>0.10</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>1300</td>
<td>$\triangle d_M = 80%$</td>
<td>0.08</td>
<td>0.15</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>1700</td>
<td>$\triangle d_M = 50%$</td>
<td>0.14</td>
<td>0.50</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>1700</td>
<td>$\triangle d_M = 80%$</td>
<td>0.22</td>
<td>0.81</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Sources: Urbanization rates in 1700 from De Vries (1984); in 1300 extrapolating de Vries’ figures backwards with the country-specific trend based on Bairoch et al. (1988). See Appendix A.1 for details. The table shows the country-wide additional mortality due to city excess mortality ($\triangle d_M$), calculated as $\triangle d_M \cdot n_M$.

49