

Factors influencing postharvest life of ornamentals

- Postharvest life
 - Definition and symptoms
- Factors affecting the postharvest life of ornamentals
 - Temperature and atmosphere
 - Water and food supply
 - Ethylene (effects and control of responses)
 - Growth tropism
 - Light
 - Mechanical damages
 - Disease

What is postharvest life of flowers or plants ?

Period of time from harvest until the flower or plant has lost its decorative value

Symptoms of poor keeping quality

- bud drop / drying
- flower abscission / senescence
- petal abscission
- leaf abscission / senescence
- leaf yellowing

Carnations, 6 days, dry & wet

Chilling injury

- Tropical crops: Anthurium, bird-ofparadise, some orchids, ginger, *Poinsettia,* bromeliads, african violets temperature > 10 C
- Symptoms:
 - darkening of petals
 - water soaking of leaves and petals (look transparent)
 - collapse and drying of leaves and petals

Effects of CA on cut flowers

- Recommendations: 2-3% O₂ and 2-3%CO₂
- Beneficial effects
 - Reduced O₂: delayed senescence, inhibition of ethylene synthesis
 - Increased CO₂: disease reduction if product tolerates high levels. Inhibition of ethylene action
- Injurious level
 - O₂: 0-2% may cause leaf discoloration and petal collapse and petal browning
 - CO₂: above 3-5% (for many crops) may cause bluening of petals, browning of leaves and stems

Summary

- Temperature
 - Postharvest life of flowers is improved by storing at optimal tp
 - Most of cut flowers 0 C
 - Tropical crops > 10 C
 - Potted plants ?? Suggestion: 5-7 C
 - Respiration can be used to predict the effect of storage temperature on vase life
 - Wet storage extends vase life only under non-optimal temperatures
- Controlled atmosphere
 - Reducing respiration
 - Inhibiting production and action of ethylene
 - Reducing the growth of gray mold (*Botrytis cinerea*)
 - Killing quarantine insects
 - Preventing chilling injury in tropical and sub-tropical foliage plants
 - Recommendations: 2-3% O₂ and 2-3%CO₂

Factors affecting the postharvest life of ornamentals

- Temperature and atmosphere
- Water and food supply
- Ethylene
- Growth tropism
- Light
- Mechanical damages
- Disease

Why do cut flowers wilt?

- Air embolism
- Bacterial plugging
- Hard water

Summary: Maintaining water supply

- Good quality water
- Bactericide
 - chlorite
 - HQC, HQS, Aluminum sulfate (bacteriostats)
 - Citric acid
- Clean buckets
 - detergent wash
 - rinse with chlorite

>-

Carbohydrates in the vase solution

- Carbohydrates
 - Improve bud opening
 - Increase flower color
 - Improve stem strength
 - Increase flower life
- Glucose and sucrose normally used
- How much is required?
 - 1.5% usual
 - ca. 50% for energy, 50% for osmoticum

Summary: Water and food supply

• Water supply

- Reduction of water loss
 - Storage at relative humidity 95%, especially during long-term storage
 - Low temperatures
- Water uptake depends on
 - Emboli
 - Poor water quality
 - Bacterial contamination
- Food supply
 - Starch and sugar stored in the stem, leaves and petals: food needed for flower opening and maintenance.
 - Carbohydrate levels highest when plants grown in high light
 - Carbohydrate levels highest in the late afternoon

Η

Ethylene

Η

- hydrocarbon gas
- colourless
- sweetish odour
- flammable or explosive limits in air: 3.1 -32.00%

Ethylene sensitivity of different crops

- Very sensitive
 - Azalea
 - Begonia
 - Bouganvillea
 - Calceolaria
 - Campanula
 - Dianthus
 - Hibiscus
 - Pelargonium
 - Schlumbergera
 - Rhipsalidopsis
 - Streptocarpus

- Less sensitive
 - Aeschynanthus
 - Columnea
 - Crossandra
 - Cyclamen
 - Eustoma
 - Exacum
 - Impatiens
 - Jasminum
 - Petunia
 - Primula
 - Saintpaulia

Sources of ethylene

- endogenous (synthesised in plants)
- exogenous (common air pollutant):
 - stressed, oxidized or combusted organic materials
 - car and aircraft exhaust
 - cigarette smoke
 - rubber materials exposed to heat or UV light
 - virus infected plants
 - ripening fruits

Control of ethylene biosynthesis MET SAM **AVG, AOA ACC-synthase (ACS) SA, Co⁺ ACC** ACC-oxidase (ACO) **ETHYLENE**

Ethylene perception

Endogenous ethylene

(synthesised in plants)

- NBD, 2,5-norbornadiene
- STS, silver thiosulfate
- DACP, diazocyclopentadiene
- 1-MCP, 1-methylcyclopropene

Exogenous ethylene

(air pollutant)

Model of ethylene, 1-MCP or Ag⁺ action

AgNO₃, 1-MCP inhibits ethylene from binding to receptors

ETR1 receptor

(Source: Ciardi and Klee (2001), modified)

Control the function of the receptor by mutation

- ETR1 gene isolated from Arabidopsis-plants codes for ethylene receptor
- Arabidopsis plants show different ethylene sensitivity
- Dominant ethylene insensitive mutants: *etr1-1*

l l Leibniz l o 2 Universität l o 4 Hannover

Genetic manipulation (*etr1-1*) significantly delays flower senescence in *Kalanchoe blossfeldiana*

Dominant mutant

Wild-type + C_2H_4

Summary: Ethylene

- Endogenous ethylene concentration can be regulated by using inhibitors of ethylene biosynthesis (AOA, AVG, SA, Cobalt)
- Manipulation of ethylene dependent gene expression (*etr*1-1)
- Ethylene analogs (Ag⁻, 1-MCP), high CO₂ conc., low oxygen conconcentration
- Removal of exogenous ethylene, e.g. ventilation or chemicals binding ethylene (potassium permanganate KMnO₄)

Growth Tropisms

- Geotropism:
 - bending away from gravity, effect of redistribution of auxin in response to gravity
 - Spike-type cut flowers (gladiolus, snapdragon, *Kniphofia*) and potted plants (*Kalanchoe*)
 - Flowers and spike bend upward when stored
- Phototropism:
 - bending towards light
 - Caused by directional light or low light during marketing of flowering plants at warm temperature

Light

- Potted plants:
 - Limiting factor for potted plants ability to maintain photosynthesis
 - If light integral is below light photosynthetic compensation point, the plant will die
- Cut flowers:
 - Light is not important, except where foliage yellowing is a problem
 - Leaf yellowing: chrysanthemum, lily, alstroemeria, marguerite

Mechanical damage

- Problems:
 - Aesthetic appearance
 - Easy infection by disease organisms through injured areas
 - Respiration and ethylene production higher in injured plants

Disease

- Problems:
 - Ornamentals are very susceptible to diseases
 - Dead or drying flower or foliage part nutrient supply for pathogens
 - Easy germination of gray mold (*Botrytis cinerea*) wherever free moisture is present
- Solutions:
 - Proper management of greenhouse hygiene
 - Temperature control
 - Minimizing of condensation on harvested crops

The pathogen

- Reduce spore load
 - sanitation in field or greenhouse, packing shed
- Prevent spore germination
 - reduce condensation, injury, temperature
- Prevent fungal entry
 - care in handling, sanitation during harvest

The host

- Maintain in good condition, assists
 physiological resistance
 - temperature, care, phytoalexins
- Surface fungicides, prevent germination and penetration

The environment

- Temperature
- Humidity
 - prevent
 condensation
- Atmosphere
 - remove ethylene,
 high CO₂, CO/low O₂

<u>References</u>

- Serek, M. and M.S. Reid, 2000. Role of growth regulators in the postharvest life of ornamentals. In: Plant growth regulators in agriculture and horticulture, eds. A.S. Basra. Food Products Press, Binghamton, New York, 147-174.
- Jones, R.B., M. Serek and M.S. Reid, 1993. Pulsing with Triton X-100 improves hydration and vase life of cut sunflowers (Helianthus annuus L.). HortScience 28: 1178-1179.
- Serek, M., R.B. Jones and M.S. Reid, 1994. Role of ethylene in opening and senescence of Gladiolus sp. J. Amer. Soc. Hort. Sci. 119: 1014-1019.
- Jones, R.B, M. Serek, C.L. Kuo and M.S. Reid, 1994. The effect of protein synthesis inhibition on petal senescence in cut bulb flowers. J. Amer. Soc. Hort. Sci. 119: 1243-1247
- Reid, M.S. and M. Serek, 1999. Guide to food transport -Controlled Atmosphere. Mercantila Publishers, ISBN 87 890 1096-5, 153 pp.

30

<u>References</u>

- Waithaka, K., M.S. Reid and L. Dodge, 2001. Cold storage and flower keeping quality of cut tuberose (*Polianthes tuberosa* L.). J. Hort. Sci. & Biotech. 76: 271-275
- Cevallos, J-C and M.S. Reid, 2001. Effect of dry and wet storage at different temperatures on the vase life of cut flowers. HortTechnology 11: 199-202
- Celikel, F. and M.S. Reid, 2002. Storage temperature affects the quality of cut flowers from the Asteraceae. HortScience 37: 148-150
- Reid, M.S., B. Wollenweber, M. Serek, 2002. Carbon balance and ethylene in the postharvest life of flowering hibiscus. Postharvest Biology and Technology 227-233
- Celikel, F. And M.S. Reid, 2005. Temperature and postharvest performance of rose (*Rose hybrida* L. 'First Red') and Gipsophyla (*Gypsophyla paniculata* L. 'Bristol Fairy') flowers. Acta Horticulture 682: 1789-1794

References

Book chapters:

- Taiz, L. and Zeiger, E., 2006. Plant Physiology, 4th edition. ISBN 0-87893-856-7. Chapter 22: Ethylene, The Gaseous Hormone, 571-591
- Davis, P.J., 2004. Plant hormones; Biosynthesis, Signal Transduction, Action.
- Sisler, E.C., V. Grichko and M. Serek, 2006. Interaction of ethylene and other compounds with ethylene receptor: agonists and antagonists. In: Ethylene action in plants, eds. N.A.Khan. ISBN-10 3-540-32716-9 Springer Berlin Heidelberg New York, 1-34.