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a b s t r a c t

We give an overview of using fluorescence correlation spectroscopy (FCS) for measuring rotational diffu-
sion of macromolecules, and present a new experimental scheme, pulsed-interleaved excitation or
PIE-FCS, which allows for measuring all conceivable correlation curves of a polarization-sensitive FCS
experiment. After giving a brief review of the theoretical foundations, we systematically study the impact
of different experimentally relevant parameters such as depolarization by the objective, or non-collinear-
ity between absorption and emission dipole of the fluorescent label. We also discuss the possibility to
extract information about anisotropic rotational diffusion, and exemplify that by determining the size
and shape of the large protein aldolase.
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1. Introduction

Molecules and small particles suspended in solution undergo
constant translational and rotational diffusion due to thermal mo-
tion. Measurement of the translational and rotational diffusion
constants can give information about their size and shape. The
most powerful methods for determining structural information
on molecules in solution are NMR relaxation spectroscopy [1],
and small angle X-ray scattering (SAXS) [2]. However, both meth-
ods are technically challenging, expensive, and require rather large
amounts of sample, which all restrict their use as an everyday rou-
tine tool. Dynamic light scattering [3] is much less technically
demanding, and yields size and overall shape information of mac-
romolecules. But it, too, requires large sample concentrations, and
their accuracy goes down with decreasing molecular size. Lumi-
nescence-based methods are much less demanding in regard to
sample concentration, due to the enormous sensitivity and excel-
lent signal-to-noise ratio achievable in luminescence detection.
The classical luminescence-based method for rotational diffusion
measurements is fluorescence anisotropy decay spectroscopy [4].
However, this method is only applicable if the fluorescence decay
time of the employed fluorescent/luminescent label is of the same
order of magnitude as the rotational diffusion time one wants to
observe. However, the vast majority of fluorescent labels has fluo-
rescence decay times on the order of a few nanoseconds, whereas
rotational diffusion times of biological macromolecules such as
ll rights reserved.
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globular proteins in aqueous solution at physiological tempera-
tures exhibit rotational diffusion times of dozens to hundreds of
nanoseconds. One potential way out of this problem is to use exotic
luminescent labels with exceptionally long decay times such as
rare-earth complexes or phosphorescent probes that emit light
upon return form the triplet to the ground state, see e.g. [5–7].
However, there are several limitations preventing a broad applica-
tion of these probes: (i) the emission intensity is often rather weak
when compared with good fluorescent dyes, (ii) the intrinsic polar-
ization anisotropy of the labels can be very low (due to non-dipolar
electronic transitions), preventing their applicability as fluores-
cence anisotropy probes, (iii) it is difficult to label a given macro-
molecule in such a way that the probe co-rotates with the
macromolecule.

An attractive but lesser known alternative to the above men-
tioned methods is fluorescence correlation spectroscopy (FCS). In
FCS, one measures the correlation of the fluctuating fluorescence
signal coming from a sample of fluorescent or fluorescently labeled
molecules (or particles) at very low concentration (typically pico-
to nanomolar). FCS was introduced in the early seventies by Magde
et al. [8–10], and has since then seen a tremendous development.
One of its major applications is the measurement of the transla-
tional diffusion of molecules in solution, which gives information
about the molecular size of the studied molecular species. In recent
years, fluorescence cross-correlation techniques have also gained
enormous popularity for the measurement of binding and interac-
tion between different molecular species. Excellent reviews can be
found in Ref. [11]. That FCS can also be used for measuring rota-
tional diffusion is less known, although this option was already
clear at the very beginning of FCS [12–14]. The first successful
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FCS measurements of rotational diffusion appeared only in the
eighties [15,16], and recent advances in detector technology, op-
tics, and high-speed electronics have made such measurements
readily available [17–19]. However, up to this day, FCS did not find
broad application for rotational diffusion measurements. There are
several reasons for that. First, using FCS for rotational diffusion
measurements is experimentally more demanding than using it
for standard translational diffusion or cross-correlation measure-
ments. To begin with, one needs polarized excitation and polariza-
tion-sensitive detection. Moreover, due to the fact that rotational
diffusion of typical macromolecules takes places on times scales
of dozens to hundreds of nanoseconds, one needs a detection
scheme that allows for recording light with nanosecond temporal
resolution and for cross-correlating photons on that time scale.
Due to the finite dead-time of photodetectors (typically single-
photon avalanche diodes), this requires the usage of at least two
detectors in a Hanbury-Twiss-Brown scheme, see e.g. [17]. If one
wants to record FCS curves for all possible combinations of excita-
tion and detection polarization, one needs even a four-detector
scheme, see below. Second, the theory of FCS with rotational diffu-
sion is demanding (see Section 2). Third, there is no systematic
study of how rotational diffusion measurements are influenced
by such effects as depolarization when focusing/detecting light
through objectives with large numerical aperture [20], label stoi-
chiometry, non-zero angle between excitation/emission dipole of
the label, overlap between the time scale of fluorescence decay
and rotational diffusion, or insufficient co-rotation of the label with
the labeled molecule. All these effects have to be taken into ac-
count of a complete and correct analysis of the FCS data. Last but
not least, for a broad applicability of FCS for rotational diffusion
measurements, one needs fluorescence labels having optimal fluo-
rescence properties (convenient excitation/emission wavelength,
high photo-stability and quantum yield), that can be rigidly at-
tached to the macromolecules of interest such as proteins, and that
are widely available and affordable.

In the present mini-review, we describe how to use FCS for rota-
tional diffusion measurement, explaining all the necessary theoret-
ical background, and the details of the experimental setup,
measurement, and labeling. Moreover, we discuss in detail the im-
pact of all the aforementioned potential complications such as light
depolarization, label stoichiometry, or non-collinearity of excitation
and emission dipole. We also present a recently developed measure-
ment scheme [19] allowing for the measurement of all physically
possible correlation curves, and we show that this ability becomes
important when aiming at using FCS for extracting information
about molecular shape and not only size. We hope that this review
will help to make FCS a more attractive method for rotational diffu-
sion measurements of macromolecules or colloids, exploiting its
ability to measure at minute concentrations with highest sensitivity.
Figure 1. Schematic of the measurement set-up showing the polarization direc-
tions in the excitation and detection paths.
2. Theory

There are numerous theoretical studies available that are con-
cerned with correlation measurements of rotational diffusion.
These relate not only to FCS [13], but also to light scattering [3]
and NMR. Nonetheless, we will briefly recapitulate the theoretical
basis here to make the Letter self-consistent, trying to present the
material in a form as lucid and transparent as possible, and to
make it more easily understandable for the audience without a
deep background in theoretical physics. Moreover, we will empha-
size aspects and make approximations that are especially impor-
tant for modern FCS measurements, and present the theory in
such a general form as to include our newly developed measure-
ment scheme that uses pulsed interleaved excitation for extracting
all physically possible correlation curves (see also Section 4).
2.1. Correlation function

The experimental system which we will consider here is sche-
matically shown in Figure 1. The sample is excited by linearly
polarized lasers, where in the general setup one can switch be-
tween two orthogonal excitation polarizations. Detection is done
in a polarization-sensitive manner with four detectors, as shown
in the figure, so that one can obtain the second-order correlation
function for any combination of excitation and detection
polarizations.

These correlation functions are defined as

gab
abðtÞ ¼ hI

a
aðt0ÞIbbðt0 þ tÞit0

ð1Þ

where IaaðtÞ is the signal detected by detector a at time after excita-
tion with laser a, and the angular brackets with subscript t0 denote
time averaging over time t0. On a pico- to nanosecond timescale, the
correlation function is characterized by fluorescence antibunching
and rotational diffusion. Fluorescence antibunching is caused by
the fact that a single emitter with a finite lifetime of its excited state
can emit only one photon at a time. It can be used to obtain the
average number of emitters within the detection volume. Rotational
diffusion will be seen in the correlation functions because a mole-
cule can rotate between two subsequent photon excitation/emis-
sion events and thus rotate the molecule’s dipole axis into or out
of the polarization plane of a detector.

Let us consider an experiment using the setup shown in Figure
1. The sample should be excited by two consecutive laser pulses
with negligible pulse width and with a temporal delay p between
the two pulses. Let us now ask: what is the chance to detect two
photons from one and the same molecule with lag time t between
them? For the sake of simplicity let us assume that the fluores-
cence decay is mono-exponential with decay time s, so that the
chance to observe a photon a time t after an exciting laser pulse
is given by the probability density expð�t=sÞ=s. If we take further
into account that a molecule can emit, after one excitation pulse,
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only one photon, the probability density for observing two photons
with lag time t in between will be proportional toZ p

maxðp�t;0Þ
dt0

ja
a

s
e�t0=s jb

b

s
e�ðt

0þt�pÞ=s ¼ ja
aj

b
bF1ðt; s;pÞ ð2Þ

where we have introduced the abbreviation

F1ðt; s; pÞ ¼
1
s

sinhðt=sÞe�p=s; t 6 p

sinhðp=sÞe�t=s; t > p

(
ð3Þ

and where ja
a and jb

b quantify the chance that the first and the sec-
ond pulse lead to a photon detection event, respectively. Eq. 2 can
be understood as the product of the probabilities (i) that the mole-
cule is excited at time zero, (ii) that it emits a photon at time t0, (iii)
that the molecule is re-excited by a second pulse at time p, and (iv)
that it emits a second photon at time t0 þ t, see also Figure 2. The
upper integration limit p is explained by the fact that if the mole-
cule has not emitted a photon until the second excitation pulse, it
is still in its excited state, thus cannot be re-excited, and one cannot
obtain two photons with the two excitation pulses in this case. The
values of ja

a and jb
b depend on the excitation (a; b) and detection

(a;b) polarization as well as the consecutive orientations of the
molecule’s absorption/emission dipole.

The chance to detect two photons with lag time t from two dif-
ferent molecules is similar to Eq. 2, but with the difference that the
upper integration limit can now be extended to infinity, leading toZ 1

maxðp�t;0Þ
dt0

ja
a

s
e�t0=s jb

b

s
e�ðt

0þt�pÞ=s ¼ ja
aj

b
b

2s
exp � j t � p j

s

� �
� ja

aj
b
bF2ðt; s;pÞ ð4Þ

where the last equation defines the new function F2ðt; s;pÞ. The va-
lue of F1ðt; s; pÞ, in contrast to that of F2ðt; s;pÞ, approaches zero
when the pulse delay p goes to zero, which is the essence of fluores-
cence antibunching.

Let us consider the limit of s! 0, i.e. when the fluorescence
lifetime becomes negligibly small compared with all other times
of interest, in particular the inter-pulse distance p and the charac-
teristic rotational diffusion times. This is exactly the situation that
will be of interest in Section 4. For s! 0 one finds

F1ðt; pÞ ¼
0 p ¼ 0
dðt � pÞ p > 0

�
ð5Þ

and

F2ðt;pÞ ¼ dðt � pÞ ð6Þ

where dðxÞ is Dirac’s d-function. Furthermore, if the excitation is
done periodically with repetition period p, the complete time-
dependent part of the correlation function takes the simplified form

gab
abðtÞ ¼ �c

X1
k¼1

hja
aðt0Þjb

bðt0 þ tÞit0
dðt � kpÞ

þ �2c2hja
aðt0Þit0

hjb
bðt0Þit0

X1
k¼0

dðt � kpÞ ð7Þ
Figure 2. Schematic of the considered two-photon correlation experiment: a first
laser pulse (left vertical arrow) excites a molecule, which emits a fluorescence
photon (yellow sphere) at time t0 . A second laser pulse (right vertical arrow) re-
excites the molecule (or excites a second one) at time p, and a second fluorescence
photon is emitted at time t0 þ t. Time flow is from left to right.
where c is the concentration of fluorescing molecules, and � takes
in all factors related to global excitation and detection efficiency as
well as fluorescence quantum yield. The first sum accounts for
photon pairs generated by one and the same molecule (and thus
enters the correlation function proportionally to �c), and the
second sum accounts for photon pairs generated by two different
molecules (and thus enters the correlation function proportionally
to �2c2). The effect of rotational diffusion (i.e. the rotation of absorp-
tion/emission dipole) is contained in the pre-factors ja

a and jb
b or,

more precisely, in the joint correlation of these factors that enters
the first sum of the last equation. We will consider this rota-
tional-diffusion related part of the correlation function within the
next subsections.
2.2. Rotational diffusion

The general theory of rotational diffusion of an anisotropic rotor
can be found in several textbooks on quantum mechanics and was,
in the context of correlation spectroscopy and light scattering,
developed by Aragón and Pecora, [13,3]. Let us start from the rota-
tional diffusion equation

@P
@t
¼ Da

bJ2
a þ Db

bJ2
b þ Dc

bJ2
c

� �
P ð8Þ

where a, b, and c denote the principal axes of rotation of the mole-
cule, P ¼ Pðw; h;/Þ is the probability density to find the molecule’s
principal axes rotated by Euler angles w, h, and / with respect to
the lab frame, the Da;b;c are the generally different rotational diffu-
sion coefficients around the molecule’s principal axes, and thebJa;b;c are the three angular momentum operators around these axes.
Eq. 8 is derived analogously to the more familiar translational diffu-
sion equation. The difficulty with Eq. 8 is that the angular momen-
tum operators relate to the intrinsic frame of the molecule’s
principal axes which is rotating in time with respect to the fixed
lab frame. To simplify matters, one can first rotate the molecule
back to the lab’s frame so that its axes align with the fixed Cartesian
coordinate axes of the lab frame, then apply the operator, and final-
ly rotate the molecule back, i.e.

@P
@t
¼ bR Da

bJ2
x þ Db

bJ2
y þ Dc

bJ2
z

� �bR�1P ð9Þ

where bR denotes the operation of rotating the molecule’s frame
from an orientation aligned with the lab’s Cartesian x; y; z-coordi-
nates to its actual orientation as specified by the Euler angles w, h,
and /. The rotation operator bR can be decomposed intobR ¼ bRzð/ÞbRyðhÞbRzðwÞ ð10Þ

where bRy;zðbÞ denotes a rotation by angle b around axis y or z,
respectively. The advantage of Eq. 9 is that the angular momentum
operators are now referring to the fixed lab frame. To further ana-
lyze Eq. 9, let us consider the special case that the function p is re-
placed by

P ¼ bR j ‘;mi ð11Þ

wherej ‘;mi is an eigenfunction of the angular momentum operator
obeying the two relations

Ĵ2 j ‘;mi ¼ ðbJ2
x þ bJ2

y þ bJ2
z Þ j ‘;mi ¼ ‘ð‘þ 1Þ j ‘;mi ð12Þ

andbJz j ‘;mi ¼ m j ‘;mi ð13Þ

Inserting Eq. 11 into Eq. 9 yields

@ðbR j ‘;miÞ
@t

¼ bR Da
bJ2

x þ Db
bJ2

y þ Dc
bJ2

z

� �
j ‘;mi ð14Þ
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Next, the action of the rotation operator bR on j ‘;mi is given by
(see e.g. [21])

bRð/; h;wÞ j ‘;mi ¼X‘
k¼�‘

D‘
kmð/; h;wÞ j ‘; ki ð15Þ

where the D‘
kmð/; h;wÞ are Wigner rotation matrices defined by

D‘
kmð/; h;wÞ ¼ expðik/þ imwÞd‘kmðhÞ ð16Þ

and

d‘kmðhÞ ¼ ‘; k j RyðhÞ j ‘;m
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ kÞ!ð‘� kÞ!ð‘þmÞ!ð‘�mÞ!

p
k!

�
X

n

� ð�1Þ‘þk�nC2n�m�kS2‘þmþk�2n

ð‘þm� nÞ!ð‘þ k� nÞ!ðn�m� kÞ! ð17Þ

where we have used the abbreviations C ¼ cosðh=2Þ and
S ¼ sinðh=2Þ.

For the sake of simplicity, we will further consider the special
case of a symmetric top rotor where one has Da ¼ Db ¼ D? and
Dc ¼ Djj. This is also the case of most practical relevance, because
real FCS data will rarely allow for discerning more than two non-
equal rotational diffusion coefficients. For the symmetric top rotor,
one finds, by multiplying Eq. (14) with h‘; k j, that the functions

e� D?‘ð‘þ1ÞþðDjj�D?Þm2½ �tD‘
mkð/; h;wÞ ð18Þ

are eigenfunctions of the rotational diffusion equation. Moreover,
Wigner’s rotation matrices obey the orthogonality relationZ p

0
dh sin h

Z 2p

0
d/
Z 2p

0
D‘�

mkð/; h;wÞD
‘0

m0k0 ð/; h;wÞ

¼ 8p2

2‘þ 1
d‘;‘0dk;k0dm;m0 ð19Þ

where a star, as usual, denotes complex conjugation. The da;b are
Kronecker symbols taking the value one for a ¼ b and zero other-
wise. With this complete orthogonal system of eigenfunctions, the
probability density that a molecule has rotated, within time t, from
an initial orientation X0 described by the Euler angles /0, h0 and w0

into a final orientation X described by Euler angles /, h and w is gi-
ven by Green’s function in the standard way as

GðX;X0; tÞ ¼
X1
‘¼0

X‘
k;m¼�‘

2‘þ 1
8p2 D‘

kmð/; h;wÞ

� D‘�
kmð/

0; h0;w0Þe� D?‘ð‘þ1ÞþðDjj�D?Þm2½ �t ð20Þ
2.3. Excitation and detection

Next, one has to consider the peculiarities of fluorescence exci-
tation and detection. Generally, the absorption and emission dipole
of a fluorescent molecule will not be collinear, and we will denote
the angle between both by v. Let us start with orienting the
absorption dipole v0 along the z-axis of the molecular frame,
whereas the emission dipole shall be oriented along
w0 ¼ fsinðvÞ;0; cosðvÞg. Then, an arbitrary orientation of absorp-
tion and emission dipoles is given by

v ¼ bRzð/ÞbRyðhÞbRzðwÞ � v0 ð21Þ
w ¼ bRzð/ÞbRyðhÞbRzðwÞ �w0 ð22Þ

where the three Euler angles w, h, and / define how the non-collin-
ear emission/absorption dipoles are oriented with respect to the
molecule’s principal axes. The probability of exciting and detecting
a photon from such an orientation of absorption/emission dipoles
for a molecule which principal axes are aligned along the coordinate
axes of the lab frame and which position is r is in the most general
case proportional to

Ua
að/; h;w; rÞ ¼

X3

p;q;r;s¼1

ua;pqðrÞvpvqua
rsðrÞwrws ð23Þ

where the /; h;w-dependence on the right hand side is indirectly
contained within the vector components of v and w via (21) and
(22). The functions ua;pqðrÞ depend on the position-dependent elec-
tric field distribution as generated by the focused excitation laser,
and the functions ua

rsðrÞ are connected to the peculiarities of the
confocal detection, and both have to be calculated for the case that
the principal axes of the molecule are parallel to the axes of the lab
frame. Remember that the subscript a refers to which excitation la-
ser and the superscript a to which detection channel are used.

Now, we have everything in place for calculating the correlation
functions hja

aðt0Þjb
bðt0 þ tÞit0

. These is given by the product of the
probability to excite/detect a photon from a molecule at position
r and having orientation X with respect to the lab frame, times
the probability that it rotates from orientation X to orientation
X0 within time t, times the probability to detect a second photon
from a molecule at the same position r but having orientation X0.
Thus, we find

hja
aðt0Þjb

bðt0 þ tÞit0
¼
Z

dr
Z

dx
Z

dX
Z

dX0Ua
a RðXÞx; r½ �

� GðX;X0; tÞUb
b RðX0Þx; r

 �

¼
Z

dr
Z

dx
Z

dX
Z

dX0 R�1ðXÞUa
a x; rð Þ

h i
� GðX;X0; tÞ R�1ðX0ÞUb

b x; rð Þ
h i

ð24Þ

where the integrations extend over all possible initial and final ori-
entations X and X0 of a molecule, over all orientations x of the
absorption/emission dipoles with respect to the to molecular frame,
and over all possible positions r of a molecule within the sample.
Here we have to important assumptions: Firstly, a molecule does
not move during the considered time t, i.e. rotational diffusion is
by orders of magnitude faster than the typical lateral diffusion time
of a molecule through the detection volume; and secondly, that we
average over all possible orientations of the absorption/emission di-
pole with respect to the molecular frame. This last assumption is
reasonable for non-specific random labeling of macromolecules.

Because Wigner matrices constitute a complete orthogonal func-
tion system, the functions Ua

aðrÞ can be expanded into the series

Ua
að/; h;w; rÞ ¼ ð25Þ

X1
‘¼0

X‘
k;m¼�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

8p2

r
ðua

aÞ
‘
kmðrÞD

‘
kmð/; h;wÞ

where the ðua
aÞ
‘
kmðrÞ are the position dependent expansion

coefficients not to be confused with the excitation and detection
coefficients, ua;pqðrÞ and ua

pqðrÞ, in Eq. (23). These expansion
coefficients can be explicitly calculated by

ðua
aÞ
‘
kmðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

8p2

r Z p

0
dh sin h

Z 2p

0
d/

�
Z 2p

0
dwD‘�

kmð/; h;wÞUð/; h;w; rÞ ð26Þ

Because the Ua
aðrÞ are fourth order polynomials of the compo-

nents of the absorption and emission dipole vectors, the maximum
value of ‘ yielding non-zero coefficients is four. Thus, there can be
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at maximum
P4

‘¼0ð2‘þ 1Þ ¼ 15 independent non-zero coefficients
in the above series expansion. Due to symmetry reasons, the actual
number will be even smaller. To simplify matters further, one can
use the transformation relation of Wigner matrices

½RzðaÞRyðcÞRzðbÞD�‘kmð/; h;wÞ ¼
X

j

D‘
kjða; c;bÞD

‘
jmð/; h;wÞ ð27Þ

Inserting Eqs. (25) and (20) into Eq. (24), using relations (19)
and (27), and carrying out all integrations, one finally obtains the
compact result

hja
aðt0Þjb

bðt0 þ tÞit0
¼
X4

‘¼0

X‘
m¼�‘
ðf ab

ab Þ
‘
me� D?‘ð‘þ1ÞþðDjj�D?Þm2½ �t ð28Þ

where we have introduced the abbreviation

ðf ab
ab Þ

‘
m ¼

X‘
k¼�‘

Z
dr; ðua

aÞ
‘
mkðrÞðu

b
bÞ
‘�
mkðrÞ ð29Þ

Thus, the whole problem condenses to determining the coeffi-
cients ðf ab

ab Þ
‘
m by first calculating the explicit excitation/detection

alias molecule detection function, Eq. (23), via standard wave-op-
tics, next to find the coefficients ðua

aÞ
‘
kmðrÞ via Eq. (26), and finally

to calculate ðf ab
ab Þ

‘
m by integrating over r in the last equation.

As reference we will consider the case of an optics with negligi-
bly small numerical aperture, so that excitation and detection is
done by plane waves. In practice, such an experiment cannot be
realized because the detection volume would become infinitely
large. For this plane-wave reference, the coefficients ðf ab

ab Þ
‘
m can

be calculated analytically by setting ua;pqðrÞ ¼ dapdaqdðrÞ and
ua

rsðrÞ ¼ dapdaqdðrÞ in Eq. (25) (assuming collinear absorption/emis-
sion dipoles). All resulting non-zero coefficients ðf ab

ab Þ
‘
m are listed in

Table 1, where the indices k and ? indicate polarization of excita-
tion/detection along two orthogonal directions as shown in Figure
1. In that table, we omitted the coefficients with ‘ ¼ 0 and m ¼ 0,
which contribute only to a constant offset in the correlation curve
and thus do not carry any information about the rotational
diffusion.

In general, there exist 16 correlation function for all possible
combinations of excitation and detection polarizatons of the first
and second photon. However, for symmetry reasons there are only

four distinct correlation curves, which are gkkkk ¼ g????, gk?kk ¼
g?k?? ¼ g?kkk ¼ gk??? ¼ gkkk? ¼ g???k ¼ gkk?k ¼ g??k? , g??kk ¼ gkk?? ¼ gk??k ¼ g?kk?,

and gk?k? ¼ g?k?k. It is important to notice that only correlation curves
with the same two subscripts are measurable in conventional FCS
experiments, where excitation is done with only one linearly polar-
ized laser. All correlation curves with a pair of different subscripts
can be measured only with a set-up employing pulsed interleaved
Table 1
Values of coefficients ðf ab

ab Þ
‘
m for plane wave excitation and detection and collinearity

of absorption and emission dipole. All values are normalized by ðf kkkk Þ
2
0.

ðf kkkk Þ
‘
m

m ¼ 0 m ¼ �2 m ¼ �4

‘ ¼ 2 1 3/2 0
‘ ¼ 4 1/20 1/18 7/72

ðf k?kk Þ
‘
m

m ¼ 0 m ¼ �2 m ¼ �4

‘ ¼ 2 1/3 0 0
‘ ¼ 4 1/60 0 �7/72

ðf??kk Þ
‘
m

m ¼ 0 m ¼ �2 m ¼ �4

‘ ¼ 2 1/9 0 0
‘ ¼ 4 1/180 0 7/72

ðf k?k? Þ
‘
m

m ¼ 0 m ¼ �2 m ¼ �4

‘ ¼ 2 1 �3/2 0
‘ ¼ 4 1/20 �1/18 7/72
excitation (PIE) [22], where two lasers with orthogonal polariza-
tion are pulsed alternatively in rapid succession so that one has in-
deed the chance to detect photon pairs where the two photons
resulted from excitation events with two different and orthogonal
polarizations. We will call the resulting FCS measurement scheme
PIE-FCS.

2.4. Rotational diffusion and molecular shape

The rotational diffusion of any object can be described by that of
an ellipsoid with three orthogonal axes of rotation (principal axes).
In almost all cases of practical interest, it is sufficient to approxi-
mate a molecule by an ellipsoid of rotation, i.e. an ellipsoid that
has two identical rotational diffusion constants around two of its
principal axes and one different around the third (symmetry axis).
This is equivalent to approximating the shape of a molecule by a
prolate or oblate ellipsoid of rotation. Following Perrin [23,24]
and Koenig [25], the rotational diffusion coefficients for an prolate
ellipsoid of rotation with aspect ratio j ¼ R?=Rk < 1 are given by

D?
D0
¼ 3j2

2ð1� j4Þ
2� j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p

j

" #
� 1

( )
ð30Þ

and

Dk
D0
¼ 3

2ð1� j2Þ 1� j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p

j

" #( )
ð31Þ

whereas for a oblate ellipsoid of rotation (j > 1) they read

D?
D0
¼ 3j2

2ð1� j4Þ
2� j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1
p� �

� 1
� �

ð32Þ

and

Dk
D0
¼ 3

2ð1� j2Þ 1� j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1
p� �� �

ð33Þ

Here, D0 is the diffusion coefficient of a sphere of radius R0 with
the same volume as the ellipsoid, i.e. R3

0 ¼ RkR
2
?, and the value of D0

is given by the Stokes–Einstein–Debye equation

D0 ¼
kBT

8pgR3
0

ð34Þ

where kB is Boltzmann’s constant, T the absolute temperature, and g
the solvent’s viscosity. In all the above expressions, the subscript k
refers to the symmetry axis, and the subscript ? to the two trans-
versal axes of the ellipsoid.

3. Numerical explorations

In this section, we will use the general theory as expanded in
the previous section for modeling an actual FCS measurement
using the experimental setup as shown in Figure 1. We assume
that the system uses a water immersion objective with 1.2 numer-
ical aperture and 3 mm focal distance for focusing and detecting
light; that measurements are performed in a solution having the
refractive index of water (perfect refractive index matching); that
the pinhole radius of the confocal aperture is equal to 75 lm; that
magnification at the plane of the confocal aperture is 60 times; and
that excitation and center emission wavelengths are 640 nm and
670 nm, respectively. When knowing all these parameters, the ex-
act molecule detection function (product of excitation intensity
distribution with detection efficiency function) can be calculated
in standard way, using the classical work by Richards and Wolf
for calculating the transmission of electromagnetic waves through
an optical system with large numerical aperture [26,27]. We
performed these calculations for all possible combinations of
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Figure 5. Relative error in determining the radius of an isotropic rotor when fitting
correlation curves with a model that neglects depolarization effects.
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excitation and detection polarization, thus obtaining the Ua
aðrÞ of

Eq. (23). From these functions, the coefficients ðf ab
ab Þ

‘
m are calculated

as indicated at the end of Section 2.3. In what follows, we will con-
sider the impact of several effects on the performance of an FCS
experiment, in particular: depolarization due to the large numeri-
cal aperture of the objective (which is necessary for achieving tight
focusing and high detection efficiency); non-collinearity of absorp-
tion and emission dipoles; shape anisotropy of molecules; and
labeling specificities.

3.1. What is the effect of depolarization?

When focusing linearly polarized light with an objective of high
numerical aperture into a tight focus, the polarization distribution
within the focus will no longer be homogeneous nor linear, see
Figure 3. The partially elliptic polarization leads to generally non-
vanishing coefficients ua;pqðrÞ with p – q in Eq. (23). Also, the
polarization of the fluorescence light collected with such an
objective will be mixed, leading similarly to non-vanishing
non-diagonal ‘detection’ coefficients ua

rsðrÞ.
When performing an FCS experiment with linearly polarized

excitation beam and polarization-sensitive detection, the question
arises how much this depolarization changes the measured corre-
lation curves.

As an example, Figure 4 plots the four distinct correlation
curves for an isotropic rotor with 40 Å radius (solvent water at
20 	C). This figure shows only the time dependent part of the cor-
relation curve, with any constant offset subtracted. The positively
valued curves are accessible by a conventional FCS measurement,
whereas the negatively valued curve which exhibits an anti-corre-
lation behavior is only accessible with PIE.

To assess the impact of depolarization we calculated ideal cor-
relation curve for different focusing of the exciting laser beam
and fitted these curves globally with the plane-wave reference
curves. The free fit parameters were the radius of the isotropic ro-
tor, and the four amplitudes of the correlation curves. The fit pro-
cedure uses a Marquardt–Levenberg simplex algorithm for fitting
the radius value, and a linear least-square fit for fitting the ampli-
tude values. Figure 5 shows the relative error of determining the
radius of the rotor which is made when fitting the correlation
curves obtained for different focus radii with a model that com-
pletely neglects excitation/detection depolarization by the objec-
tive (plane-wave limit). The error made is remarkably small,
even for the strongest focusing (diffraction limit), and will be usu-
ally much smaller than the intrinsic error introduced by a mea-
surement’s photon shot noise. It is important to understand why
the fit is so insensitive to depolarization effects: although they
change the relative amplitudes of the four correlation curves, they
Figure 3. Electric field polarization of the excitation light in the focal plane when
focusing a linearly polarized laser (polarization along x-axis) through an objective
with 1.2 numerical aperture into a diffraction-limited spot. If a and b denote the
two half-axes of each ellipse, the electric field at the corresponding location is
proportional (up to a constant complex number) to a þ ib. Along the line x ¼ 0, the
field is linearly polarized, so that the ellipses collapse into lines.
only marginally influence their temporal behavior. Thus, leaving
the amplitude values free during fitting is the condition for safely
neglecting depolarization effects when analyzing experimental
data.

3.2. What is the effect of non-collinearity between excitation/emission
dipole?

For most organic dyes, the absorption and emission dipoles are
not exactly collinear. For most fluorescence spectroscopy methods,
this is of no concern, but for fluorescence anisotropy or polariza-
tion-resolved FCS measurements, one has to take into account that
such a non-collinearity rotates the emission polarization with re-
spect to the excitation polarization. Figure 6 shows the difference
in the correlation curves for collinear and non-collinear dipoles
(25	 angle between dipoles).

To study the impact of this effect on the data evaluation of an
FCS measurement, we calculated correlation curves for angles
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between absorption and emission dipoles in the range from 0	 up
to 25	, and globally fitted these curves with model curves obtained
for collinear dipoles. Fit parameters were again the radius of the
isotropic rotor, and the amplitudes of the correlation curves. The
resulting relative error in the resulting radius value is plotted in
Figure 7. As can be seen, the made error is negligibly small, even
for rather large angles close to 25	, although the small-amplitude
correlation curves, gk?kk and g??kk , change considerably with increas-
ing angle between dipoles. This can be explained by the fact that
their impact on the global fit quality is rather small due to their
small amplitude compared with the two other correlation curves,
gkkkk and gk?k?. Another important point to remember is that the abso-
lute amplitudes of the correlation curves do not play any role for
fitting the radius value: the amplitudes are free fit parameters
themselves, so that the fitted radius value depends only on the
shape of the curves. Thus, one can safely ignore effects of non-col-
linearity between absorption and emission dipoles when aiming at
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Figure 7. Relative error in determining radius of an isotropic rotor when fitting an
ideal measurement curve with a model that assumes collinearity between
absorption and emission dipole.
determining correct hydrodynamic radius values from FCS mea-
surements of rotational diffusion.

3.3. Is it possible to extract a shape factor from an FCS measurement?

Until now, we have presented numerical calculations only for
isotropic rotors. Their is the exciting question whether it is possible
to extract, from rotational diffusion measurements, correct infor-
mation about non-sphericity of the rotor. Let us consider the exam-
ple a molecule having the shape of an oblate ellipsoid of rotation
with 20 Å radius along the symmetry axis and 40 Å along the
two orthogonal axes. First, we assume that the FCS measurement
is performed in an conventional set-up without PIE, so that only
the positively valued correlation curves are available. Figure 8
shows a global fit of these curves using an isotropic rotor model.
As can bee seen, the fit quality is nearly perfect, showing that even
in the case of an 1:2 aspect ratio it is rather impossible to distin-
guish between an isotropic rotor and an ellipsoid of rotation on
the basis of these FCS data.

The situation improves if one is able to use all four possible cor-
relation curves. This is demonstrated in Figure 9 where again the
correlation curves are fitted with an isotropic-rotor model. Now,
measurement with an isotropic-rotor model.
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the poor fit quality indicates that the isotropic-rotor model does
not perfectly describe the ‘observed’ correlation.

To better quantify this statement for a continuous range of
aspect-ratio values, we performed model calculations for aspect-
ratio values between 0.5:1 through 2:1 (ratio of radius of symme-
try axes to radius of orthogonal axes). The result is shown in Figure
10, where the maximum relative residual of the fit is plotted as
function of the radius of the symmetry axis. The maximum relative
residual is defined as the maximum absolute difference between
all correlation curves and their best fits divided by the maximum
absolute value of all correlation curves. As can be seen, the fit qual-
ity is ca. 4–5 times more sensitive to the anisotropy of the rotor
when using all four possible correlation curves than when using
only the positively valued correlation curves. The conclusion is
that, by using a conventional FCS measurement set-up which can
measure only the positively valued correlation curves, it is rather
improbable that one is able to decide, on the basis of the fit quality,
whether the underlying rotation diffusion stems from an isotropic
or anisotropic rotor, whereas the full set of all four possible corre-
lation curves may indeed offer a chance to measure the shape of a
molecule within the limitations of an ellipsoid-of-rotation model.

3.4. What is the effect of label stoichiometry?

Up to now, we have silently assumed that the rotating molecule
is connected with one and only one dipolar fluorescence label. In
practice, when non-specifically labeling macromolecules such as
large proteins, that should not always be the case, although one
can always aim at labeling a protein with low label stoichiometry.
If there is more than one emitter on the same molecule, and if they
have fixed relative orientation, this can severely skew the observed
correlation curves. However, this problem is alleviated if one as-
sumes that the relative orientation the emitters on one molecule
is randomly changing from molecule to molecule. Let us consider
the case of K emitters per molecule. Then, one has to replace in
Eq. (7) the correlator hja

aðt0Þjb
bðt0 þ tÞit0

by

XK

s¼1

sja
aðt0Þ

 ! XK

s0¼1

s0jb
bðt0 þ tÞ

 !* +
t0

ð35Þ

where the left upper superscripts s and s0 refer to the different emit-
ters on one molecule. Thus, additionally to the ‘diagonal’ correlation
terms with s ¼ s0, there appear also ‘non-diagonal’ correlation terms
with s – s0. However, if the relative orientation of the emitters is
randomly changing from molecule to molecule, than averaging over
all molecules with all possible relative orientations of their emitters
leads to a factorization of the correlation, i.e.

hhsja
aðt0Þs

0
jb

bðt0 þ tÞiit0
¼ hhsja

aðt0Þii2t0
¼ const: ð36Þ

where the double angular brackets now indicate averaging over all
molecules and start times t0. Thus, as long as labeling is done
completely randomly and with no intrinsic statistical correlation
between emitter orientations on the same molecules, these
non-diagonal correlation terms do not contribute to the
time-dependent part of the correlation functions.

3.5. What is the effect of label orientational flexibility?

Last but not least, one has to consider the effect of a possible
orientational flexibility of the fluorescent labels on the labeled
macromolecule. When labeling macromolecules with dyes using
standard labeling chemistry, they are typical linked to the macro-
molecule with a flexible linker. If the used dye is sufficiently hydro-
phobic and finds sufficiently hydrophobic patches on the
macromolecule’s surface, it can rigidly attach to the molecule
and will co-rotate with it. However, in most cases this will not
be the case: the attached dye will be flexibly attached and will ex-
hibit fast rotational diffusion by its own, although, probably, with
some orientational restriction. Typical rotational diffusion times
of dye molecules in aqueous solutions are on the order of some
hundred picoseconds, thus by orders of magnitude faster than
the rotation diffusion times of large proteins or DNA/RNA mole-
cules, so that one will not observe any correlation decay on the
time scale of the rotational diffusion of the labeled macromolecule
if the label is free to rotate on its anchor point. For measuring the
rotational diffusion coefficients of the tagged macromolecule, it is
necessary to assure rigid co-rotation of the label, which can be
achieved by using bis-functional dyes that can bind at both ends
to a macromolecule. Even then, slight wobbling of the label can
be possible. However, this is similar to the situation of non-collin-
ear excitation and emission dipoles, and as we have seen above,
such non-collinearity has negligible impact on the fit results.

4. Experimental case study: aldolase

In this section we will exemplify the measurement of rotational
diffusion coefficients and thus size and shape of a macromolecule
on the example rabbit muscle aldolase, the structure of which is
known from X-ray crystallography (code 1zah in the Brookhaven
Protein Data Bank). The next subsection briefly describes the
experimental set-up which is needed for measuring all possible
correlation curves. Then, we discuss the procedure that is used
for calculating the correlation curves from the measured single-
photon data. The third sub-section gives information about the
used dye and labeling procedure, and the final subsection presents
the experimental results on the rotational diffusion of aldolase.

4.1. Measurement set-up

The principal measurement set-up used for the experimental
work was already depicted in Figure 1. It is a commercial confocal
microscopy system (MicroTime 200 with dual-focus option, Pico-
Quant GmbH, Berlin, Germany) which is similar to the set-up de-
scribed in detail in Ref. [2]. In summary, the light of two
identical, linearly polarized pulsed diode lasers (wavelength
640 nm, pulse duration 50 ps fwhm) is combined by a polarizing
beam splitter. Both lasers are pulsed synchronously with a
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Figure 11. FCS measurement result for aldolase (circles). Solid lines show fit result
with an anisotropic rotor model.
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repetition rate of 80 MHz. A delay of half the repetition period be-
tween the two pulse trains of the first and second laser was intro-
duced by inserting an additional cable of appropriate length
between the laser driver and the second laser diode. The cw-power
of the lasers had been adjusted to 400 lW each. Both beams are
coupled into a polarization-maintaining single mode fiber. At the
fiber output, the light is collimated and reflected by a dichroic mir-
ror towards the microscope’s objective (UPLSAPO 60 �W, 1.2 N.A.,
Olympus Deutschland GmbH, Hamburg, Germany).

Fluorescence is collected by the same objective (epi-fluores-
cence setup), passed through the dichroic mirror, and focused onto
a single circular aperture (diameter 150 lm). After the pinhole, the
light is collimated, split first by a polarizing beam splitter and then
by two 50/50 beam splitters, and focused onto four single-photon
avalanche diodes (two SPCM-AQR-13, PerkinElmer Optoelectron-
ics, Wiesbaden, Germany, and two MPDs, Bolzano, Italy). A sin-
gle-photon counting electronics (HydraHarp 400, PicoQuant
GmbH, Berlin, Germany) records the detected photons of all four
detectors independently with an absolute temporal resolution of
two picoseconds on a common time frame. Due to the dead-time
of approximately 150 ns of the avalanche diodes after a photon
detection event, using four detector is necessary if one is interested
in recording all possible combinations of excitation and detection
polarization.

All measurements were done in Lab-Tek II chambered cover-
glass systems (Nunc Thermo Electron LED GmbH, Langenselbold,
Germany) coated with BSA to prevent unspecific adsorption of
the labeled protein. Sample temperature was controlled with a
HH500 digital thermometer (Omega Newport Electronics GmbH,
Deckenpfronn, Germany).

4.2. Calculation of correlation curves

Excitation is done in PIE mode (PIE-FCS) with laser pulses of
approximately 50 ps duration and an inter-pulse distance of
6.25 ns. The fluorescence decay time of the used label is around
1 ns, so that the fluorescence generated by one pulse has nearly
completely decayed when the next excitation pulse arrives. As de-
scribed above, photon detection is done on an absolute time scale
and common time frame for all detectors with a temporal resolu-
tion of 2 ps. Thus, by evaluating the arrival times of the detected
photons with respect to the pulse train generated by the excitation
lasers, one can unequivocally correlate each photon with the laser
pulse that excited it, and thus with the corresponding excitation
polarization. Moreover, because each detected photon is also cor-
related with the detector that recorded it, the detection polariza-
tion for each photon is known.

Using this information, all 16 possible correlation curves can be
calculated using a dedicated correlation software for converting
asynchronous single-photon data into correlation curves. The de-
tails of this algorithm have described before, and the reader is re-
ferred to Ref. [30].

4.3. Fluorescent labeling

As emphasized in the theory section, one pre-requisite for a suc-
cessful measurement of the rotational diffusion of a macromole-
cule is the rigid co-rotation of the fluorescent label with the
macromolecule. Conventional labeling techniques using mono-
functional dyes with a maleiimide reactive group for cysteine
labeling or a NHS-ester group for amino labeling, will usually not
guarantee that the attached dye is rigidly co-rotating with the la-
beled entity. Fortunately, several bis-functional dyes are available
that exhibit two reactive NHS-ester groups. With these dyes, pro-
teins can be non-specifically labeled via their amino-group con-
taining lysins. Most large proteins expose sufficiently large
numbers of lysin residues on their surface that enable rigid and
random labeling.

For successfully applying the PIE scheme, it is important that
the fluorescence lifetime of the used label is much shorter than
the PIE-pulse distance, in our case 6.25 ns. This is true for the com-
mercially available bis-functional dyes Cy5 (1 ns) and Cy3 (0.3 ns).
Due to lower background in the red spectral region, and higher
quantum yield, Cy5 is the more recommendable label. Thus, aldol-
ase was labeled with Cy5 bis-succinimidyl ester (GE Healthcare
Europe GmbH, Freiburg, Germany), then purified using an HPLC
system (Jasco Labor und Datentechnik GmbH, Groß-Umstadt, Ger-
many), kept in phosphate buffered saline (PBS) at pH 7.4, and was
used for measurements directly after preparation.
4.4. Results

The total measurement time was 5 h. Correlation curves were
then calculated between 6 ns and 5 ls lag time. By excluding the
zero lag-time value, one eliminates any fluorescence antibunching
effect. When analyzing the curves, one has to take into account also
the photo-physics of Cy5, comprising both of a light induced
switching between a fluorescent trans and a non-fluorescent cis-
conformation, and of inter-system crossing between singlet and
triplet states.

As a result, two characteristic mono-exponential decays are ob-
served in the correlation functions, one slow with ca. 2 ls decay
time, and one fast with ca. 170 ns decay time. We first fitted the
correlation functions within the lag-time range between 1 and
5 ls (where all contributions from the rotational diffusion are al-
ready decayed) with mono-exponential decay curves having the
same decay time, and subtracted these curves from the full corre-
lation functions. The result is shown by circles in Figure 11.

The reduced correlation curves were then fitted in five different
ways: (A) using only the positively valued correlation curves and
assuming an isotropic-rotor model, neglecting depolarization ef-
fects and assuming collinear absorption/emission dipoles; (B)
using all correlation curves and assuming an isotropic-rotor model,
again neglecting depolarization effects and assuming collinear
absorption/emission dipoles; (C) using all correlation curves and
assuming an ellipsoid-of-rotation model; again neglecting depolar-
ization effects and assuming collinear absorption/emission
dipoles; (D) using all correlation curves and assuming an
ellipsoid-of-rotation model, but now taking into account depolar-
ization effects by the objective (1=e2-radius of excitation focus
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was a priori measured to be 350 nm) but keeping absorption/emis-
sion dipoles collinear; (E) using all correlation curves, assuming an
ellipsoid-of-rotation model, and taking into account depolarization
effects and setting the angle between absorption and excitation di-
pole to 5	 (the approximate angle between excitation and emission
dipole for Cy5, see Ref. [28]). For satisfactorily fitting the correla-
tion curves, we had to include an additional mono-exponential de-
cay into the correlation, which takes care of the fast photo-physical
relaxation of Cy5 [29]. For determining error estimates of the fit
values, we used a bootstrap approach: we calculated correlation
curves for measurement durations of 30 min, thus generating 10
sets of correlation curves for the total measurement time of 5 h.
Next we chose randomly five of these sets, added the correspond-
ing correlation curves, and fitted them. We repeated this procedure
100 times, each time choosing randomly 5 sets of correlation
curves out of the 10 sets. The errors of the fit values were then esti-
mated as the standard deviation of the recorded fit results.

The fit results are compared in Table 2. The last column indi-
cates the fit quality by presenting the maximum relative value of
the residuals, as already described in Section 3.3. Although the fit
quality is only slightly different for the different approaches, it is
remarkable that it is best for approach (A), which again emphasizes
that one has rather no chance to elucidate anisotropic rotational
diffusion in a conventional FCS experiment. However, using all four
correlation curves helps to check that an ellipsoid-of-rotation mod-
el fits the data better than an isotropic-rotor model, as can be seen
by the slight improvement in fit residuals. That the different fit
residuals do not differ as strongly as shown in Figure 10 is due to
the fact that they are dominated by the photon shot noise entering
the measured correlation curves and not by the differences
Table 2
Results of the FCS data fitting. First column: indicates which kind of data fitting was
applied; (A) fit with an isotropic rotor model, using only the correlation curves
accessible with a cw-measurement; (B) Fit with an isotropic rotor model, using all
four correlation curves; (C) Fit with a rotational ellipsoid model while neglecting
depolarization by the high-NA objective and assuming collinearity between dye
absorption and emission dipole; (D) Same as C, but taking depolarization effects into
account for a focal 1=e2-radius of 350 nm; E: same as D, but assuming an angle
between absorption and emission dipole of 10	 . Second column: radius value of the
symmetry axis of the rotational ellipsoid (for isotropic rotor, the sphere radius is
given in the next column). Third column: radius value of orthogonal axes of rotational
ellipsoid. Fourth column: photophysics relaxation time. Fifth column: maximum
relative residual of fit.

R1 (Å) R2 (Å) siso (ns) max res. (%)

A � 39:5� 0:8 166� 33 1.3
B � 41� 1 173� 18 1.6
C 19:8� 0:5 48� 1 170� 8 1.4
D 19:7� 0:6 48� 2 168� 16 1.4
E 19:8� 0:6 48� 2 169� 16 1.4

Figure 12. Overlay of aldolase structure as determined from X-ray scattering with
rotational ellipsoid as determined with FCS. Left: view along the one of the two long
ellipsoid axes. Right: view along the short rotational symmetry axis of the ellipsoid.
Double arrow has 1 nm length.
between isotropic and anisotropic rotational diffusion. The deter-
mined value of the fast photo-physical relaxation time around
170 ns perfectly matches previously reported values for Cy5 under
similar excitation intensities [29].

To check how reasonable the fitted radius values of the ellipsoid
of rotation are, we overlaid the shape of that ellipsoid with known
X-ray structure of the protein, after centering and aligning the
principal axes of the ellipsoid with the principal axes of the mole-
cule. The result is shown in Figure 12 which demonstrates visually
that the found ellipsoid of rotation approximates reasonably well
the actual molecular shape.
5. Conclusion

We have presented a detailed overview of how to use FCS for
measuring the rotational diffusion of macromolecules. We have
systematically analyzed all possible sources of systematic errors
and found that most of them, such as depolarization effects by
high-N.A. objectives, non-collinearity between excitation/emission
dipoles, label stoichiometry, or label flexibility, have mostly negli-
gible effect on fit results. Moreover, we have shown that high-pre-
cision PIE-FCS measurements which are able to record all the 16
possible polarization-resolved fluorescence correlation curves,
can be used to extract shape information about a macromolecule,
within the limits of an ellipsoid-of-rotation model. We hope that
the present Letter will help to make FCS more accessible for size
and shape measurements of macromolecules.
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