
1 Introduction

The decomposition and filtering of time series is an important issue in economics
and econometrics and related fields. Even though there are numerous competing
methods on the market, in applications one often meets one ofthe few favorites. The
first method to mention in this selection is the so called Hodrick and Prescott-filter
(HP-filter hereafter). The idea is to decompose a time seriesyt , say, into a smooth
path gt, also called non-stationary trend, and remaining deviations (residuals or
business cycle components)εt which are assumed to be stationary around the trend.
To achieve smoothness a penalty is imposed ongt such that second order differences
are penalized. The idea traces back to Leser (1961) and Whittaker (1923) and is
simple in its numerical implementation, see Pedregal and Young (2001) for more
general discussion on the the HP filter.

The application requires the specification of a penalty parameterλ , say,
which steers the smoothness of the fitted path ˆgt . Hodrick and Prescott (1997)
refrain from suggesting any data driven choice for the amount of penalization, but
develop a substance matter explanation. Understanding thesmoothing parameter as
a ratio of two variances describing short and long phase variability of yt they argue
to fix the penalty parameterλ at a given value (λ = 1600) so that quarterly changes
are related to yearly variation of the smooth pathgt. This viewpoint changes if a
different resolution of the data is considered like monthlyor yearly observations.
Ravn and Uhlig (2002) give a theoretical derivation how to adjust the penalty pa-
rameterλ in this case. In fact, following the economic interpretation of λ given
in Hodrick and Prescott (1997) they suggest to takeλ = 1600/44 for yearly and
λ = 1600·34 for monthly observations, respectively. Though this argumentation is
sound and justifiable on economic grounds, it is weak following statistical thinking.

Schlicht (2005) suggests a data driven choice of the penaltyparameter by
understanding the penalty as prior distribution which leads to a so called Mixed
Model, see also Dermoune, Djehiche, and Rahmania (2008). The penalty parameter
is then the ratio of the residual variance and the variance ofthea priori distribution
which can be estimated in the Mixed Model framework. This result has also been
shown in Harvey and Jaeger (1993) and is further explored in Dermoune, Djehiche,
and Rahmania (2009). A Bayesian perspective in this direction has been proposed
by Trimbur (2006) (see also (Harvey, Trimbur, and Van Dijk, 2007)). Both, the
Mixed Model setting as well as the Bayesian approach assume that the remaining
residuals are unstructured and without serial correlationwhich should be seen crit-
ically since it is not necessarily met in practice. Further critique concerning the
HP filter has been formulated, e.g. by Cogley and Nason (1995)and Schenk-Hopp
(2001).



The idea of imposing a prior distribution on the trend is in line with re-
sults derived for spline smoothing. In fact, the HP-filter can be comprehended as
a spline smoother so that the penalty parameter becomes a smoothing parameter
which could be estimated data driven following e.g. Wood (2000) or Hastie and
Tibshirani (1990). In principle this formulation leads to asimple and feasible rou-
tine for selecting the smoothing parameter data driven. However, the method still
relies on the crucial and questionable assumption that the remaining deviationsεt

are just white noise, and in particular not correlated. Incorporating correlated resid-
uals into a cross validation criterion has been suggested inKohn, Ansley, and Wong
(1992) or Wang (1998). However, even if the correlation is incorporated, it can
be demonstrated that even minor misspecifications of the correlation structure let
available cross validation routines fail, as convincinglydemonstrated in Opsomer,
Wang, and Yang (2001), see also Proietti (2005) or Dagum and Giannerini (2006).

In compensation to this drawback Krivobokova and Kauermann(2007) show
that the use of so called penalized splines in combination with Mixed Models pro-
vides a robustification against misspecified residual structure in the model. Penal-
ized splines are thereby a relatively new smoothing technique which traces back to
O’Sullivan (1986), see also Eilers and Marx (1996) or Ruppert, Wand, and Carroll
(2003). The idea is to estimate the smooth componentgt by using a high but finite
dimensional spline basis, and instead of simple parametricfitting one imposes a
penalty on the spline coefficients, in close analogy to the HPfilter. We give more
details in the paper and show how the numerically simple method can be used for
time series decomposition and might compete with the HP filter in a wide range of
examples.

As mentioned before, the HP-filter and its extensions are just one of the
available and commonly used candidates for time series decomposition. A further
favorite method is the bandpass filter (BP-filter hereafter)and its different approx-
imations and extensions, see Baxter and King (1999) , Christiano and Fitzgerald
(2003) and Stock and Watson (1999). Here, the idea is to decompose the seriesyt

in its frequency domain. In fact, the intention is to decomposeyt = gt +εt wheregt

has power in a prespecified frequency interval(a,b) ∈ [0,2π]. The BP-filter is con-
structed using a projection ofyt on the specified frequency range. It combines a high
pass and low pass filter and has achieved quite some reputation in practice. In the
BP-filter, apparently, the frequenciesa andb play the role of smoothing parameters
which influence the performance of the fit, where in practice economic consider-
ations suggest its specification. Critique about the BP-filter has been formulated
among other by Goldrian (2005) or Murray (2003). In this paper we will apply the
BP filter in its original form to compare it with the proposed penalized spline esti-
mate. Additionally we will reformulate the BP filter and write it as penalized spline
fit. To do so we choose a rich dimensional basis covering the specified frequency



domain and impose a suitable penalty on the spline coefficients. This connects the
filter to the previously discussed extension of the HP-filterby just using a different
basis.

An extensive overview on recent research on detrending and filtering and
their use in economics is given in Canova (2007). Usually, economic time series
data display trends and it is not immediately obvious what cyclical properties the
data have. Since economists are interested in cyclical components and in the cross
correlation of cyclical variables we need methods that separates trends from cyclical
components. Detrending in economics is also needed in orderto make economic
time series stationary so that one can compute functions of second moments of the
data. If one is, in business cycle analysis, only interestedin other cyclical infor-
mation, such as turning points of economic data, one does notnecessarily need
detrending. On the other hand filtering aims at much broader applications. In eco-
nomics one often is only interested in filtering out low or high frequency compo-
nents of the data or some harmonic oscillation generating some periodic movements
through the use of sine and cosine functions. In Canova (2007) one can find a sur-
vey of such a broader class of filtering procedures and their respective advantages
and short comings. In macroeconomics the major effort has been to decompose
time series data in trend and cyclical components. For this purpose the most pop-
ular procedures have been the HP filter and the BP filter. We will thus concentrate
our study of the comparison of the latter two filters with penalized splines as a pro-
cedure to obtain trend and cyclical components of macroeconomic time series data.
Stock and Watson (1999) have decomposed seventy U.S. macroeconomic time se-
ries into trend and cyclical components. This work has had anextensive influence
on the thinking of the cyclicity, the cross-correlation andthe empirical regularities
in the postwar U.S. time series data. We will pick up some of these examples and
demonstrate the performance of the different filters.

The focus of our presentation is to decompose a time series into trend and
deviations, with the latter is commonly called residuals orcyclical component or
business cycle, respectively and denoted asεt , see e.g. Zarnowitz and Ozyildirim
(2005). It is generally not plausible to assume thatεt is just white noise, but main-
taining or allowing for a serial correlation overεt is desirable. This is the starting
point for our proposal and we demonstrate that the penalizedspline approach can
easily accommodate serial correlation. Contrary one must state that in the real busi-
ness cycle literature the issue of serial correlation in thechoice of the filter does not
seem to have been sufficiently explored. This holds for the HPfilter (see (Cooley,
1995), or more recently (Chari, Kehoe, and McGrattan, 2007)and (Christiano and
Davis, 2006)) as well as for the BP-filter (see the extensive study of U.S. time series
data (Stock and Watson, 1999)). We supplement this discussion by applying the pe-
nalized spline versions of the HP-and BP-filter to a number oftime series listed in



Stock and Watson (1999) and discuss and explain resulting differences. The second
contribution of this paper is to demonstrate the simple feasibility of the routines. In
fact, we will take advantage of the open source softwareR and show that the filters
are easily calculated which allows its investigation of their performance.

The paper is organized as follows. In Section 2 we describe penalized spline
smoothing as general smoothing technique and relate this toHP- and BP-filtering,
respectively. In Section 3 we apply the routines to a number of time series. We
conclude and finalize the presentation in Section 4.

2 Penalized Spline Smoothing

2.1 Decomposing Time Series with Penalized Splines

We consider the time seriesY = (y1,y2,y3, . . .)
T and assume thatyt decomposes to

yt = gt + εt , (1)

with εt as residual or unexplained short term variation andgt as trend or long phase
variation. The intention is to decomposeyt according to (1), that is to find a suitable
filter to extractgt from yt . We propose to make use of penalized splines. To do so,
let B(t) denote a rich spline basis with support over the observed time pointst. A
simple possible choice is to use so called truncated polynomials in the form

B(t) =
(

1, t, . . . , tq,(t − τ1)
q
+, . . . ,(t − τp)

q
+

)

, (2)

whereq is the degree of the highest polynomial,(t)+ = t for t > 0 and(t)+ = 0
otherwise. The knotsτ1, . . . ,τp are equidistantly chosen covering the range of time
pointst. Practical choices forq areq = 1 orq = 2, respectively, and the knotsτk may
be places every 5th to 10th observation. Even though (2) is a convenient choice in
practice, the approach of penalized spline smoothing is notrestricted to any specific
basis and other bases can be used including for instance a B-spline basis or radial
basis functions (for more details see (Ruppert et al., 2003)). For now, however,
(2) may be seen as one possibility and due to its simplicity itis further used to
demonstrate the idea of penalized splines. We decompose basis B(t) = {X(t),Z(t)}
with X(t) as low dimensional andZ(t) as high dimensional part. For instance with
B(t) as given in (2) we setX(t) = (1, t, . . . , tq) andZ(t) = ((t−τ1)

q
+, . . . ,(t−τp)

q
+).

We now reformulate (1) to

yt = B(t)θ + εt = X(t)β +Z(t)u+ εt, (3)

with θ = (β T ,uT ) as coefficient vector. The residual vectorε = (ε1,ε2, . . .)
T is

assumed to be normally distributed with some stationary correlation matrixRε , i.e.



ε ∼ N(0,σ2
ε Rε). For fitting we impose a penalty onu leading to the penalized least

square

l (β ,u;h) = {Y −B(t)θ}T R−1
ε {Y −B(t)θ}+

1
2

λuT Du, (4)

whereD is a penalty matrix. For truncated polynomials the penalty matrix D is
chosen as identity matrixIp (see (Ruppert et al., 2003)). Finally, coefficientλ in (4)
is the penalty parameter steering the amount of penalization. Settingλ → ∞ gives a
simple polynomial fit based on matrixX(t) only whileλ → 0 yields an unpenalized
fit based on the full basis matrixB(t).

The important feature of penalized spline smoothing is its link to Mixed
Models. Comprehending the penalty in (4) as a priori normal distribution and pos-
tulating normality for the remaining componentεt leads to the linear Mixed Model
of the form

Y |u ∼ N
(

Xβ +Zu,σ2
ε Rε

)

, u ∼ N
(

0,σ2
u D−

)

, (5)

with X andZ as design matrices built from rowsX(t) andZ(t) with t = 1,2,3, . . .,
D− as (generalized) inverse ofD and smoothing coefficientλ = σ2

ε /σ2
u . In (5),β as

well asλ play the role of parameters which can be estimated with appropriate soft-
ware for Mixed Models. We give details in the Appendix. This means the penalty
parameter and the remaining parameters are available with well developed Maxi-
mum Likelihood theory for Mixed Models (see (Searle, Casella, and McCulloch,
1992)). In particular, Schall’s algorithm 1991 can be used to estimateλ data driven
in an iterative form. Moreover, the estimate forgt results throughX(t)β̂ + Z(t)û
with û as posterior Bayes estimate or Best Linear Unbiased Predictor (BLUP). A
useful feature of model (5) applied for smoothing is derivedin Krivobokova and
Kauermann (2007) where it is shown that Maximum Likelihood estimates are ro-
bust with respect to misspecification ofRε . That is to say in case of serial correlation
amongεt model (5) shall provide a reasonable fit even ifRε is not equal to the true
(unknown) correlation structure of the residuals, as long as the misspecification is
not too strong. This is an important advantage of penalized spline smoothing for
detrending time series. What we will do in practice is to assume a simple autocorre-
lated process forεt, e.g. an AR(q) process, which yields a good estimate forgt even
if the true process does not follow exactly the specified serial correlation process
(which it will never do). It is important to reflect that such aproperty does not hold
for other smoothing and filtering techniques (see e.g. (Opsomer et al., 2001)) and
therewith gives penalized spline smoothing a clear advantage which we make use
of subsequently. Moreover, the Mixed Model representationof penalized splines
allows estimation of the correlation matrixRε from the corresponding (log-) likeli-
hood along with the other model parameters, as long as the general structure ofRε



is specified, for instance as an AR(q) process. This can be done with any Mixed
Model software available, as demonstrated in the Appendix.

2.2 Hodrick-Prescott Filter

The HP filter relies on model (1) wheregt is fitted by minimizing the penalized least
square

∑
t
(yt −gt)

2+λ ∑
t≥3

{

(gt −gt−1)− (gt−1−gt−2)
}2

, (6)

with λ as a tuning parameter. Note that the fitting criterion (6) resembles the penal-
ized least square (4) with the crucial simplification, that the residualsεt are simply
white noise. It should be clear that this assumption is not necessarily realistic. Ap-
parently, the HP filter is a penalized smoother with knots at each observed time
point and penalty in form of the squared second order difference matrix. However,
in contrast to a standard penalized smoothers, Hodrick and Prescott (1997) suggest
to setλ = 1600 for quarterly data. Adjustment of the smoothing parameter to other
data frequencies has been considered by Ravn and Uhlig (2002), who suggested
λs = s4 1600, withs = 1/4 for annual data ands = 3 for monthly. Using theseλ
values is economic theory based and hence ignores the information available from
the data. In some instances this is critical and results in completely inappropri-
ate decompositions, as discussed e.g. by Canova (1998) or Schenk-Hopp (2001).
Schlicht (2005) suggests to use the link to Mixed Models to estimate the smoothing
parameter data driven. However, this would fail, if the assumption of independent
residuals is violated, as already noticed in the previous section. That is to say if
εt does not mirror simple white noise but contains serial correlation, the selected
smoothing parameter will be unsatisfactory.

2.3 The Bandpass Filter

We understandyt now as resulting from the frequency process

yt =

∫ 1

0

{

c(ω)cos(2πωt)+d(ω)sin(2πωt)
}

dω,

with c(ω) andd(ω) as weight functions. The idea of the BP filter is to decompose
yt to

yt = gt + εt , (7)



wheregt acts on the frequency(a2π,b2π) ⊂ [0,2π] only, with 0≤ a < b ≤ 1. The
best approximation is found by the least square criterion

∑
t

{

yt −

∫ b

a

[

c̃(ω)cos(2πωt)+ d̃(ω)sin(2πωt)
]

dω
}2

, (8)

where minimization is done with respect to ˜c(·) andd̃(·). This leads to the BP filter

ĝt = ∑
d:1<t−d

wt,d yt−d,

with weight wt,d given e.g. in Christiano and Fitzgerald (2003). The idea of de-
trending or smoothing lies in the specification ofa andb in (8). In principala andb
are set according to the spectra one wants to extract. Following statistical thinking
one might therefore want to choosea andb data driven using according methods.
We do not further pursue this idea but formulate the BP filter in an approximate
format as penalized spline estimate.

2.4 BP Filter and Penalized Splines

In straight analogy to Section 2.1 we pick up the idea of penalized splines again
by employing a basis borrowed from the BP filter above. To do sowe replace the
integral in (8) by a high but finite dimensional basis. Let therefore

B(t) =
(

cos(2πω jt),sin(2πω jt), j = 1, . . . , p
)

, (9)

be the 2p dimensional spline basis witha = ω1 < .. .< ωp = b being densely chosen
on the interval[a,b]. This leads to the summed least square as approximation of (8)

∑
t
{yt −B(t)θ}2 . (10)

Instead of simple parametric fitting ofθ we impose a penalty onθ . This is also nec-
essary since the dimension 2p is chosen large and hence the unpenalized estimates
would be wiggled. Wigglyness can thereby be measured by changes in the slope,
hence changes in the second order derivative. Note that the second order derivative
results throughB(t)θ̃ , with

θ̃ = (2π)2(

ω2
1θ1,ω2

1θ2,ω2
2θ3,ω2

2θ4, . . .
)

.



We therefore penalizeθ2 j−1 andθ2 j with ω2
j , for j = 1,2, . . .. To be more specific,

let D = diag(ω ⊗12) whereω = (ω1,ω2, . . .)
T , 12 = (1,1)T and⊗ as Kronecker

product. This gives the penalized version of (10) as

∑
t
{yt −B(t)θ}2 +λθ T Dθ ,

with λ as penalty parameter as before. Apparently we can also assume a serial
correlation forεt denoted byRε . Also like before we can comprehend the penalty
as a priori normal distribution leading to a Mixed Model comparable to (4). The
difference lies just in the choice of the basis, but other than that the idea of penal-
ized splines remains the same. This also holds for the estimation of the smoothing
parameter.

2.5 Discussion of Proposed Filters

First, both HP and BP filter are grounded on economic arguments to isolate busi-
ness cycle components from trends. Therefore, the role of the underlying tuning
parameters, that isλ in the HP filter and frequenciesa andb for the bandpass fil-
ter, are set according to the economic interpretation one aims to draw from the
business cycle componentsεt . In this respect, no statistical approach or thinking
is required. Secondly, both HP and BP filter can be written as minimizer of least
squares criteria, i.e. (6) and (8), respectively, does mirror statistical methodology.
Third, considering the problem in statistical terms means roughly to seperateYt in
gt andεt such thatεt is a stationary process. This task can be carried out with the
suggested penalized spline filters using either a basis comparable to the HP or the
BP filter, respectively. We will also see that the choice of the basis does not have a
relevant influence on the performance of the fit. Comprehending now the business
cycle as serial correlation among theεt yields a statistical model which can be fit-
ted with penalized splines, as described above, and practically carried out inR as
shown in the Appendix. The remainder of the paper now demonstrates the four fil-
ters in a number of examples with the intention to show that a)the penalized spline
approach can compete with HP and BP filter by b) not having any tuning parameter
to be chosen by hand or economic grounds.



3 Examples

3.1 Detrending

We now look at practical aspects by considering some of the macroeconomic time
series for the United States studied before in Stock and Watson (1999), and de-
scribed in their Appendix A, see also Harvey and Trimbur (2003). These are quar-
terly data, with some exception mostly for the time period 1947 to 1996. In order
to illustrate the differences in the performance of our filters we are using only a
selection of these time series data (with column number referring to Stock & Wat-
son given in brackets), namely real GDP (0), real total consumption (9), real total
(fixed) investment (14), employment (27) (which is the average hours worked per
employee), real wage rate (44), average labour productivity (33) (which is the out-
put per hour of all persons in nonfarming business), and the yield spread (51), which
is the spread between 10 years and 3 months TBill.

For the penalized-spline filter we use a truncated linear basis with p = 40
knots. We experimented with a different number of knots as well as a different
spline basis (see also below), but no different estimates were observed. This can
also be asymptotically justified according to Claeskens, Krivobokova, and Opsomer
(2009). Note that this behavior has been demonstrated before in Ruppert (2002). As
residual correlation structure inRε in (4) we allow for an AR(2) process. We also
checked the fitted trend for different stationary correlation structures in the residu-
als, but the fit remained basically unchanged. This is in linewith the results derived
in Krivobokova and Kauermann (2007). The HP filter was used inits standard form
with λ = 1600. For the BP filter shown in the right hand side column we set a = 0.2
andb = 1 (relating to 2 to 30 periods of oscillation) after some experimentation and
for the penalized spline fit based on basis (9) we setp = 40 and work with an AR(2)
process for the serial correlation.

We first look at the log GDP from 1953 to 1996. The corresponding data
and the resulting filters are shown in Figure 1. The order of the Figure as well as
all subsequent figures is as follows. The top row shows the penalized spline filter
as bold curve in comparison with the HP filter in the left paneland in comparison
with the BP filter in the right panel.

Apparently both, the HP filter as well as the BP filter tends to mimic parts
of the serial correlation structure while the penalized spline filter suggests a sim-
ple nearly linear trend. This different specification of thetrend is also mirrored in
the residuals shown in the middle plot, again compared to residuals based in the
HP filter (left column) and the BP filter (right column). The penalized spline filter
shows more pronounced residuals with clear serial correlation. The serial corre-
lation can also be seen in the empirical autocorrelation function of the residuals



which is shown in the plots in the bottom row of the figure. It isnote worthy that
the penalized spline filter is data driven and hence adaptivewhile for the HP filter
the smoothing parameterλ it is fixed on economic grounds and so are the tuning
parameters in the BP filter.

We proceed with another example and now look at log consumption. The
results are shown in Figure 2, following exactly the same ordering of the plots as
presented above. The example looks similar to the one above,with the penalized
spline fit exhibiting a simple nearly linear trend structure. Looking at the residuals
and the autocorrelation, we see that the penalized filters suggest a long range auto-
correlation yielding a strong consumption in the residualsin the seventies and late
eighties.

As third example we focus on log Investment shown in Figures 3. Here, the
BP filter tends to interpolate the data while the HP filter and the penalized spline
filters look alike by showing serially correlated residuals.

The fourth example considers log Employment presented in Figures 4. The
overall impression remains unchanged as compared to the data examples before.
In all three examples, the cyclical components of the splinefilter comes out more
distinctly compared to the HP and BP filters.

This property also holds for the log Wage data in Figures 5 andthe log
Productivity data in Figures 6. In all of these graphs again,the penalized spline
filter produces a much smoother autocorrelation, which presumably is due to the
fact that it allows for serial correlation in the residuals.

Lastly we have added the results of using our three filters fora financial
variable. We look here at the trend and cyclical variation ofthe yield spread, see
Figures 7. The yield spread has been the subject of numerous studies in empirical
finance and it might be of some interest for the reader how our three filters perform
with respect to this variable. As one can observe the trend islinear and slightly
upward sloping – an information that might be of interest in the context of a the
large number of yield curve studies in empirical finance. Here too the cyclical
component for the penalized spline filter comes out more distinct than for the other
two filters in particular compared to the BP filter.

We explicitly point out that the above comparison gives an impression of the
performance of the penalized spline filter but does not intend to show superiority
of any of the three methods. The penalized spline filter, though, is an automatic
(or better statistical) routine, as it estimates the appropriate smoothing parameter
from the data itself. This resembles some contribution towards objectivity. We also
stress that the HP and BP filter fix the smoothing parameter on economic reasons
and further tuning would have led to different, possibly more suitable results.



3.2 Cross-Correlation

Another important issue in business cycle analysis has beenthe extent to which
there is a co-movements of time series variables over the business cycles. Techni-
cally speaking, the question is thus whether there is some robustness of the filters
with respect to a study of the cross-correlations of the residuals. If the GDP vari-
ation is, as usual, taken as a standard measure for business cycle fluctuations, then
the cross-correlation between the residuals of a macro variable and the GDP, with
leads and lags, would give us some information on the co-movement of variables
over the business cycle. We look at some cross-correlationsresulting from the dif-
ferent filters in order to find out whether the cross-correlation remains robust across
different filters. Similar tests on cross-correlation of macro variables with GDP
have been undertaken, for example in Cooley (1995), using the HP filter, and Stock
and Watson (1999), using the BP filter. Using our above variables, we exemplary
look at the cross-correlations for consumption and GDP, investment and GDP, em-
ployment and GDP, wage and GDP, labor productivity and GDP, and yield spread
and GDP, allowing for four leads and lags for the GDP. Anotherexercise that we
will undertake is to examine the cross-correlation betweenemployment and pro-
ductivity. This relationship has become central in the RealBusiness Cycle (RBC)
literature, where technology shocks are viewed as driving force for the business
cycle. First as seen from Figure 8 (top row) the Spline filter reveals a much more
positive cross-correlation with GDP than the HP and BP filters. Since, as numerous
macroeconomic studies have shown, consumption is smoothedover the business
cycle, the positive correlation with a larger number of leads and lags for the GDP
is not unexpected. Up to two leads and lags the results of the three filters show a
very similar outcome. Also for the cross-correlation of investment with GDP and
employment and GDP the results for the three filters are similar, all three showing
positive correlation with GDP up to two leads and lags. Yet the similarity between
the penalized spine filter and the HP filter holds also for further leads and lags.

As Figure 9, top row, shows, for the cross-correlation of GDPwith the wage
all three filters show a very low correlation with GDP, for allfour leads and lags.
This is a well-known result in macroeconomics that point to the fact that wages
are rather sticky over the business cycle. The middle row of Figures 9 depicts the
results for the cross-correlation of productivity and GDP.The results shown here
again point to the fact that only with two leads and lags the results for the three
filters are similar, showing a positive cross-correlation.Yet there are significant
non-robust results to be observed for the three filters beyond the two leads and lags.

For our financial variable, the yield spread in the bottom rowof Figures
9, there is only a robust result observable for the cross-correlation of output and
the yield spread for up to one lead and lag. The positive correlation of the yield



spread and GDP, up to one lead and lag, is rather well-known inempirical finance.
At high growth rates of the GDP the yield curve usually startsshowing an upward
slope, since a rise of future interest rates is usually expected. Yet, because of so
many other influences on the yield spread, the visible non-robust result for the three
filters, beyond one lead and lag, are quite reasonable.

Next we examine the cross correlation between employment and productiv-
ity. In the RBC literature, the positive relationship of employment (hours worked)
and productivity (GDP per hour) was taken as positive confirmation that technology
shocks drive employment. The theoretical model, the RBC model, predicts even a
higher correlation of employment with productivity than can be found in the data,
since here the productivity is the driving force for output and employment, see Coo-
ley (1995). In Figure 10 we can observe for the penalized spline filter and for the
HP filter a strong correlation of employment and productivity for most leads and
lags of the two series and a weak correlation between the two series, for leads and
lags, for the BP filter. So, overall the data seem to suggest a positive correlation
of employment and productivity. We want to note that in the literature sometimes
productivity is measured by total factor productivity, thelatter is also called Solow
residual. Some other researchers use direct productivity (GDP per hour) as measure
for productivity as we have done above. In any case recent studies Basu, Fernald,
and Kimball (2006) show that either measure of productivityhas to be cleansed by
eliminating the demand effect on productivity, before it can be used as measure for
technology shocks. Thus, productivity increase should be decomposed into the ef-
fect that comes from true technology shocks and the effect that comes from demand
shocks. This has been done in Basu et al. (2006) whereby the result is obtained that
there is no or a weakly negative correlation between employment and productivity.1

Yet, whatever more detailed studies on the decomposition ofproductivity in tech-
nology and demand shocks will reveal, the overall correlation of employment and
productivity is well captured by the penalized spline and HPfilter and less so by the
BP filter.

4 Conclusion

It appears that the penalized spline filter is indeed a usefulalternative to the practi-
cally dominating routines like the HP and BP filter. In contrast to these methods the
penalized spline filter has two relevant and important advantages. First, it chooses
the smoothing or tuning parameter data driven, so subjectivity of the data analyst

1Chen et al. (2008) show that although the zero or negative correlation of employment and pro-
ductivity (using the cleansed productivity measure) seemsto hold over the business, in the long run
however, the relationship indeed turns out to be positive.



is avoided. Secondly, it allows to decompose a time series into trend and remain-
ing residuals even if there is assumed serial correlation inthe residuals. Last but
not least, it is numerically handy and implemented for instance in R. The criticism
which could be formulated relates to the number of knots being used. Yu and Rup-
pert (2002) show that the number and location of knots have secondary influence on
the performance only. This result is confirmed theoretically and practically follow-
ing the Mixed Model approach in Kauermann and Opsomer (2009). This includes
the case of correlated residuals. Asymptotic investigations how the number of knots
should grow with the sample size are given (for independent errors) in Li and Rup-
pert (2008), Kauermann, Krivobokova, and Fahrmeir (2009) and Claeskens et al.
(2009).

The comparison of the performance of our three filters has implications for
the recently renewed interest in business cycle research. The HP filter is the pre-
ferred filter in Real Business Cycle (RBC) research, see Cooley (1995). The HP
filter has recently been complement by the BP filter, see Stockand Watson (1999),
where business cycle components are extracted for large number of U.S. macroe-
conomic times series data. Further far-reaching implications for business cycles
theory and causes of recessions, also employing the HP filter, are derived in Chari
et al. (2007) and Christiano and Davis (2006). Yet, as our study above shows, those
results may need to be qualified, since robust results cannotbe obtained across fil-
ters, neither with regard to business cycle components nor for the cross-correlation
between output and other macro economic times series. The penalized spline has
the advantage that it allows for serial correlation.

A Numerical Issues

Functiongamm in theR packagemgcv fits the data using the Mixed Model represen-
tation of penalized splines. This function provides interface with the Mixed Models
packagenlme and allows to estimate the correlation matrix along with theother
parameters, as long as the correlation structure is specified. We give here a few
lines of a simpleR code which we used for fitting the data from Section 3. Fitting
200 observations of GDP data with penalized splines, takingan AR(1) correlation
structure into account can be carried out as follows.

library(mgcv)

data<-scan("GDP.txt")

n=length(data)

t=1:n

k=floor(n/3)



data.gamm=gamm(data~s(t,k=k,bs="cs"),correlation=corAR1())

plot(t,data)

lines(t,fitted(data.gamm$lme),lwd=3)

To fit the data, taking into account an AR(2) correlation structure one has to update
the call ofgamm function as follows.

data<-scan("GDP.txt")

data.gamm=gamm(data~s(t,k=k,bs="cs"),correlation=corARMA(p=2))

The HP filter and the BP filter are implemented in themfilter package available
from the CRAN server ofR.
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Figure 1: Top row: Log GDP data detrended with penalized splines, taking an
AR(2) correlation structure into account. Left column gives comparison to HP filter,
right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 2: Top row: Log Consumption data detrended with penalized splines, taking
an AR(2) correlation structure into account. Left column gives comparison to HP
filter, right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 3: Top row: Log Investment data detrended with penalized splines, taking
an AR(2) correlation structure into account. Left column gives comparison to HP
filter, right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 4: Top row: Log Employment data detrended with penalized splines, taking
an AR(2) correlation structure into account. Left column gives comparison to HP
filter, right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 5: Top row: Log Wage data detrended with penalized splines, taking an
AR(2) correlation structure into account. Left column gives comparison to HP filter,
right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 6: Top row: Log Average Labour Productivity data detrended with penal-
ized splines, taking an AR(2) correlation structure into account. Left column gives
comparison to HP filter, right column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP fil-
ter (left) and BP filter (right)
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Figure 7: Top row: Yield data detrended with penalized splines, taking an AR(2)
correlation structure into account. Left column gives comparison to HP filter, right
column shows comparison to BP filter.
Middle row: Corresponding residuals.
Bottom row: Autocorrelation for penalized spline residuals and alternatives HP
filter (left) and BP filter (right)
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Figure 8: Cross correlation of GDP with Consumption (top row), Investment (mid-
dle row) and Employment (bottom row) and comparison with HP filter (left column)
and BP filter (right column), respectively
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Figure 9: Cross correlation of GDP with Wage (top row), Labour Productivity (mid-
dle row) and Yield (bottom row) and comparison with HP filter (left column) and
BP filter (right column), respectively
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Figure 10: Cross correlation of log Employment and productivity and comparison
with HP filter (left) and BP filter (right), respectively


