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Photonic Crystals

We consider periodic optic media (photonic crystals). In such media

light is absorbed for all frequencies which are not within a band gap.

(www.cfn.uni-karlsruhe.de)

In nanotechnology, photonic crystals are fabricated and band gaps can

be observed.
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Photonic crystal: periodic dielectric medium such that

electromagnetic waves of certain frequencies cannot propagate in it.

Range of the prohibited frequencies: (complete) band gap

Physical reason: destructive interference

Practical interest: Design periodic materials which have band gaps!

Analytically very difficult!

Here: Computer-assisted proof of band gap.
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Physical model: Homogeneous Maxwell’s equations (c = 1)

curlE = −
∂B

∂t
, curlH =

∂D

∂t
,

divB = 0, divD = 0,

together with the constitutive relations

D = εE, B = µH

(E electric field, H magnetic field, D displacement field, B magnetic

induction field)

ε, µ: material tensors. Isotropic material: ε, µ scalar real-valued

functions, not time-dependent

ε electric permittivity, µ magnetic permeability.

Photonic crystal: non-magnetic, i.e. µ ≡ 1, B ≡ H.
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Look for monochromatic waves:

E(x, t) = eiωtE(x), H(x, t) = eiωtH(x)

Maxwell’s equations give

curlE = −iωH, curlH = iωεE, divH = 0, div(εE) = 0.

Applying curl to the first two equations gives two decoupled systems:

curl curl E = ω2εE curl
1

ε
curlH = ω2H

and
div(εE) = 0 divH = 0
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Operator theoretical formulation

L2
div(R3) := {u ∈ L2(R3)3 : div u = 0}

{
⊂ L2(R3)3 closed
⊂ H(div, R3)

H := L2
div(R3) ∩H(curl, R3)

Maxwell’s equation for H-field (curl1
ε
curlH = ω2H, divH = 0) reads, for u := H,

u ∈ H \ {0},
∫
R3

1
ε
(curlu) · (curlv)dx = ω2

∫
R3

u · v̄dx for each v ∈ H

or, using B[u, v] :=
∫
R3

1
ε
(curlu) · (curlv)dx +

∫
R3

u · v̄dx (u, v ∈ H), λ := ω2 + 1,

u ∈ H \ {0}, B[u, v] = λ
∫
R3

u · v̄dx for all v ∈ H ( ∗ )

Lax-Milgram yields selfadjoint operator T : L2
div(R3) → H ⊂ L2

div(R3),

B[Tr, v] =

∫
R3

r · v̄dx (r ∈ L2
div(R3), v ∈ H),

D(A) := range(T ) ⊂ H, A := T−1 selfadjoint. (∗) ⇔ u ∈ D(A) \ {0}, Au = λu
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Now let ε ∈ L∞(R3) (with ε ≥ εmin > 0) be periodic with periodicity cell Ω ⊂ R3

(bounded parallelogram). Standard crystal: Ω = (0,1)3

Floquet-Bloch theory gives: The spectrum σ of (∗) has band-gap structure;
more precisely:

σ =
⋃
n∈N

In,

where In are compact real intervals with min In →∞ as n →∞.

In is called the n-th spectral band.

“Usually”, the bands In overlap. But there might be gaps between them.

These are the band-gaps of prohibited frequencies mentioned earlier.

Floquet-Bloch theory tells further:

In = {λk,n : k ∈ K}
where K is the Brillouin zone (compact set in R3, determined by Ω, K = [−π, π]3

if Ω = (0,1)3), and λk,n n-th eigenvalue of (written formally)

curl
(
1
ε
curlu

)
+ u = λu on Ω,divu = 0 on Ω, e−ik·xu(x) satisfies periodic b.c. on ∂Ω

λ·,n is called the n-th branch of the dispersion relation.
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Precise formulation of (k-dependent) problem on Ω:

(Problem with periodic boundary condition: trace of u ∈ H only in H−1

2(∂Ω).)

G discrete lattice associated with Ω (G = Z3 if Ω = (0,1)3).

Extension operator E : L2(Ω)3 → L2
loc(R3)3, (Ev)(x + g) := v(x) (x ∈ Ω, g ∈ G).

Then boundary condition (e−ik·xu(x) periodic) together with the required smooth-

ness on Ω reads:

E(e−ik·u) ∈ Hloc(curl, R3) ∩Hloc(div, R3)

Let

Hk := {u ∈ L2(Ω)3 : divu = 0, E(e−ik·u) ∈ Hloc(curl, R3) ∩Hloc(div, R3)}

Eigenvalue problem generated by Floquet-Bloch theory

(curl(1
ε
curlu) + u = λu on Ω, divu = 0 on Ω, e−ik·xu(x) satisfies periodic b.c.

on ∂Ω) now reads:

u ∈ Hk \ {0},
∫
Ω

1

ε
(curlu) · (curlv)dx +

∫
Ω

u · v̄dx

︸ ︷︷ ︸
=:BΩ(u,v)

= λ
∫
Ω

u · v̄dx

for all v ∈ Hk

(EWPk)
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Strategy for proving gap:

1) Choose finitely many grid points in K

2) Compute verified eigenvalue enclosures for λk,1, . . . , λk,N (N cho-

sen fixed) for k in the grid

3) Use perturbation type argument to deduce from 2) also enclosures

for λk,1, . . . , λk,N for k between grid-points

Together enclosure for λk,1, . . . , λk,N for all k ∈ K

→ enclosures for the bands I1, . . . , IN

→ If a gap in these enclosures occurs: proof of gap
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Perturbation argument:

Let H0
k ⊃ Hk be given by omitting the condition divu = 0 in Hk, i.e.

H0
k := {u ∈ L2(Ω)3 : E(e−ik·u) ∈ Hloc(curl, R3) ∩Hloc(div, R3)}

and consider, besides (EWPk), the problem with H0
k instead of Hk:

u ∈ H0
k \ {0},∫

Ω

1

ε
(curlu)·(curlv)dx+

∫
Ω

u·v̄dx = λ
∫
Ω

u·v̄dx for all v ∈ H0
k (EWP0

k)

λ = 1 is an eigenvalue of infinite multiplicity of (EWP0
k ). (For each

ϕ ∈ H2(Ω) s.t. e−ik·x∇ϕ(x) satisfies periodic b.c., ∇ϕ is an eigen-

function.)

This is the only difference between the spectra of (EWPk) and (EWP0
k )!

10



Defining w(x) := e−ik·xu(x), we obtain the equivalent problem

w ∈ H0 \ {0},∫
Ω

1
ε [curlw + ik×w] · [curlv + ik × v]dx+

∫
Ω

w · v̄dx = λ
∫
Ω

w · v̄dx

for all v ∈ H0

(ẼWP0
k )

where

H0 := {w ∈ L2(Ω)3 : Ew ∈ Hloc(curl, R3) ∩Hloc(div, R3)}

(independent of k !)
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Let k be one of the gridpoints (to be) chosen in the Brillouin zone K;
consider perturbation k + h of k.

Theorem: Let [a, b] ⊂ R be an interval such that, for some n ∈ N,

(1 <)λk,n < a < b < λk,n+1

(whence [a, b] ⊂ resolvent set of unperturbed problem (EWP0
k )), and

let |h| < δk, where δk > 0 is such that

δk ·max

{
1,

1

εmin
+ δk

}
·max

{
λk,n

a− λk,n
,

λk,n+1

λk,n+1 − b

}
≤ 1.

Then, [a, b] is contained in the resolvent set of the perturbed problem

(EWP0
k+h).

Corollary: Let the assumptions of the Theorem hold for all gridpoints
k in K, and suppose that⋃

gridpoints k∈K

Ball(k, δk) ⊃ K.

Then, [a, b] is contained in a spectral band-gap.

12



Remaining task: Compute enclosures for eigenvalues λk,1, . . . , λk,N

of (EWPk) for all gridpoints k; N ∈ N chosen fixed.

Let k ∈ K denote a fixed gridpoint now.

First step: Compute approximate eigenpairs to

u ∈ Hk \ {0},
∫
Ω

1

ε
(curlu) · (curlv)dx +

∫
Ω

u · v̄dx

︸ ︷︷ ︸
=:BΩ(u,v)

= λ
∫
Ω

u · v̄dx

for all v ∈ Hk

(EWPk)

by Ritz method with appropriate basis functions in Hk

Second step: Upper eigenvalue bounds by Rayleigh-Ritz method

(with approximate eigenfunctions as basis functions)

Third step: Lower eigenvalue bounds by Lehmann-Goerisch method
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Rayleigh-Ritz-Method (upper bounds)

Fix k in the grid.

Theorem. Let ũk,1, . . . , ũk,N ∈ Hk be linearly independent (approxi-
mate eigenfunctions),

A =
(
BΩ(ũk,n, ũk,m)

)
n,m=1,...,N

B =
(
〈ũk,n, ũk,m〉L2

)
n,m=1,...,N

and let Λk,1 ≤ · · · ≤ Λk,N be the eigenvalues of

Ax = ΛBx.

Then

λk,n ≤ Λk,n (n = 1, . . . , N).
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Lehmann-Goerisch-Method

for lower eigenvalue bounds (k in the grid still fixed):

Choose a fixed shift parameter γ > −1. Compute additional approxi-

mations σ̃k,n satisfying, for n = 1, . . . , N ,

1

ε
σ̃k,n ∈ H(curl,Ω), E

(
e−ik·1

ε
σ̃k,n

)
∈ Hloc(curl, R3),

σ̃k,n ≈
1

λ̃k,n + γ
curlũk,n

Moreover, suppose that β ∈ R is known such that

Λk,N < β − γ ≤ λk,N+1
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Theorem (Goerisch). Define

A =
(
BΩ(ũk,m, ũk,n)

)
m,n=1,...,N

∈ CN,N ,

B =
(
〈ũk,m, ũk,n〉L2

)
m,n=1,...,N

∈ CN,N ,

S =
(
〈
1

ε
σ̃k,m, σ̃k,n〉L2

)
m,n=1,...,N

∈ CN,N ,

T =
1

γ + 1

(
〈ũk,m − curl

(
1

ε
σ̃k,m

)
, ũk,n − curl

(
1

ε
σ̃k,n

)
〉L2

)
m,n=1,...,N

∈ CN,N .

If the matrix N = A + (γ − 2β)B + β2(S + T) is positive definite, and
if the eigenvalues

θ1 ≥ θ2 ≥ · · · ≥ θN

of the eigenvalue problem(
A + (γ − β)B

)
x = θNx

are negative, we have β − γ − β
1−θn

≤ λn,k for n = 1, · · ·N .
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Spectral Homotopy

For determining β such that Λk,N < β − γ ≤ λk,N+1, let

εs(x) := (1− s)εmax + sε(x) x ∈ Ω, 0 ≤ s ≤ 1,

and consider the family of eigenvalue problems

u ∈ Hk \ {0},
∫
Ω

1

εs(x)
(curlu) · (curlv)dx +

∫
Ω

u · v̄dx = λ(s)
∫
Ω

u · v̄dx

for all v ∈ Hk,

0 ≤ s ≤ 1, k still fixed in the grid. Eigenvalues (λ(s)
n )n∈N.

For s = 0: eigenvalues λ
(0)
n are known

For s = 1: λ
(1)
n = λk,n (n ∈ N).

Lemma. For each fixed n ∈ N,

λ
(s)
n ≤ λ

(t)
n for 0 ≤ s ≤ t ≤ 1.

(Proof by Poincaré’s min-max principle.)
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Spectral Homotopy

10.80.60.40.20

λ11

λ10
λ9
λ8

λ7
λ6λ5

λ4
λ3

λ2
λ1
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Concrete case: Ω = (0,1)3, ε(x) :=

{
1 if

∣∣∣x− (
1
2, 1

2, 1
2

)∣∣∣ < 1
2

25 otherwise
Basis functions: combination of

a) plane waves: A
(k)
n ei(2πn+k)·x, n ∈ Z3, A

(k)
n ∈ C3, A

(k)
n ·(2πn+k) = 0

b) certain functions which are non-zero only on the ball
∣∣∣x− (

1
2, 1

2, 1
2

)∣∣∣ <
1
2, constructed via polynomials in r and spherical harmonics in ϕ, θ.

By symmetry, only the following part of the Brillouin zone K needs

to be considered: Show@B, TD

A

B
C

D
0

1

2

3k1

0

1

2

3

k2

0

1

2

3

k3
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jointly with V. Hoang, C. Wieners:

2D-situation: ε = ε(x1, x2), polarized wave E = (0,0, u)

⇒ 0 = div(εE) = ∂
∂x3

(εu) = ε ∂u
∂x3

, i.e. ∂u
∂x3

= 0, u = u(x1, x2).

⇒ curl curl E =

 0
0

−∆u



Maxwell’s equation gives, with λ = ω2, ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2

( ∗ ) −∆u = λεu equation on whole of R2
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A Candidate

Let Λ = Z2, Ω = (0,1)2 and K = [−π, π]2. We set ε(x) = 1 for

x ∈ [1/16,15/16]2 and ε(x) = 5 else. By symmetry we have the same

spectrum for k = (k1, k2), (−k1, k2), (k1,−k2), (k2, k1)

(−π,−π) (π,−π)

(π, π)(−π, π)

Brillouin zone K periodic material distribution ε
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A Candidate
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A Candidate

eigenfunctions uk,1, ..., uk,6 for k = (π, π)
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Spectral Homotopy for k = (2.5130,0.4046)

10.80.60.40.20

λ11

λ10
λ9
λ8

λ7
λ6λ5

λ4
λ3

λ2
λ1

λ
(s)
10 ≥ 27.13 for s ≥ 1/32 λ

(s)
7 ≥ 23.37 for s ≥ 19/32

λ
(s)
9 ≥ 24.90 for s ≥ 4/32 λ

(s)
6 ≥ 22.81 for s ≥ 22/32

λ
(s)
8 ≥ 23.85 for s ≥ 8/32 λ

(s)
5 ≥ 22.47 for s ≥ 28/32
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Spectral Homotopy for k = (2.5130,0.4046)

s 0 4/32 8/32 19/32
λ1 ( 1.295, 1.296) ( 1.402, 1.403) ( 1.528, 1.529) ( 2.017, 2.018)
λ2 ( 2.875, 2.876) ( 3.114, 3.115) ( 3.396, 3.397) ( 4.526, 4.527)
λ3 ( 8.174, 8.175) ( 8.840, 8.841) ( 9.594, 9.595) (12.189,12.190)
λ4 ( 9.754, 9.755) (10.563,10.564) (11.523,11.524) (15.397,15.398)
λ5 (10.208,10.209) (11.048,11.049) (12.019,12.020) (15.575,15.577)
λ6 (11.788,11.789) (12.783,12.784) (14.019,14.020) (19.920,19.921)
λ7 (15.507,15.508) (16.778,16.779) (18.236,18.237) (23.339,23.373)
λ8 (20.246,20.247) (21.907,21.913) (23.786,23.832)
λ9 (22.386,22.387) (24.210,24.213)
λ10 (24.419,24.420)

s 19/32 22/32 28/32 1
λ1 ( 2.017, 2.018) ( 2.204, 2.205) ( 2.690, 2.691) ( 3.127, 3.128)
λ2 ( 4.526, 4.527) ( 4.979, 4.980) ( 6.220, 6.221) ( 7.433, 7.434)
λ3 (12.189,12.190) (13.046,13.048) (14.981,14.985) (16.445,16.452)
λ4 (15.397,15.398) (16.653,16.655) (19.383,19.389) (21.422,21.450)
λ5 (15.575,15.577) (17.188,17.190) (22.451,22.465)
λ6 (19.920,19.921) (22.809,22.813)
λ7 (23.339,23.373)
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A Verified Band Gap
This figure illustrates the covering

K ⊂
⋃

k∈ grid

Ball(k, rk)

Eigenvalue bounds (in grid) and
perturbation arguments give
λk,3 ≤ 18.2, λk,4 ≥ 18.25 for all k ∈ K.

This proves the existence of a band gap

(18.2,18.25) ⊂ (λmax,3, λmin,4)

for the spectral problem −∆u = λεu in R2.

The proof requires the close approximation of more than 5000 ei-
genvalues and eigenfunctions (for 100 vectors k ∈ grid with up to
7 homotopy steps each) and takes about 90 h computing time.
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