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¢ Soils store large amounts of organic carbon (C) which makes them an important component z g data using R package FME (Nelder-Mead method).
) ) ) S ) B 25- B 25-
of the C cycle. However, the dynamics of soil organic carbon (SOC) and its interactions > S Parameter initial values were taken from literature when f CA_bf 0.2 0.01 0.9 0.036
o o
. . ) 5 3 . . . f CA_mz 0.2 0.01 0.9 0.355
with climate and other ecosystem components remain poorly understood. 5 o available, and were given broad but realistic boundary
Q g f CD 0.001 1.00E-04 0.005 0.0050
E G values as determined from literature or theory (Table 1). S 0001  1.00E.04 0.005 0.00020
o . . . = s = ' ' ' '
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** A number of mechanisms are tested in the model to find the best representation of the P g ! eftpanel rightpanel g -
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The following treatments were applied to each soil: 3 maize.20 bare_fallow.20 with SOC quantity/quality) (Figure 3).
12 levels of moisture held constant, ranging from air- 00l ofs _ ~ « The moisture response changes less with soil type (SOC quantity/quality) but is strongly
dry to saturation, in parallel samples. . | . . . —L . . . . | T < T 7 affected by temperature (Figure 1 and 4).
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Results are summarized in Figure 1. maize.5 bare_fallow.5 » Relationship with temperature:
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The model simulates enzyme driven organic g 8 8 ° interactions in the model. The intrinsic temperature sensitivity (E V) is fixed, equal for
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« Carbon pools: particulate (PC), soluble (5C), ° model.
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enzyme (EC). Microbial (MC) is optional. : (blue) » Relationship with moisture:
* Enzyme mediated decomposition of PC to 1. The model was highly capable of reproducing the common plateau-like response. Such
soluble SC. o . . . .
W ﬁ Flgure 5 a response is hot prescribed and an example of interacting processes.
aaeEsEESBEBREEDBED [3p]
e Temperature Arrhenius equation and : . : . : . .
P ( . ) : : E N Model vs observed values 2. The model was better at capturing the shape of the relationship and scatter in the data
concentration (Michaelis-Menten kinetics) . . 5
| - : bef d aft t : : :
, M.SC, : 2 o e e at high temperatures. Interestingly, the model seems to capture cases where there is an
dependency of reaction rates. . . g optimization (gray and green
. Effect of moisture on substrate availability : : : 2 respectively). Model includes optimum at intermediate water content (Figure 4, bare fallow), even if there is no O,
: cer » . o P2. T .
(directly and through diffusion of DOC). g limitation in the model.
- 3 ° | T :
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Note: because of the time frame involved, the | | | | but the magnitude and shape of the relationship were not well captured.
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adsorbed pool SCa was ignored in this study.
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