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Thomas Kneib Outline

Outline

• Geoadditive Regression: An Application to Car Insurance Data.

• Bayesian Inference in Structured Additive Regression.

• Spatio-Temporal Regression: Forest Health Data.
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Thomas Kneib Structured Additive Regression

Structured Additive Regression

• Regression in a general sense:

– Generalised linear models,

– Multivariate (categorical) generalised linear models,

– Regression models for duration times (Cox-type models, multi-state models).

• Common structure: Model a quantity of interest in terms of categorical and
continuous covariates, e.g.

E(y|u) = h(u′γ) (GLM)

or
λ(t|u) = λ0(t) exp(u′γ) (Cox model)
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Thomas Kneib Structured Additive Regression

• General idea of structured additive regression: Replace usual parametric predictor
with a flexible semiparametric predictor containing

– Nonparametric effects of time scales and continuous covariates,

– Spatial effects,

– Interaction surfaces,

– Varying coefficient terms (continuous and spatial effect modifiers),

– Random intercepts and random slopes.
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Thomas Kneib Structured Additive Regression

• Example: Car insurance data from two insurance companies in Belgium.

• Sample of approximately 160.000 policyholders.

• Aims: Separate risk analyses for claim size and claim frequency to predict risk
premium from covariates.

• Variables of primary interest: Claim size yi or claim frequency hi of policyholders.

• Covariates:

vage vehicles age
page policyholders age

hp vehicles horsepower
bm bonus-malus score

s district in Belgium
v Vector of categorical covariates
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Thomas Kneib Structured Additive Regression

• Geoadditive models:

– Gaussian model for log-costs log(y):

log(y) ∼ N(η, σ2)

with
η = f1(vage) + f2(page) + f3(bm) + f4(hp) + fspat(s) + v′ζ.

– Poisson model for frequencies hi:

h ∼ Po(exp(η))

with

η = f1(vage) + f2(page) + f3(page)sex + f3(bm) + f4(hp) + fspat(s) + v′ζ.
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Thomas Kneib Structured Additive Regression

• Results for claim frequency:
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Thomas Kneib Structured Additive Regression

-0.470814 0 0.642283
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Thomas Kneib Structured Additive Regression

• Spatial effect for claim size:

-0.181311 0 0.26348
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Thomas Kneib Model Components and Priors

Model Components and Priors

• Penalised splines.

– Approximate f(x) =
∑

ξjBj(x) by a weighted sum of B-spline basis functions.

– Employ a large number of basis functions to enable flexibility.

– Penalise differences between parameters of adjacent basis functions to ensure
smoothness

1
2τ2

∑
(ξj − ξj−1)2 (first order differences)

1
2τ2

∑
(ξj − 2ξj−1 + ξj−2)2 (second order differences)
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Thomas Kneib Model Components and Priors
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Thomas Kneib Model Components and Priors

• Bivariate penalised splines.
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• Varying coefficient models.

– Effect of covariate x varies smoothly over the domain of a second covariate z:

f(x, z) = x · g(z)

– Spatial effect modifier ⇒ Geographically weighted regression.
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Thomas Kneib Model Components and Priors

• Spatial effect for regional data: Markov random fields.

– Bivariate extension of a first order random walk on the real line.

– Define appropriate neighbourhoods for the regions.

– Assume that the expected value of fspat(s) is the average of the function
evaluations of adjacent sites.

τ2

2

t−1 t t+1

f(t−1)

E[f(t)|f(t−1),f(t+1)]

f(t+1)
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Thomas Kneib Model Components and Priors

• Spatial effect for point-referenced data: Stationary Gaussian random fields.

– Well-known as Kriging in the geostatistics literature.

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Can be interpreted as a basis function approach with radial basis functions.
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Thomas Kneib Model Components and Priors

• All effects can be cast into one general framework.

• All vectors of function evaluations fj can be expressed as

fj = Zjξj

with design matrix Zj and regression coefficients ξj.

• Generic form of the prior for ξj:

p(ξj|τ2
j ) ∝ (τ2

j )−
kj
2 exp

(
− 1

2τ2
j

ξ′jKjξj

)
.

• Kj ≥ 0 acts as a penalty matrix, rank(Kj) = kj ≤ dj = dim(ξj).

• τ2
j ≥ 0 can be interpreted as a variance or (inverse) smoothness parameter.
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Bayesian Inference

• Fully Bayesian inference:

– All parameters (including the variance parameters τ2) are assigned suitable prior
distributions.

– Typically, estimation is based on MCMC simulation techniques.

– Usual estimates: Posterior expectation, posterior median (easily obtained from the
samples).

• Empirical Bayes inference:

– Differentiate between parameters of primary interest (regression coefficients) and
hyperparameters (variances).

– Assign priors only to the former.

– Estimate the hyperparameters by maximising their marginal posterior.

– Plugging these estimates into the joint posterior and maximising with respect to
the parameters of primary interest yields posterior mode estimates.
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Thomas Kneib Bayesian Inference

• MCMC-based inference:

– Assign inverse gamma prior to τ2
j :

p(τ2
j ) ∝ 1

(τ2
j )aj+1 exp

(
− bj

τ2
j

)
.

Proper for aj > 0, bj > 0 Common choice: aj = bj = ε small.

Improper for bj = 0, aj = −1 Flat prior for variance τ2
j ,

bj = 0, aj = −1
2 Flat prior for standard deviation τj.

– Conditions for proper posteriors in structured additive regression are available.

– Gibbs sampler for τ2
j |·:

Sample from an inverse Gamma distribution with parameters

a′j = aj +
1
2
rank(Kj) and b′j = bj +

1
2
ξ′jKjξj.
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Thomas Kneib Bayesian Inference

– Metropolis-Hastings update for ξj|·:
Propose new state from a multivariate Gaussian distribution with precision matrix
and mean

Pj = Z ′jWZj +
1
τ2
j

Kj and mj = P−1
j Z ′jW (ỹ − η−j).

IWLS-Proposal with appropriately defined working weights W and working
observations ỹ.

• Efficient algorithms make use of the sparse matrix structure of Pj and Kj.
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Thomas Kneib Bayesian Inference

• Empirical Bayes inference.

– Consider the variances τ2
j as unknown constants to be estimated from their

marginal posterior.

– Consider the regression coefficients ξj as correlated random effects with multivariate
Gaussian distribution

⇒ Use mixed model methodology for estimation.

• Problem: In most cases partially improper random effects distribution.

• Mixed model representation: Decompose

ξj = Xjβj + Vjbj,

where
p(βj) ∝ const and bj ∼ N(0, τ2

j Ikj
).

⇒ βj is a fixed effect and bj is an i.i.d. random effect.
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Thomas Kneib Bayesian Inference

• This yields a variance components model with pedictor

η = Xβ + V b

where in turn
p(β) ∝ const and b ∼ N(0, Q).

• Obtain empirical Bayes estimates / penalized likelihood estimates via iterating

– Penalized maximum likelihood for the regression coefficients β and b.

– Restricted Maximum / Marginal likelihood for the variance parameters in Q:

L(Q) =
∫

L(β, b,Q)p(b)dβdb → max
Q

.

• Involves a Laplace approximation to the marginal likelihood (corresponding to REML
estimation of variances in Gaussian mixed models).

Modelling Geoadditive Regression Data 19



Thomas Kneib BayesX

BayesX

• BayesX is a software tool for estimating structured additive regression models.

• Available from

http://www.stat.uni-muenchen.de/~bayesx
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Spatio-Temporal Regression: Forest Health Data

• Yearly forest health inventories carried out from 1983 to 2004.

• 83 beeches within a 15 km times 10 km area.

• Response: defoliation degree of beech i in year t, measured in three ordered categories:

yit = 1 no defoliation,
yit = 2 defoliation 25% or less,
yit = 3 defoliation above 25%.

• Covariates:

t calendar time,
si site of the beech,
ait age of the tree in years,
uit further (mostly categorical) covariates.
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

• Cumulative probit model:

P (yit ≤ r) = Φ
(
θ(r) − ηit

)

with standard normal cdf Φ, thresholds −∞ = θ(0) < θ(1) < θ(2) < θ(3) = ∞ and

ηit = f1(t) + f2(ageit) + f3(t, ageit) + fspat(si) + u′itγ

θ(1) θ(2) θ(3)η θ(1) θ(2) θ(3)η
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

Modelling Geoadditive Regression Data 24



Thomas Kneib Spatio-Temporal Regression: Forest Health Data
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

• Category-specific trends:

P (yit ≤ r) = Φ
[
θ(r) − f

(r)
1 (t)− f2(ageit)− fspat(si)− u′itγ

]

• More complicated constraints:

−∞ < θ(1) − f
(1)
1 (t) < θ(2) − f

(2)
1 (t) < ∞ for all t.
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Summary

• Flexible semiparametric regression models for geoadditive data structures.

• Fully automated Bayesian inferential procedures.

• Similar types of models are available for extended Cox-type hazard regression models:

– Joint estimation of covariate effects and baseline hazard rate.

– Time-varying effect to overcome proportional hazards.

– Interval, left, and right censored survival times.

• A place called home:

http://www.stat.uni-muenchen.de/~kneib
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