Modelling Geoadditive Regression Data

Thomas Kneib

Department of Statistics, Ludwig-Maximilians-University Munich

joint work with Stefan Lang (University of Innsbruck) & Ludwig Fahrmeir (University of Munich)

29.11.2007

Outline

- Geoadditive Regression: An Application to Car Insurance Data.
- Bayesian Inference in Structured Additive Regression.
- Spatio-Temporal Regression: Forest Health Data.

Structured Additive Regression

- Regression in a general sense:
 - Generalised linear models,
 - Multivariate (categorical) generalised linear models,
 - Regression models for duration times (Cox-type models, multi-state models).
- Common structure: Model a quantity of interest in terms of categorical and continuous covariates, e.g.

$$\mathbb{E}(y|u) = h(u'\gamma) \qquad (\mathsf{GLM})$$

or

$$\lambda(t|u) = \lambda_0(t) \exp(u'\gamma)$$
 (Cox model)

- General idea of structured additive regression: Replace usual parametric predictor with a flexible semiparametric predictor containing
 - Nonparametric effects of time scales and continuous covariates,
 - Spatial effects,
 - Interaction surfaces,
 - Varying coefficient terms (continuous and spatial effect modifiers),
 - Random intercepts and random slopes.

- Example: Car insurance data from two insurance companies in Belgium.
- Sample of approximately 160.000 policyholders.
- Aims: Separate risk analyses for claim size and claim frequency to predict risk premium from covariates.
- Variables of primary interest: Claim size y_i or claim frequency h_i of policyholders.
- Covariates:
 - *vage* vehicles age
 - page policyholders age
 - *hp* vehicles horsepower
 - *bm* bonus-malus score
 - s district in Belgium
 - v Vector of categorical covariates

• Geoadditive models:

– Gaussian model for log-costs $\log(y)$:

$$\log(y) \sim N(\eta, \sigma^2)$$

with

$$\eta = f_1(vage) + f_2(page) + f_3(bm) + f_4(hp) + f_{spat}(s) + v'\zeta.$$

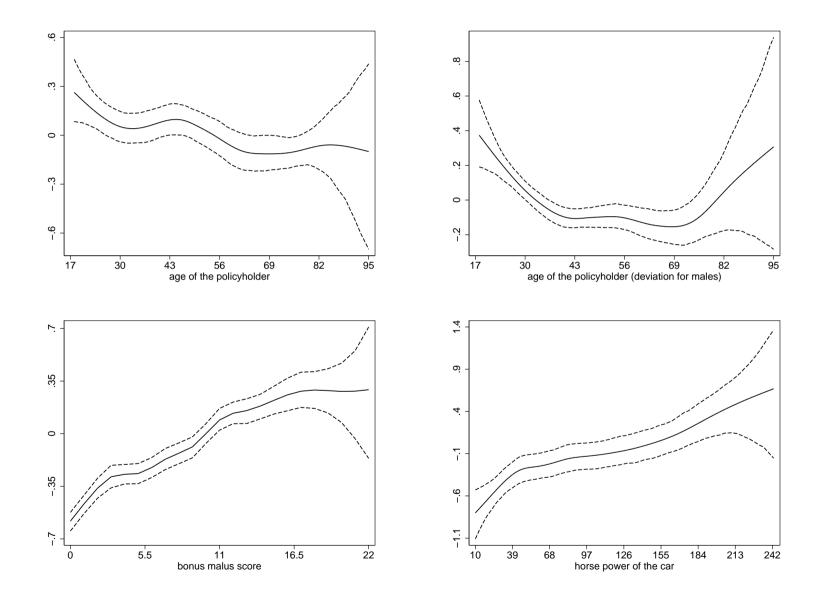
- Poisson model for frequencies h_i :

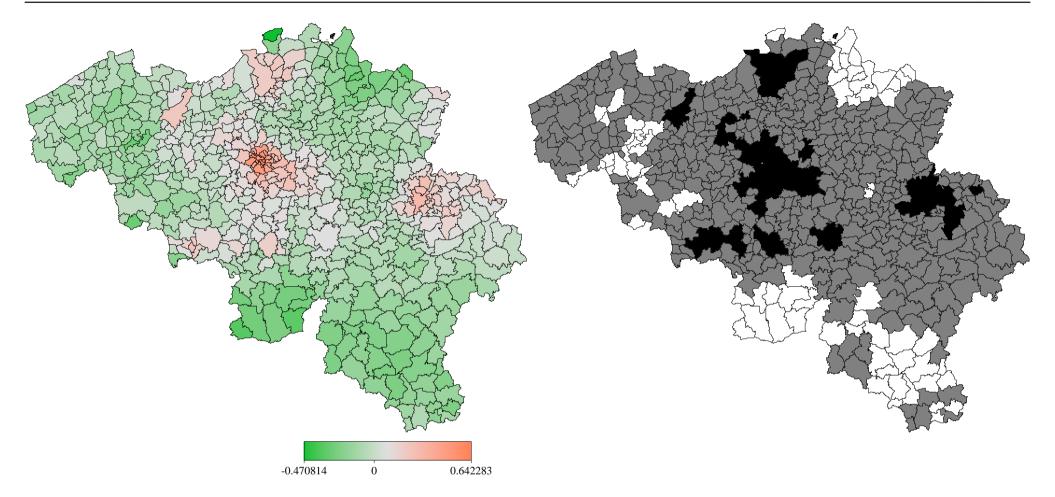
 $h \sim Po(\exp(\eta))$

with

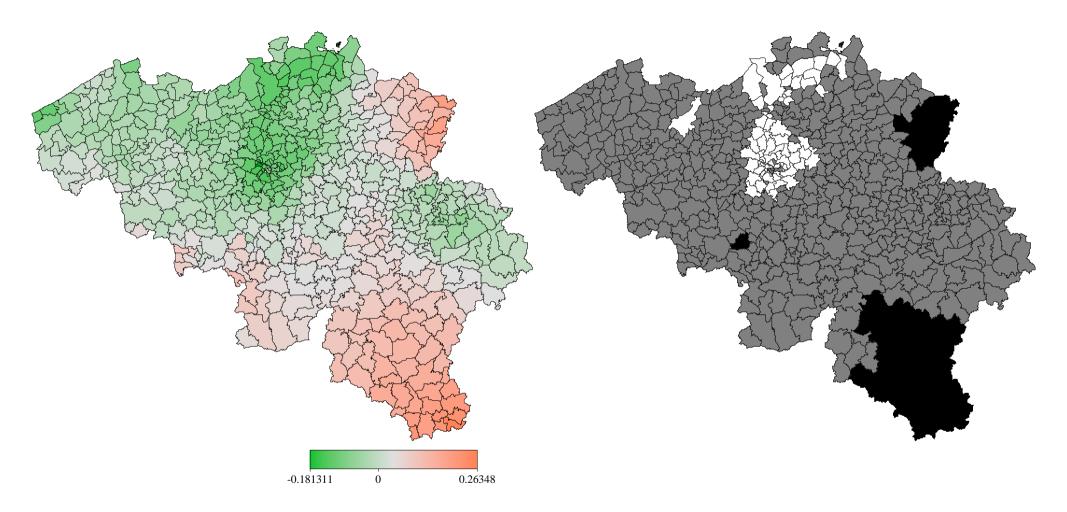
$$\eta = f_1(vage) + f_2(page) + f_3(page)sex + f_3(bm) + f_4(hp) + f_{spat}(s) + v'\zeta.$$

• Results for claim frequency:





• Spatial effect for claim size:



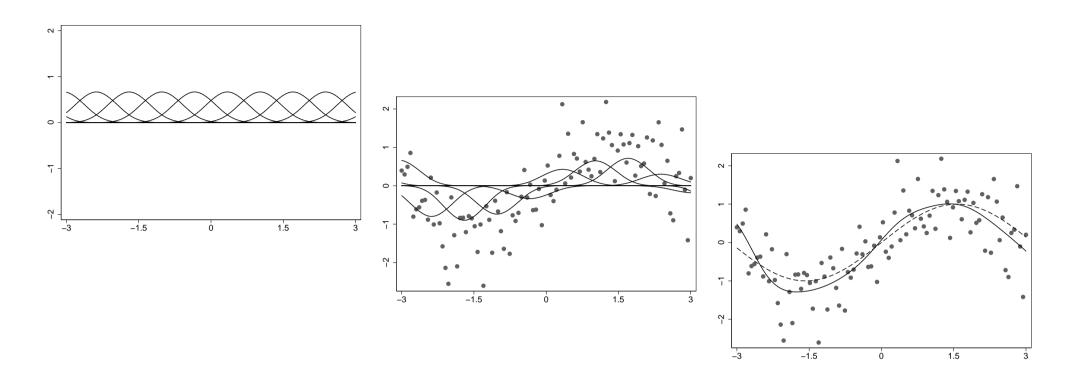
Model Components and Priors

- Penalised splines.
 - Approximate $f(x) = \sum \xi_j B_j(x)$ by a weighted sum of B-spline basis functions.
 - Employ a large number of basis functions to enable flexibility.
 - Penalise differences between parameters of adjacent basis functions to ensure smoothness

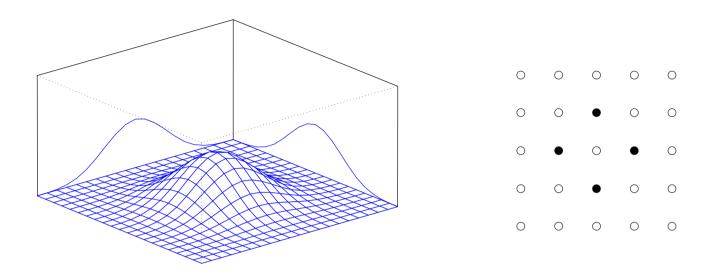
$$\frac{1}{2\tau^2} \sum (\xi_j - \xi_{j-1})^2$$
$$\frac{1}{2\tau^2} \sum (\xi_j - 2\xi_{j-1} + \xi_{j-2})^2$$

(first order differences)

(second order differences)



• Bivariate penalised splines.

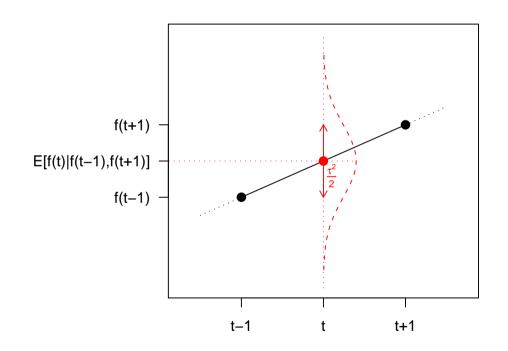


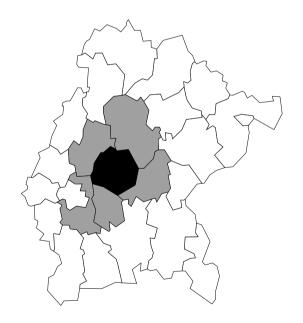
- Varying coefficient models.
 - Effect of covariate x varies smoothly over the domain of a second covariate z:

$$f(x,z) = x \cdot g(z)$$

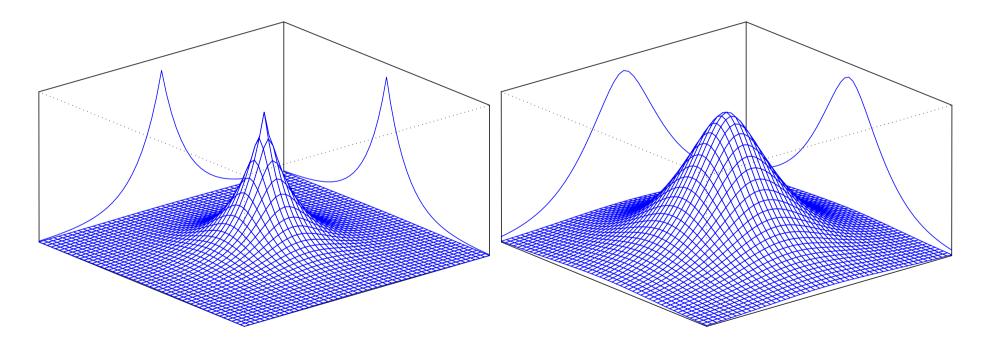
- Spatial effect modifier \Rightarrow Geographically weighted regression.

- Spatial effect for regional data: Markov random fields.
 - Bivariate extension of a first order random walk on the real line.
 - Define appropriate neighbourhoods for the regions.
 - Assume that the expected value of $f_{spat}(s)$ is the average of the function evaluations of adjacent sites.





- Spatial effect for point-referenced data: Stationary Gaussian random fields.
 - Well-known as Kriging in the geostatistics literature.
 - Spatial effect follows a zero mean stationary Gaussian stochastic process.
 - Correlation of two arbitrary sites is defined by an intrinsic correlation function.
 - Can be interpreted as a basis function approach with radial basis functions.



- All effects can be cast into one general framework.
- All vectors of function evaluations f_j can be expressed as

$$f_j = Z_j \xi_j$$

with design matrix Z_j and regression coefficients ξ_j .

• Generic form of the prior for ξ_j :

$$p(\xi_j | \tau_j^2) \propto (\tau_j^2)^{-\frac{k_j}{2}} \exp\left(-\frac{1}{2\tau_j^2} \xi_j' K_j \xi_j\right).$$

- $K_j \ge 0$ acts as a penalty matrix, $\operatorname{rank}(K_j) = k_j \le d_j = \dim(\xi_j)$.
- $\tau_j^2 \ge 0$ can be interpreted as a variance or (inverse) smoothness parameter.

Bayesian Inference

- Fully Bayesian inference:
 - All parameters (including the variance parameters τ^2) are assigned suitable prior distributions.
 - Typically, estimation is based on MCMC simulation techniques.
 - Usual estimates: Posterior expectation, posterior median (easily obtained from the samples).
- Empirical Bayes inference:
 - Differentiate between parameters of primary interest (regression coefficients) and hyperparameters (variances).
 - Assign priors only to the former.
 - Estimate the hyperparameters by maximising their marginal posterior.
 - Plugging these estimates into the joint posterior and maximising with respect to the parameters of primary interest yields posterior mode estimates.

- MCMC-based inference:
 - Assign inverse gamma prior to τ_i^2 :

$$p(\tau_j^2) \propto \frac{1}{(\tau_j^2)^{a_j+1}} \exp\left(-\frac{b_j}{\tau_j^2}\right).$$

 $\begin{array}{ll} \mbox{Proper for} & a_j > 0, \ b_j > 0 & \mbox{Common choice: } a_j = b_j = \varepsilon \ \mbox{small.} \\ \mbox{Improper for} & b_j = 0, \ a_j = -1 & \mbox{Flat prior for variance } \tau_j^2, \\ & b_j = 0, \ a_j = -\frac{1}{2} & \mbox{Flat prior for standard deviation } \tau_j. \end{array}$

- Conditions for proper posteriors in structured additive regression are available.
- Gibbs sampler for $\tau_j^2 | \cdot :$

Sample from an inverse Gamma distribution with parameters

$$a'_j = a_j + \frac{1}{2} \operatorname{rank}(K_j)$$
 and $b'_j = b_j + \frac{1}{2} \xi'_j K_j \xi_j.$

- Metropolis-Hastings update for $\xi_j | \cdot :$

Propose new state from a multivariate Gaussian distribution with precision matrix and mean

$$P_j = Z'_j W Z_j + \frac{1}{\tau_j^2} K_j$$
 and $m_j = P_j^{-1} Z'_j W (\tilde{y} - \eta_{-j}).$

IWLS-Proposal with appropriately defined working weights W and working observations $\tilde{y}.$

• Efficient algorithms make use of the sparse matrix structure of P_j and K_j .

- Empirical Bayes inference.
 - Consider the variances τ_j^2 as unknown constants to be estimated from their marginal posterior.
 - Consider the regression coefficients ξ_j as correlated random effects with multivariate Gaussian distribution
 - \Rightarrow Use mixed model methodology for estimation.
- Problem: In most cases partially improper random effects distribution.
- Mixed model representation: Decompose

$$\xi_j = X_j \beta_j + V_j b_j,$$

where

$$p(\beta_j) \propto const$$
 and $b_j \sim N(0, \tau_j^2 I_{k_j})$.
 $\Rightarrow \beta_j$ is a fixed effect and b_j is an i.i.d. random effect.

• This yields a variance components model with pedictor

$$\eta = X\beta + Vb$$

where in turn

$$p(\beta) \propto const$$
 and $b \sim N(0,Q)$.

- Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
 - Penalized maximum likelihood for the regression coefficients β and b.
 - Restricted Maximum / Marginal likelihood for the variance parameters in Q:

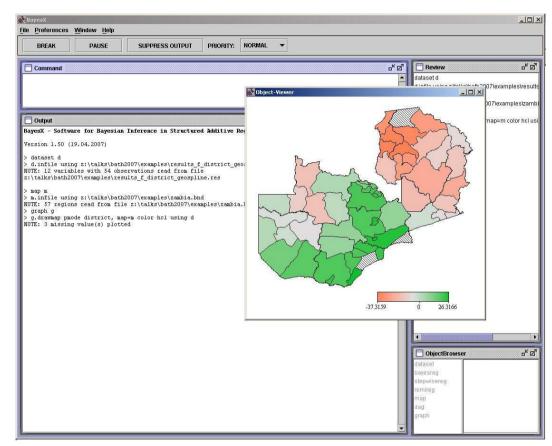
$$L(Q) = \int L(\beta, b, Q) p(b) d\beta db \to \max_Q$$
.

 Involves a Laplace approximation to the marginal likelihood (corresponding to REML estimation of variances in Gaussian mixed models).

BayesX

• BayesX is a software tool for estimating structured additive regression models.

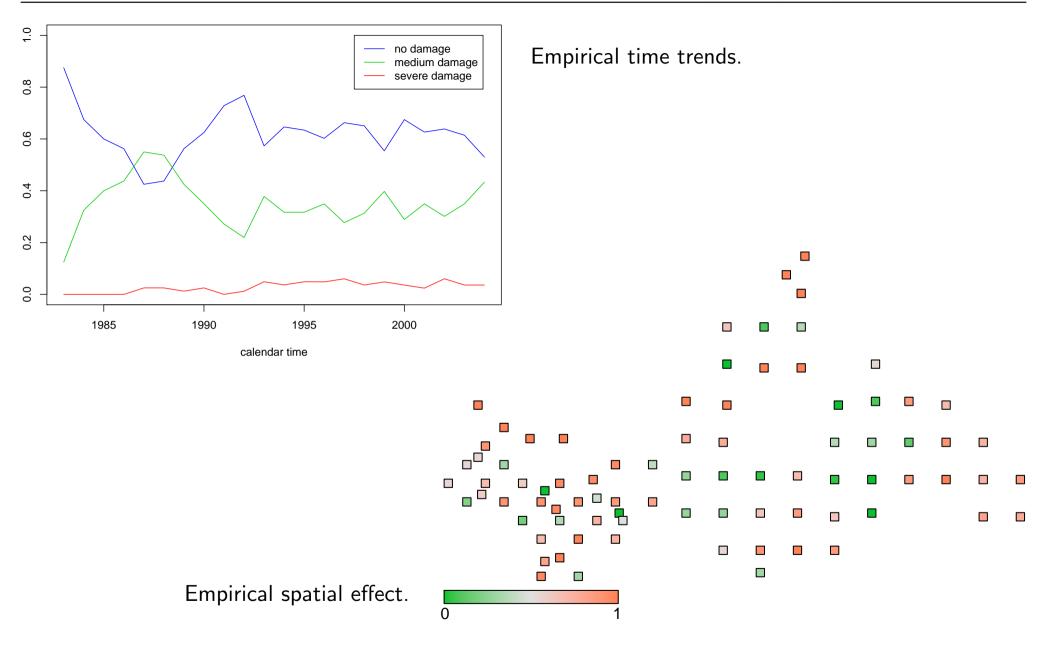
• Available from



http://www.stat.uni-muenchen.de/~bayesx

Spatio-Temporal Regression: Forest Health Data

- Yearly forest health inventories carried out from 1983 to 2004.
- 83 beeches within a 15 km times 10 km area.
- Response: defoliation degree of beech *i* in year *t*, measured in three ordered categories:
 - $y_{it} = 1$ no defoliation,
 - $y_{it} = 2$ defoliation 25% or less,
 - $y_{it} = 3$ defoliation above 25%.
- Covariates:
 - t calendar time,
 - s_i site of the beech,
 - a_{it} age of the tree in years,
 - u_{it} further (mostly categorical) covariates.

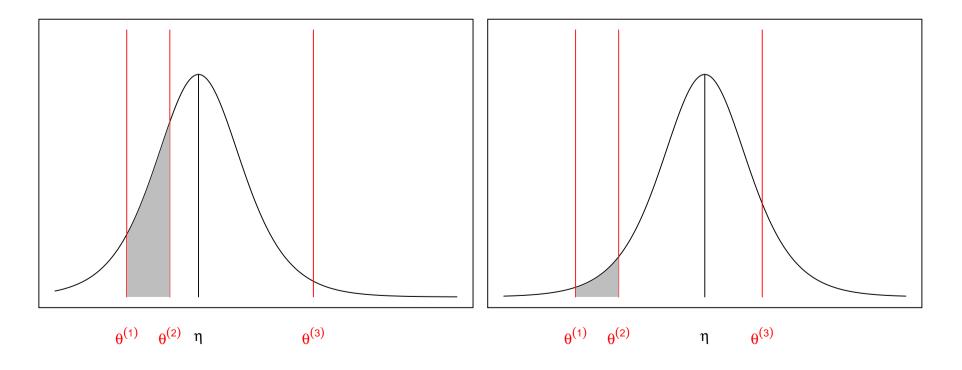


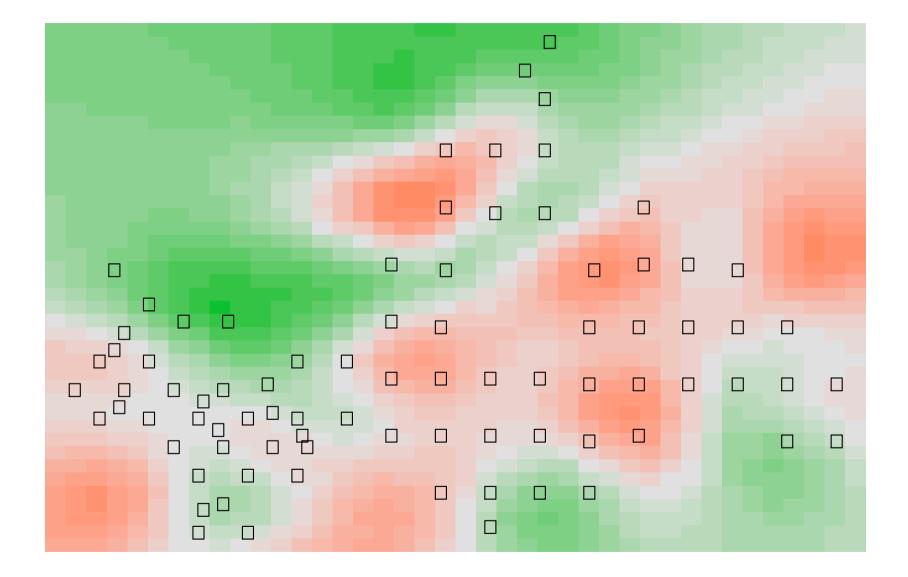
• Cumulative probit model:

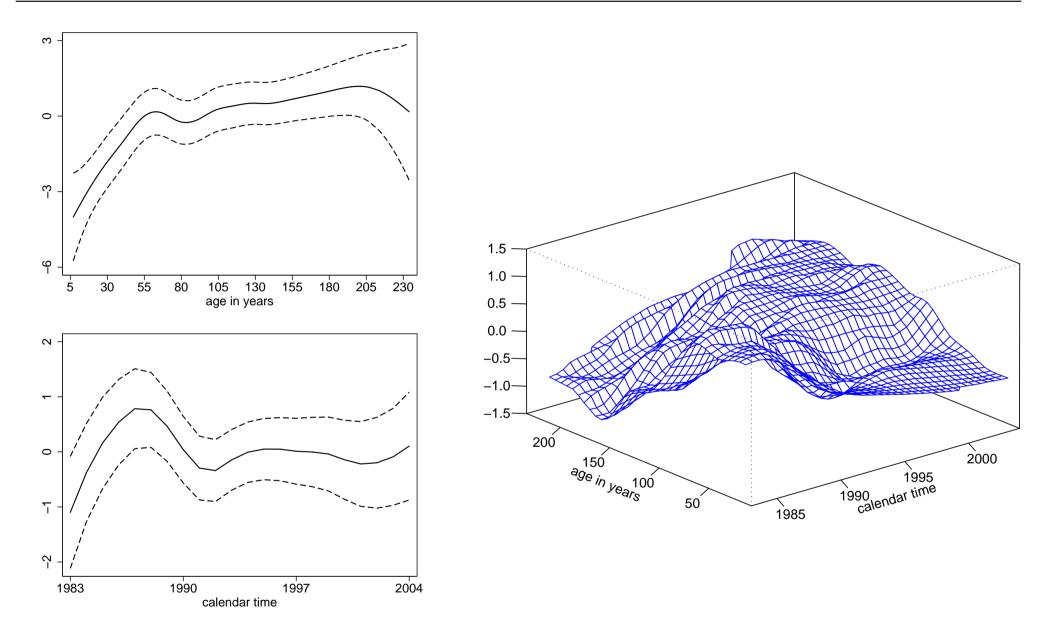
$$P(y_{it} \le r) = \Phi\left(\theta^{(r)} - \eta_{it}\right)$$

with standard normal cdf Φ , thresholds $-\infty=\theta^{(0)}<\theta^{(1)}<\theta^{(2)}<\theta^{(3)}=\infty$ and

$$\eta_{it} = f_1(t) + f_2(age_{it}) + f_3(t, age_{it}) + f_{spat}(s_i) + u'_{it}\gamma$$





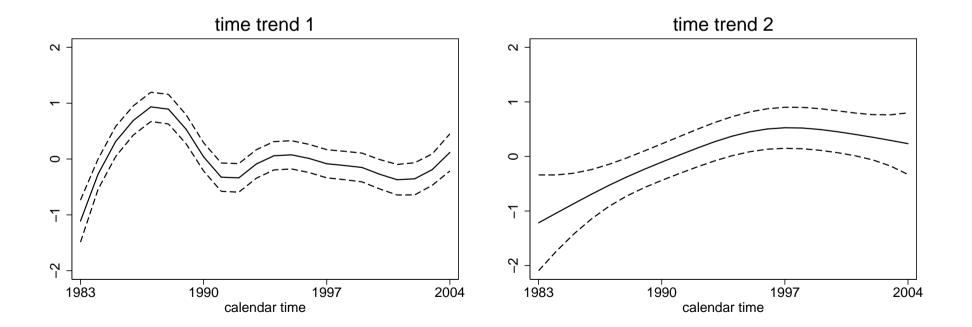


• Category-specific trends:

$$P(y_{it} \le r) = \Phi \left[\theta^{(r)} - f_1^{(r)}(t) - f_2(age_{it}) - f_{spat}(s_i) - u'_{it}\gamma \right]$$

• More complicated constraints:

$$-\infty < \theta^{(1)} - f_1^{(1)}(t) < \theta^{(2)} - f_1^{(2)}(t) < \infty \qquad \text{for all } t.$$



Summary

- Flexible semiparametric regression models for geoadditive data structures.
- Fully automated Bayesian inferential procedures.
- Similar types of models are available for extended Cox-type hazard regression models:
 - Joint estimation of covariate effects and baseline hazard rate.
 - Time-varying effect to overcome proportional hazards.
 - Interval, left, and right censored survival times.
- A place called home:

http://www.stat.uni-muenchen.de/~kneib