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Chapter 1

What is BayesX?

General scope

BayesX is a software tool for estimating structured additive regression models. Structured ad-
ditive regression embraces several well-known regression models such as generalized additive
models (GAM), generalized additive mixed models (GAMM), generalized geoadditive mixed
models (GGAMM), dynamic models, varying coefficient models, and geographically weighted
regression within a unifying framework. Besides exponential family regression, BayesX also
supports non-standard regression situations such as regression for categorical responses, haz-
ard regression for continuous survival times, continuous time multi-state models, quantile
regression, distributional regression models and multilevel models.

Inferential procedures

Estimation of regression models can be achieved based on four different inferential concepts
that have been implemented in separate regression objects:

– MCMC simulation techniques (bayesreg objects): A fully Bayesian interpretation
of structured additive regression models is obtained by specifying prior distributions
for all unknown parameters. Estimation can be facilitated using Markov chain Monte
Carlo simulation techniques, a general and versatile concept for Bayesian inference.
Bayesreg objects provide numerically efficient implementations of MCMC schemes for
structured additive regression models in case of exponential family responses, categorical
responses, hazard regression and multi-state models. Suitable proposal densities have
been developed to obtain rapidly mixing, well-behaved sampling schemes without the
need for manual tuning.

– MCMC simulation techniques (mcmcreg objects): Mcmcreg objects provide similar
functionality for fully Bayesian inference as bayesreg objects but implement distribu-
tional regression models for responses beyond simple exponential families (distributional
regression), quantile regression and multilevel models. Generally, estimation is more
efficient (in terms of computing time) than with bayesreg objects. Therefore mcmcreg
objects should be preferred to bayesreg objects if possible.

– Mixed model based estimation (remlreg objects): An increasingly popular way to esti-
mate semiparametric regression models is the representation of penalisation approaches
as mixed models. Within BayesX this concept has been extended to structured ad-
ditive regression models and several types of non-standard regression situations. The
general idea is to take advantage of the close connection between penalty concepts and
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8 Chapter 1. What is BayesX?

corresponding random effects distributions. The smoothing parameters of the penalties
then transform to variance components in the random effects (mixed) model. While the
selection of smoothing parameters has been a difficult task for a long time, several esti-
mation procedures for variance components in mixed models are already available since
the 1970’s. The most popular one is restricted maximum likelihood in Gaussian mixed
models with marginal likelihood as the non-Gaussian counterpart. Remlreg objects
employ mixed model methodology for the estimation of structured additive regression
models. While regression coefficients are estimated based on penalised likelihood, re-
stricted maximum likelihood or marginal likelihood estimation forms the basis for the
determination of smoothing parameters. From a Bayesian perspective, this yields em-
pirical Bayes / posterior mode estimates for the structured additive regression models.
However, estimates can also merely be interpreted as penalised likelihood estimates from
a frequentist perspective.

– Penalized least squares including model selection (stepwisereg objects): As a fourth
alternative BayesX provides a penalized least squares (respectively penalized likelihood)
approach for estimating structured additive regression tools. In addition to the previ-
ously described estimation alternatives, a powerful variable and model selection tool is
included. Model choice and estimation of the parameters is done simultaneously. The
algorithms are able to

∗ decide whether a particular covariate enters the model,

∗ decide whether a continuous covariate enters the model linearly or nonlinearly,

∗ decide whether a spatial effect enters the model,

∗ decide whether a unit- or cluster specific heterogeneity effect enters the model,

∗ select complex interaction effects (two dimensional surfaces, varying coefficient
terms),

∗ select the degree of smoothness of nonlinear covariate, spatial or cluster specific
heterogeneity effects.

Inference is based on penalized likelihood in combination with fast algorithms for se-
lecting relevant covariates and model terms. Different models are compared via various
goodness of fit criteria, e.g. AIC, BIC, GCV and 5 or 10 fold cross validation.

Model classes and model terms

BayesX provides functionality for the following types of responses:

– Univariate exponential family: Supported response distributions are Gaussian, Poisson,
Binomial and Gamma distribution.

– Distributional regression: A large number of univariate and multivariate continuous,
discrete or mixed discrete-continuous responses can be treated within the framework of
distributional regression. In this setting, potentially all parameters of these distributions
can be related to structured additive predictors.

– Quantile Regression: Bayesian quantile regression allows to study specific quantiles of
the response distribution without relying on a specific distributional assumption.

– Categorical responses with unordered responses: For categorical responses with un-
ordered categories, BayesX supports multinomial logit and multinomial probit mod-
els. Both effects of category-specific and globally-defined covariates can be estimated.
Category-specific offsets or non-availability indicators can be defined to account for vary-
ing choice sets.
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– Categorical responses with ordered responses: For ordered categorical responses, or-
dinal as well as sequential models can be specified. Effects can be requested to be
category-specific or to be constant over the categories. Supported response functions
include the logit and the probit transformation.

– Continuous time survival models: BayesX supports Cox-type hazard regression models
with structured additive predictor for continuous time survival analysis. In contrast to
the Cox model, the baseline hazard rate is estimated jointly with the remaining effects
based on penalized splines. Furthermore, both time-varying effects and time-varying
covariates can be included in the predictor. Arbitrary combinations of right, left and
interval censored as well as left truncated observations can be analysed.

– Continuous time multi-state models: Multi-state models form a general class for the
analysis of the evolution of discrete phenomena in continuous time. Transition intensities
between the discrete states are specified in analogy to the hazard rate in continuous time
survival models.

Structured additive regression models can be build from arbitrary combinations of the fol-
lowing model terms:

– Nonlinear effects: Nonlinear effects can be estimated based on either penalised spline
or random walk models.

– Seasonal effects: Specific autoregressive priors allow for the estimation of flexible, time-
varying seasonal effects.

– Spatial effects: Spatial effects can be specified based on Markov random fields, station-
ary Gaussian random fields (kriging) or bivariate penalised splines. Both georeferenced
regional data as well as point-referenced data based on coordinates are supported.

– Interaction surfaces: Bivariate extensions of penalised splines allow to estimate flexible
interactions between continuous covariates. Stationary Gaussian random fields can also
be considered a radial basis function approach and, hence, form a second possibility for
the specification of interaction surfaces.

– Varying coefficients: Varying coefficient models with both continuous and spatial effect
modifiers can be estimated. The latter case is also known as geographically weighted
regression.

– Cluster-specific random effects: BayesX supports i.i.d. Gaussian random intercepts
and random slopes.

– Regularised high-dimensional effects: High-dimensional vectors of regression coeffi-
cients can be assigned Bayesian regularisation priors. Available alternatives are ridge,
lasso, and normal mixture of inverse gamma (spike and slab) priors.

– Multilevel models: In multilevel models, parameters of specific effects can themselves be
assigned a structured additive predictor (e.g. in multilevel random effects specifications).

Note that parts of the functionality may be available for one of the regression objects only. For
example, bayesreg objects do not support interval censored survival times while multinomial
probit models can not be estimated with remlreg objects. Details can be found in the chapters
corresponding to the specific object types.

Further functionality

– Handling and manipulation of data sets: BayesX provides a number of functions for
handling and manipulating data sets, e.g. for reading ASCII data sets, creating new
variables, obtaining summary statistics etc. Compare chapter 4 for details.
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– Handling and manipulation of geographical maps: BayesX is able to manipulate and
draw geographical maps. The regions of the map may be colored according to some
numerical characteristics. In BayesX version 1.5, a new color scheme based on HCL
colors has been added to obtain a better representation of colored maps independent of
the display device. Details can be found in chapter 5 and chapter 6.

– Visualizing data: BayesX provides functions for drawing scatter plots and geographical
maps. A number of additional options are provided to customize the graphs according
to the personal needs of the user. Details can be found in chapter 6.

– Model selection for Gaussian and non-Gaussian dags: This tool estimates Gaussian
and non-Gaussian directed acyclical graphs (dag) via reversible jump MCMC. Details
can be found in chapter 12.



Chapter 2

Getting started

This chapter provides some useful information for first-time users of BayesX: Which versions of
BayesX are currently available (section 2.1), how is BayesX installed (section 2.2), what types of
manuals exist (section 2.3), and how is the graphical user interface organized (section 2.4). Section
2.5 describes the general usage of BayesX and the structure of BayesX syntax. The final section
contains a description of three data sets that will be used for demonstrating purposes in the later
chapters.

2.1 Available versions of BayesX

Currently, BayesX is available in two different versions. The first one includes a graphical user
interface that enables visualisation of estimated effects. While the computational kernel of BayesX
has been implemented in C++, the graphical user interface has been implemented in Java.

The second version of BayesX is a command line version that is based purely on C++ and comes
without any graphics facilities. While the GUI version is provided as a pre-compiled binary with
an easy to use installer, the command line version is provided in terms of source code and has to
be compiled on your system. A makefile is provided that assumes that the GNU C++ compiler is
available on your system. Hence, the command line version is suitable for any operating system
that supports the GNU compiler family and has been successfully tested on Windows, Linux and
Mac OS. In addition, the cmake toolchain can be used to generate customized makefiles.

As a supplement to both versions, supplementing R packages are available from CRAN
(http://www.r-project.org). The package BayesX provides functionality for reading, creating and
manipulating maps in R as well as some customized visualisation tools. The packages R2BayesX
and BayesR provide access to BayesX from within R such that models can be estimated in the
usual R formula syntax. Note that not all features described in this manual will be supported by
the two latter packages.

The current releases of both BayesX versions can be downloaded from http://www.bayesx.org.

Most of this manual applies for both versions of BayesX. However, those parts that deal with
visualisation of data sets or estimation results are exclusively for the GUI version.

2.2 Installing BayesX

Depending on the version of BayesX you are planning to use, there are two different ways to
install it on your computer. For the GUI version, you have to download the installation routine
from the BayesX homepage and execute it (with administrator privileges for Windows Vista). The

11
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installation routine will request all necessary information during the installation process. Note that
it is recommended to install BayesX in a directory without spaces in the path name. When BayesX
has been installed successfully, it can be started using the Windows Start button or the icon created
on the desktop (depending on your specifications during the installation process).

For the command line version, you have to unpack the zip archive containing the source code of
BayesX. If you have the make facility available, you can simply type make BayesX in the shell
and BayesX will be compiled. Depending on your operating system, some minor modifications of
the make file (for example relating to the version of the GNU compiler you have installed or the
location of the readline library) may be necessary.

After a successful installation, there should be four subdirectories in the installation directors. The
doc directory contains the program documentation, i.e. the three BayesX manuals (see the following
subsection). The examples directory contains the three data sets, credit.raw, rents.raw and
zambia.raw, which will be used for demonstrating purposes throughout the manual. A detailed
description of these data sets is given in section 2.6. The examples directory also contains some
tutorial programs that illustrate the usage of BayesX, see the tutorials manual. The output

directory is the default directory for program output stored in files. Of course, the output window
can be redefined by the user, compare section 7.4, section 8.2 and section 9.2. Finally, temporary
files created when estimating regression models will be stored in the temp directory. Usually you
will never use this directory.

The subdirectories and their content are briefly summarized in Table 2.1.

Directory Content

doc the BayesX manuals
examples data set examples and tutorial programs
output default directory for estimation output
temp temporary files

Table 2.1: Subdirectories of the installation directory and their content.

2.3 Manuals

BayesX is shipped with three different manuals. The reference manual (i.e. the manual you
are just reading) gives detailed information on the general usage of BayesX, the syntax of BayesX
commands and the different objects used by BayesX. The methodology manual provides background
information on the statistical methodology that is implemented in BayesX. In this manual, you
will also find more references on the methodological background. The tutorial manual is intended
to make new users familiar with the usage of BayesX by demonstrating examples. It contains
three self-contained tutorials, describing how to perform semiparametric regression analyses using
BayesX. All three manuals can be found in the doc directory (a subdirectory of the installation
directory). In the GUI version of BayesX, the manuals are also available from the help menu.

2.4 Windows and buttons in BayesX

This section only applies to the GUI version of BayesX

After starting BayesX you will see a main window with a menu bar and four additional subwindows.
The four windows are the command window, the output window, the review window and the object
browser. The purpose of these windows is described in the following four subsections. Below the
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menu bar there is a menu bar containing the buttons BREAK, PAUSE and SUPPRESS OUTPUT,
and the priority menu. Their functionality is described in subsection 2.4.5 and 2.4.6.

2.4.1 The command window

Allmost all BayesX commands are entered and executed in the command window. By default, a
command will be executed if you press the return key. You can change this default delimiter using
the delimiter command, see section 3.4.

2.4.2 The output window

In the output window, all commands entered in the command window or executed through a batch
file (see section 3.5) are printed together with the program output.

The content of the output window can be saved and processed with your favorite text editor. For
saving the output, enter the file menu and click on Save output or Save output as. The file save
dialog will allow you to choose between two different file formats. The default is the rich-text
format but it is also possible to store the output window in plain ASCII format. This, however, has
the disadvantage that all text highlights (for example bold letters) will disappear in the saved file.

The file menu also allows to clear the output window (i.e. delete the content of the window) or to
open an already existing file.

Depending on the screen resolution of your computer, letters appearing in the output window may
be very small or too large. The font size can be varied in the preferences menu.

2.4.3 The review window

In many cases, subsequent commands change only slightly. The review window gives you convenient
access to the last 100 past commands entered during a session. Double click on one of these past
commands and it is automatically copied to the command window, where it can be modified and /
or executed again.

2.4.4 The object browser

BayesX is object oriented, i.e. different types of objects are used to store data, estimate regression
models, etc. The object browser provides an overview of the objects currently defined and about
their contents. The object browser window is split into two parts. The left part displays the different
object types currently supported by BayesX (dataset objects, bayesreg objects, remlreg objects, map
objects, dag objects and graph objects)s. By clicking on one of the object types, the names of all
objects of this type will appear in the right panel of the object browser. Double clicking on one of the
names gives a visualization of the object and / or a short summary in the output window, depending
on the object type. Double clicking on dataset objects, for example, will open a spreadsheet where
the variables and the observations of the data set can be inspected. Clicking on map objects opens
a window that contains a graphical representation of the map.

2.4.5 BREAK, PAUSE and SUPPRESS OUTPUT button

The BayesX button panel contains the BREAK button, the PAUSE button and the SUPPRESS
OUTPUT button. The purpose of the BREAK button is to interrupt the process that is currently
executed (this may take some time). Clicking on the PAUSE button interrupts the current process
temporarily until the button is pressed again. If a process is paused, the button caption PAUSE
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is replaced by CONTINUE, indicating that a second click on the button will continue the current
process. Pausing a current process will increase the execution speed of other programs currently
running on your computer. Clicking the SUPPRESS OUTPUT button suppresses printing of
output in the output window. The button caption changes to SHOW OUTPUT to indicate that an
additional click on the button will cause the program to print the output again. Suppressing the
output increases the execution speed of BayesX and saves memory. Note, that you can store your
output in a log-file even if printing of the output is suppressed (see section 3.2).

2.4.6 Priority menu

When running extensive computations, it may be desirable to reduce the priority of BayesX since
otherwise all further programs may be executed very slowly. The priority menu allows you to
change the priority of your computations from within BayesX. Usually there should be no need to
increase the priority (although it is possible). To pause the current computations use the PAUSE
button.

2.5 General usage of BayesX

2.5.1 Creating objects

BayesX is implemented in an object oriented way, although the object oriented concept does not
go too far, i.e. inheritance or other concepts of object oriented programming languages such as S
or C++ are not supported. As a consequence, the first thing to do during a session, is to create
some objects. Currently, eight different object types are available: dataset objects, bayesreg objects,
mcmcreg objects, remlreg objects, stepwisereg objects, map objects, dag objects and graph objects.

Dataset objects are used to store, handle, and manipulate data sets, see chapter 4 for details. Map
objects are used to handle geographical information and are covered in more detail in chapter 5. The
main purpose of map objects is to serve as auxiliary objects for regression objects when estimating
spatial effects. Graph objects are used to visualize data (e.g. to create scatterplots or to color
geographical maps according to some numerical characteristics), see chapter 6 for details.

The most important object types are bayesreg objects, mcmcreg objects, remlreg objects and stepwis-
ereg objects. These objects are used to estimate Bayesian semiparametric regression models based
on the different inferential approaches implemented in BayesX (see chapter 7 for bayesreg objects,
chapter 8 for remlreg objects, chapter 9 for stepwisereg objects and chapter 10 for mcmcreg objects.
Dag objects are used to estimate Gaussian or non-Gaussian DAGs (direct acyclic graphs) based on
reversible jump MCMC simulation techniques (see chapter 12 for details).

The syntax for creating a new object is:

> objecttype objectname

To create for example a dataset object with name mydata, simply type:

> dataset mydata

Note that some restrictions are imposed on the names of objects, i.e. not all object names are
allowed. For example, object names have to begin with an uppercase or lowercase letter rather
than a number. Section 4.13 discusses valid variable names but the same rules apply also to object
names.
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2.5.2 Applying methods to previously defined objects

When an object has been created successfully, you can apply methods to that particular object.
For instance, dataset objects may be used to read data stored in an ASCII file using method
infile, to create new variables using method generate, to modify existing variables using method
replace and so on. The syntax for applying methods to the objects is similar for all methods and
independent of the particular object type. The general syntax is:

> objectname.methodname [model] [weight varname] [if boolean expression] [, options]
[using usingtext]

Table 2.2 explains the syntax parts in more detail.

Syntax part Description

objectname the name of the object to apply the method to
methodname the name of the method
model a model specification (for example a regression model)
weight varname specifies varname as weight variable
if boolean expression indicates that the method should be applied only if a

certain condition holds
, options define (or modify) options for the method
using usingtext indicates that another object or file is required to

apply the particular method

Table 2.2: Parts of the general BayesX syntax.

Note that [. . . ] indicates that this part of the syntax is optional and may be omitted. Moreover for
most methods only some of the syntax parts above will be meaningful. The specification of invalid
syntax parts is not allowed and will cause an error message.

We illustrate the concept with some simple methods of dataset objects. Suppose that a dataset
object with name mydata has already been created and that some variables should be created.
First of all, we have to tell BayesX how many observations we want to create. This can be done
with the set obs command, see also section 4.10. For example

> mydata.set obs = 1000

indicates that the data set mydata should have 1000 observations. In this case, the methodname
is set and the model is obs = 1000. Since no other syntax parts (for example if statements) are
meaningful for this method, they are not allowed. For instance, specifying an additional weight
variable x by typing

> mydata.set obs = 1000 weight x

will cause the error message:

ERROR: weight statement not allowed

In a second step we can now create a new variable X, say, that contains Gaussian (pseudo) random
numbers with mean 2 and standard deviation 0.5:

> mydata.generate X = 2+0.5*normal()

Here, generate is the methodname and X = 2+0.5*normal() is the model. In this case the model
consists of the specification of the new variable name, followed by the equal sign ’=’ and a mathe-
matical expression for the new variable. Similar as for the set obs command other syntax parts
are not meaningful and therefore not allowed. If the negative values of X should be replaced with
the constant 0, this can be achieved using the replace command:

> mydata.replace X = 0 if X < 0
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Variable Description

R monthly rent per square meter in German marks
F floor space in square meters
A year of construction
L location of the building in subquarters

Table 2.3: Variables of the rent data set.

Obviously, the if statement is meaningful and is therefore allowed, but not required.

2.6 Description of data set examples

This section describes three data sets used to illustrate many of the features of BayesX in the
following chapters as well as in the tutorial manual. All data sets are stored columnwise in plain
ASCII-format. The first row of each data set contains the variable names separated by blanks.
Subsequent rows contain the observations, one observation per row.

2.6.1 Rents for flats

According to the German rental law, owners of apartments or flats can base an increase in the
amount that they charge for rent on ’average rents’ for flats comparable in type, size, equipment,
quality and location in a community. To provide information about these ’average rents’, most of
the larger cities publish ’rental guides’, which can be based on regression analyses with rent as the
dependent variable. The file rent94.raw (stored in the examples directory) is a subsample of data
collected in 1994 for the Munich rental guide. The variable of primary interest is the monthly rent
per square meter in German Marks. Covariates characterizing the flat were constructed from almost
200 variables out of a questionnaire answered by tenants of flats. The present data set contains a
small subset of these variables that are sufficient for demonstration purposes (see Table 2.3).

In addition to the data set, the examples directory contains a map of Munich in the file munich.bnd.
This map will be useful for visualizing effects of the location L. See chapter 5 for a description on
how to incorporate geographical maps into BayesX.

2.6.2 Credit scoring

The aim of credit scoring is to model and / or predict the probability that a client with certain
covariates (’risk factors’) will not pay back his credit. The data set contained in the file credit.raw
consists of 1000 consumer credits from a bank in southern Germany. The response variable is
’creditability’ in dichotomous form (y = 0 for creditworthy, y = 1 for not creditworthy). In
addition, 20 covariates that are assumed to influence creditability were collected. The present data
set (stored in the examples directory) contains a subset of these covariates that proved to be the
main influential variables on the response variable, see Fahrmeir & Tutz (2001, Ch. 2.1). Table 2.4
gives a description of the variables of the data set. Usually a binary logit model is applied to
estimate the effect of the covariates on the probability of being not creditworthy. As in the case
of the rents for flats example, this data set is used to demonstrate the usage of certain features of
BayesX, see primarily subsection 7.6.1 for a Bayesian regression analysis of the data set.
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Variable Description

y creditability, dichotomous with y = 0 for creditworthy, y = 1 for
not creditworthy

account running account, trichotomous with categories ”no running account”
(= 1), ”good running account” (= 2), ”medium running account”
(”less than 200 DM”) (= 3)

duration duration of credit in months, continuous
amount amount of credit in 1000 DM, continuous
payment payment of previous credits, dichotomous with categories ”good” (= 1),

”bad” (= 2)
intuse intended use, dichotomous with categories ”private” (= 1) or

”professional” (= 2)
marstat marital status, with categories ”married” (= 1) and ”living alone” (= 2).

Table 2.4: Variables of the credit scoring data set.

2.6.3 Childhood undernutrition in Zambia

Acute and chronic undernutrition is considered to be one of the worst health problems in developing
countries. Undernutrition among children is usually determined by assessing the anthropometric
status of the child relative to a reference standard. In our example undernutrition is measured
through stunting (insufficient height for age), indicating chronic undernutrition. Stunting for child
i is determined using the Z-score

Zi =
AIi −MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our example),
MAI refers to the median of the reference population and σ refers to the standard deviation of the
reference population.

The data set zambia.raw contains the (standardized) Z-score for 4847 children together with several
covariates that are supposed to influence undernutrition (e.g. the body mass index of the mother,
the age of the child, and the district the mother lives in). Table 2.5 gives more information on the
covariates in the data set.

This data set is used in the tutorial manual.

Variable Description

hazstd standardized Z-score for stunting
bmi body mass index of the mother
agc age of the child
district district where the mother lives
rcw mother‘s employment status with categories ”working” (= 1) and ”not working”

(= −1)
edu1 mother‘s educational status with categories ”complete primary but incomplete
edu2 secondary” (edu1 = 1), ”complete secondary or higher” (edu2 = 1) and

”no education or incomplete primary” (edu1 = edu2 = −1)
tpr locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1)
sex gender of the child with categories ”male” (= 1) and ”female” (= −1)

Table 2.5: Variables in the undernutrition data set.
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Special Commands

This chapter describes some commands that are not associated with a particular object type.
Among others, there are commands for exiting BayesX, opening and closing log files, saving program
output, deleting objects etc.

3.1 Exiting BayesX

You can exit BayesX by typing either

> exit

or

> quit

in the command window / on the command line. Of course, the GUI version of BayesX can also
be closed using the ’exit’ entry from the file menu or by clicking on the cross in the upper right
corner.

3.2 Opening and closing log files

Program output and commands entered by the user can automatically be stored in a log file to
make them available for editing in your favorite text editor. Another important application of log
files is the documentation of your work. A log file is opened by the command:

> logopen [, option] using filename

Afterwards all commands entered and all program output will be saved in the file filename. If the
log file specified in filename is already existing, new output is appended at the end of the file. To
overwrite an existing log file, option replace has to be specified in addition. Note that it is not
allowed to open more than one log file simultaneously.

An open log file can be closed by typing:

> logclose

Exiting BayesX automatically closes the current log file.

3.3 Saving the contents of the output window

You can save the contents of the output window not only with the file→save output or file→save
output as menu, but also using the saveoutput command. This is particularly useful for automatic

18
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saving in batch files, see section 3.5. The syntax for saving the output window is

> saveoutput [, options] using filename

where filename is the file (including path) in which the contents of the output will be stored.

Options

• replace

By default an error will be raised if you try to store the contents of the output window in a
file that is already existing. This preserves you from overwriting a file unintentionally. An
already existing file can be overwritten by explicitly specifying the replace option.

• type = rtf | txt
The output window can be saved in two different file types, namely rich text format (the
default) and plain ASCII (requested by specifying type=txt as an option.

3.4 Changing the delimiter

By default, commands entered using the command window will be executed after pressing the return
key. This can be inconvenient, in particular if your statements are long or in batch files. In this
case it may be favorable to split a statement into several lines, and execute the command using a
different delimiter.

You can change the delimiter using the delimiter command. The syntax is

> delimiter = newdel

where newdel is the new delimiter. Only two different delimiters are currently allowed, namely the
return key and the ’;’ (semicolon) key. To specify the semicolon as the delimiter, type

> delimiter = ;

and press return. To return to the return key as the delimiter, type

> delimiter = return;

Note that this statement has to end with a semicolon, since this was previously set to be the current
delimiter.

Finally, note that it is not possible to change the delimiter for the command line. However, batch
files (see the next section) with changed delimiter can also be used with the command line version
of BayesX.

3.5 Using batch files

You can execute commands stored in a file just as if they were entered from the keyboard. This
may be useful if you want to re-run a certain analysis more than once (possibly with some minor
changes) or if you want to run time consuming statistical methods.

Execution of a batch file is started by typing

> usefile filename

This executes the commands stored in filename successively. BayesX will not stop the execution
if an error occurs in one or more commands. Note that it is allowed to invoke another batch file
within a currently running batch file.
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Comments

Comments in batch files are indicated by a % sign, i.e. every line starting with % is ignored by the
program.

Changing the delimiter

In particular in batch files, the readability of your program code may be improved if some (long)
commands are split up into several lines. By default this will cause errors, because BayesX interprets
each line in your program as one statement. To overcome this problem one has to change the
delimiter using the delimiter command, see section 3.4.

3.6 Dropping objects

You can delete objects by typing

> drop objectlist

This drops the objects specified in objectlist. The names of the objects in objectlist must be separated
by blanks.



Chapter 4

dataset objects

Dataset objects are used to store, manage, and manipulate data. A new dataset object is created
by typing

> dataset objectname

where objectname is the name to be assigned to the data set. After the creation of a dataset object
you can apply the methods discussed below.

Note that in the current version of BayesX only numerical variables are allowed. String valued
variables, for example, are not yet supported by BayesX and the attempt to read such variables
will raise an error message.

21
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4.1 Method descriptive

Description

Method descriptive calculates and displays univariate summary statistics. To be more
specific, the method computes the number of observations, the mean, median, standard de-
viation, minimum and maximum of the specified variables.

Syntax

> objectname.descriptive varlist [if expression]

Method descriptive computes summary statistics for the variables in varlist. An optional
if statement may be added to analyze only a part of the data.

Options

not allowed

Example

The statement

> d.descriptive x y

computes summary statistics for the variables x and y. The statement

> d.descriptive x y if x>0

restricts the analysis to observations with x>0.



4.2. Method drop 23

4.2 Method drop

Description

Method drop deletes variables or observations from the data set.

Syntax

> objectname.drop varlist

> objectname.drop if expression

The first command is used to delete the variables specified in varlist from the data set. The
second statement deletes certain observations, i.e. all observations for which expression is
true will be deleted.

Options

not allowed

Example

The statement

> credit.drop account duration

deletes the variables account and duration from the credit scoring data set. With the
statement

> credit.drop if marstat = 2

all observations with marstat = 2, i.e. all persons living alone, will be deleted. The statement

> credit.drop account duration if marstat = 2

will raise the error

ERROR: dropping variables and observations in one step not allowed

because is not allowed to drop variables and observations in one single command.
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4.3 Functions and Expressions

The primary use of expressions is to generate new variables or change existing variables, see
section 4.4 and section 4.9, respectively. Expressions may also be used in if statements to force
BayesX to apply a method only to observations where the boolean expression in the if statement
is true. The following statements are all examples of expressions:

2+2

log(amount)

1*(age <= 30)+2*(age > 30 & age <= 40)+3*(age > 40)

age=30

age+3.4*age^2+2*age^3

amount/1000

4.3.1 Operators

Three different types of operators can be included in expressions: arithmetic, relational and logical
operators.

4.3.1.1 Arithmetic operators

The arithmetic operators are + (addition), - (subtraction), * (multiplication), / (division), ^ (raise
to a power) and the prefix - (negation). Any arithmetic operation on a missing value or an undefined
arithmetic operation (such as division by zero) yields a missing value.

Example

The expression

(x+y^(3-x))/(x*y)

denotes the formula
x+ y3−x

x · y
and evaluates to missing if x or y is missing or zero.

4.3.1.2 Relational operators

The relational operators are > (greater than), < (less than), >= (greater than or equal), <= (less
than or equal), = (equal) and != (not equal). Relational expressions are either 1 (if the expression
is true) or 0 (if the expression is false).

Example

Relational operators can for example be used to create indicator variables. The following
statement generates a new variable amountcat, with value 1 if amount<=10 and value 2 if
amount>10.

> credit.generate amountcat = 1*(amount<=10)+2*(amount>10)

Another useful application of relational operators is in if statements. For example, changing
an existing variable only when a certain condition holds can be achieved by the following
command:

> credit.replace amount = NA if amount <= 0

This sets all observations missing where amount<=0.
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4.3.1.3 Logical operators

The logical operators are & (and) and | (or).

Example

Suppose you want to generate a variable amountind whose value is 1 for married people with
amount greater than 10 and 0 otherwise. This can be achieved by typing

> credit.generate amountind = 1*(marstat=1 & amount>10)

4.3.1.4 Order of evaluation of the operators

The order of evaluation (from first to last) of operators is

^

/, *
-, +
!=, >, <, <=, >=, =
&, |

Brackets can be used to change the order of evaluation.

4.3.2 Functions

Functions are a further component of expressions. Any function is indicated by the function name
followed by an opening and a closing parenthesis. Inside the parentheses one or more arguments
may be specified. The argument(s) of a function may again be expressions, including calls to further
functions. Multiple arguments of a function are separated by commas. All functions return missing
values when given missing values as arguments or when the result is undefined.

All mathematical function currently available in BayesX are referenced in Table 4.1. Statistical
functions can be found in Table 4.2.

Function Description

abs(x) absolute value
cos(x) cosine of radians
exp(x) exponential
floor(x) returns the integer obtained by truncating x.

Thus floor(5.2) evaluates to 5 as does floor(5.8).
lag(x) lag operator
log(x) natural logarithm
log10(x) log base 10 of x
sin(x) sine of radians
sqrt(x) square root

Table 4.1: List of mathematical functions.

4.3.3 Constants

Table 4.3 lists all constants that can be used in expressions.
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Function Description

bernoulli(p) returns Bernoulli distributed random numbers with probability of
success p. If p is not within the interval [0; 1], a missing value will
be returned.

binomial(n,p) returns B(n; p) distributed random numbers. Both, the number
of trials n and the probability of success p may be expressions. If
n < 1, a missing value will be returned. If n is not integer valued,
the number of trials will be [n]. If p is not within the interval [0; 1],
a missing value will be returned.

cumul(x) empirical cumulative distribution function

cumulnorm(x) cumulative distribution function Φ of the standard normal distri-
bution.

exponential(λ) returns exponentially distributed random numbers with parameter
λ. If λ ≤ 0, a missing value will be returned.

gamma(µ,ν) returns gamma distributed random numbers with mean µ and
variance µ2/ν. If ν is less than zero, a missing value will be re-
turned.

normal() returns standard normally distributed random numbers; N(µ, σ2)
distributed random numbers may be generated with µ +
σ*normal().

poisson(λ) returns poisson distributed random numbers with parameter λ. If
λ ≤ 0, a missing value will be returned.

uniform() uniform pseudo random number function; returns uniformly dis-
tributed pseudo-random numbers on the interval (0, 1)

weibull(α,λ) returns weibull distributed random numbers with density f(x) =
αλαxα−1 exp(−λxα). If α ≤ 0 and/or λ ≤ 0, a missing value will
be returned.

Table 4.2: List of statistical functions

Example

The following statement generates a variable obsnr whose value is 1 for the first observation, 2 for
the second and so on.

> credit.generate obsnr = _n

The command

> credit.generate nrobs = _N

generates a new variable nrobs whose values are all equal to the total number of observations, say
1000, for all observations.

4.3.4 Explicit subscribing

Individual observations on variables can be referenced by subscribing the variables. Explicit sub-
scripts are specified by the variable name with square brackets that contain an expression. The
result of the subscript expression is truncated to an integer, and the value of the variable for the
indicated observation is returned. If the value of the subscript expression is less than 1 or greater
than the number of observations in the data set, a missing value is returned.
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Constant Description

n contains the number of the current observation.
N contains the total number of observations in the data set.
pi contains the value of π.
NA indicates a missing value
. indicates a missing value

Table 4.3: List of constants

Example

Explicit subscribing combined with the variable _n (see Table 4.3) can be used to create lagged
values of a variable. For example, the lagged value of a variable x in a data set data can be created
by

> data.generate xlag = x[_n-1]

Note that xlag can also be generated using the lag function

> data.generate xlag = lag(x)
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4.4 Method generate

Description

Method generate is used to create a new variable in an existing dataset object.

Syntax

> objectname.generate newvar = expression

Method generate creates a new variable with name newvar (compare section 4.13 for valid
variable names) The values of the new variable are specified by expression.

Options

not allowed

Example

The following command generates a new variable called amount2 which contains the squared
amount in the credit scoring data set.

> credit.generate amount2 = amount^2

If you try to change the variable currently generated, for example by typing

> credit.generate amount2 = amount^0.5

the error message

ERROR: variable amount2 is already existing

will occur. This prevents you to change an existing variable unintentionally. An existing
variable can be changed with method replace, see section 4.9.

If you want to generate an indicator variable largeamount for amounts exceeding a certain
value, say 3.5, you have to type

> credit.generate largeamount = 1*(amount>3.5)

The variable largeamount takes the value 1 if amount is larger than 3.5 and 0 otherwise.
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4.5 Method infile

Description

Reads data saved in an ASCII file.

Syntax

> objectname.infile [varlist] [, options] using filename

Reads the data stored in filename. The variable names can either be specified in varlist or be
extracted from the first line of the file. To be more specific, if varlist is empty it is assumed
that the first row of the file contains the variable names separated by blanks or tabs. The
observations do not have to be stored in a special format, except that successive observations
should be separated by one or more blanks or tabs. The first value read from the file will be
the value of the first variable of the the first observation, the second value will be the value
of the second variable of the first observation, and so on. An error message will occur if no
values can be read for the last observation for some variables.

The period ’.’ or ’NA’ should be used to indicate missing values.

Note that in the current version of BayesX only numerical variables are allowed. Thus, the
attempt to read string valued variables, for example, will cause an error.

Options

• missing = missingsigns
By default the period ’.’ or ’NA’ indicate missing values. If the missing values are indicated
by a different sign, you can specify them in the missing option. For example missing = MIS

defines ’MIS’ as an indicator for a missing value. Note that ’.’ and ’NA’ remain valid indicators
for missing values, even if the missing option is specified.

• maxobs = integer
If you work with large data sets, you may observe the problem that reading in a data set using
the infile command is very time consuming. The reason for this problem is that BayesX
does not know the number of observations in advance and therefore is unable to allocate
enough memory. Therefore new memory has to be allocated whenever a certain amount
of memory is exceeded. Specifying option maxobs allows to circumvent this problem and
to considerably reduce the computing time. When maxobs is specified, BayesX can allocate
enough memory to store at least integer observations before new memory must be reallocated.
Suppose for example that your data set consists of approximately 100,000 observations. Then
specifying maxobs=105000 allocates enough memory to read in the data set quickly. Note
that maxobs=105000 does not require the data set to have exactly 105,000 observations. It
only means that new memory will have to be allocated when the number of observations
exceeds the 105,000 observations limit.

Example

Suppose we want to read a data set stored in c:\data\testdata.raw containing the two
variables var1 and var2. The first few rows of the datafile could look like this:

var1 var2
2 2.3
3 4.5
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4 6
...

To read the data set, we have to create a new dataset object first, say testdata. We proceed
by reading the data using the infile command:

> dataset testdata

> testdata.infile using c:\data\testdata.raw

If the first row of the data set file contains no variable names, the second command has to
be altered to:

> testdata.infile var1 var2 using c:\data\testdata.raw

If furthermore the data set is large with about 100,000 observations. In this case, the maxobs
option is very useful to reduce reading time. Typing for example

> testdata.infile var1 var2 , maxobs=101000 using c:\data\testdata.raw

will be much faster than the command without option maxobs.
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4.6 Method outfile

Description

Method outfile writes data to a file in ASCII format.

Syntax

> objectname.outfile [varlist] [if expression] [, options] using filename

outfile writes the variables specified in varlist to the file with name filename. If varlist is
omitted in the outfile statement, all variables in the data set will be included. Each row
in the data file will correspond to one observation. Different variables will be separated by
blanks. Optionally, an if statement may be used to store only those observations where a
certain boolean expression is true.

Options

• header

Specifying the header option causes BayesX to write the variable names to the first row of
the created data file.

• replace

The replace option allows BayesX to overwrite an already existing data file. If replace is
omitted and the file specified in filename is already existing, an error will be raised. This
prevents you from unintentionally overwriting an existing file.

Example

The statement

> credit.outfile using c:\data\cr.dat

writes the complete credit scoring data set to c:\data\cr.dat. To generate two different
ASCII data sets for married people and people living alone, you could type

> credit.outfile if marstat = 1 using c:\data\crmarried.dat

> credit.outfile if marstat = 2 using c:\data\cralone.dat

If you want to store only the two variables y and amount, you could type

> credit.outfile y amount using c:\data\cr.dat

This will raise the error message

ERROR: file c:\data\cr.dat is already existing

because c:\data\cr.dat has already been created. You can overwrite the file using the
replace option

> credit.outfile y amount, replace using c:\data\cr.dat
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4.7 Method pctile

Description

Method pctile computes and displays the 1%,5%,25%,50%,75%,95% and 99% percentiles of
a variable.

Syntax

> objectname.pctile varlist [if expression]

Method pctile computes and displays the percentiles of the variables specified in varlist. An
optional if statement may be added to compute the percentiles only for a part of the data.

Options

not allowed

Example

The statement

> d.pctile x y

computes percentiles for the variables x and y. The statement

> d.pctile x y if x>0

restricts the analysis to observations with x>0.
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4.8 Method rename

Description

rename is used to change variable names.

Syntax

> objectname.rename varname newname

rename changes the name of varname to newname. newname must be a valid variable name,
see section 4.13 for valid variable names.

Options

not allowed
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4.9 Method replace

Description

replace changes values of an existing variable.

Syntax

> objectname.replace varname = expression [if expression]

replace changes some or all values of the variable varname to the values specified in expres-
sion. If varname is not existing, an error will be raised. An optional if statement may be
used to change the values of the variable only if the boolean expression expression is true.

Options

not allowed

Example

The statement

> credit.replace amount = NA if amount<0

changes the values of the variable amount in the credit scoring data set to missing if amount<0.
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4.10 Method set obs

Description

set obs changes the number of observations in a data set.

Syntax

> objectname.set obs = intvalue

set obs raises the number of observations in the data set to intvalue. The new number of
observations has to be greater or equal than the current number to prevent you from unin-
tentionally deleting parts of the data currently in memory. Observations may be eliminated
using the drop statement, see section 4.2. The values of newly created observations will be
set to the missing value.
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4.11 Method sort

Description

Sorts the data set.

Syntax

> objectname.sort varlist [, options]

Sorts the data set with respect to the variables specified in varlist. Missing values are inter-
preted to be larger than any other number and are thus placed last.

Options

• descending

If this option is specified, the data set will be sorted in descending order. The default is
ascending order.
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4.12 Method tabulate

Description

Method tabulate calculates and displays a frequency tables.

Syntax

> objectname.tabulate varlist [if expression]

Method tabulate computes and displays frequency tables of the variables specified in varlist.
An optional if statement may be added to restrict the analysis to a part of the data.

Options

not allowed

Example

The statement

> d.tabulate x y

displays frequency tables for the variables x and y. The statement

> d.tabulate x y if x>0

restricts the analysis to observations with x>0.
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4.13 Variable names

A valid variable name is a sequence of letters (A-Z and a-z), digits (0-9), and underscores (_). The
first character of a variable name must be either a letter or an underscore. BayesX is case-sensitive,
i.e. myvar, Myvar and MYVAR are three distinct variable names.

4.14 Examples: Working with datasets

This section contains two examples on how to work with dataset objects. The first example il-
lustrates some of the methods described in this chapter using the credit scoring data set (see
subsection 2.6.2 for a description). The second example demonstrates how to simulate complex
statistical models.

4.14.1 The credit scoring data set

In this section we illustrate how to code categorical variables according to either dummy or effect
coding. This will be useful in regression models, where all categorical covariates must be coded in
dummy or effect coding before they can be added to the model.

We start by creating the dataset object credit and proceed by reading the data using the infile
command.

> dataset credit

> credit.infile using c:\bayesx\examples\credit.raw

We can now generate new variables to obtain dummy coded versions of the categorical covariates
account, payment, intuse and marstat:

> credit.generate account1 = 1*(account=1)

> credit.generate account2 = 1*(account=2)

> credit.generate payment1 = 1*(payment=1)

> credit.generate intuse1 = 1*(intuse=1)

> credit.generate marstat1 = 1*(marstat=1)

The reference categories are chosen to be 3 for account and 2 for the other variables. Alternatively,
we could code the variables according to effect coding. This is achieved with the following program
code:

> credit.generate account_eff1 = 1*(account=1)-1*(account=3)

> credit.generate account_eff2 = 1*(account=2)-1*(account=3)

> credit.generate payment_eff1 = 1*(payment=1)-1*(payment=2)

> credit.generate intuse_eff1 = 1*(intuse=1)-1*(intuse=2)

> credit.generate marstat_eff1 = 1*(marstat=1)-1*(marstat=2)

4.14.2 Simulating complex statistical models

In this section we demonstrate how to simulate complex regression models. Suppose first that we
want to simulate data according to the following Gaussian regression model:
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yi = 2 + 0.5xi1 + sin(xi2) + ϵi, i = 1, . . . , 1000 (4.1)

xi1 ∼ U(−3, 3) i.i.d. (4.2)

xi2 ∼ U(−3, 3) i.i.d. (4.3)

ϵi ∼ N(0, 0.52) i.i.d. (4.4)

First of all, we create a new data set gsim, say, and specify the desired number of observations:

> dataset gsim

> gsim.set obs = 1000

In a second step, the covariates x1 and x2 have to be created. We assume that the covariates are
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Note that the last three statements can be combined into a single command:

> bin.generate y = binomial(1,exp(-1+0.5*x1-sin(x2))/(1+exp(-1+0.5*x1-sin(x2)))

The first version, however, is much easier to read and might therefore be preferred.
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map objects

The purpose of map objects is to provide functionality for handling and storing geographical maps.
In addition, map objects serve as auxiliary objects for regression models with spatial effects, where
the effect of a location variable is to be included via a spatially correlated prior. In this context, map
objects store the neighborhood structure of a map and provide functionality to compute weights
associated with this neighborhood structure.

The typical approach will be as follows: A map object is created, the boundary information of a
geographical map is read from an external file and stored in the map object. This can be achieved
using the infile command, see section 5.1 below. Based on the boundary information, the map
object automatically computes the neighborhood structure of the map and the weights associated
with the neighborhood structure. Since there are several proposals in the spatial statistics literature
for defining weights, the user is given the choice between a couple of alternatives. Afterwards the
map object can be passed to the regress function of a regression object to estimate regression
models with spatial covariates, see chapter 7 and chapter 8, and in particular the subsections about
spatial covariates therein.

The BayesX R package (see section 11.2) provides some functionality for creating and manipulating
boundary information and for storing it in file formats that can be processed by BayesX.

41
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5.1 Method infile

5.1.1 Description

Method infile is used to read the boundary information of a geographical map stored in an
external file. Currently, two file formats are supported: boundary files and graph files. A boundary
file
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The map corresponding to this part of the boundary file can be found in Figure 5.1. Note that the
first and the last point of a polygon must be identical (see the example above) to obtain a closed
polygon.
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Figure 5.1: Corresponding graph of the section of the boundary file

In some cases a region may be divided into a number of subregions that are not connected. As an
example, Figure 5.2 shows a region within Germany that is separated into 8 subregions. In such
a case each subregion has to be included separately in the boundary file but all subregions should
share the same region code. Note that the subregions can be placed anywhere in the boundary file
and, in particular, do not have to follow each other.

Another special case that requires additional attention is illustrated in Figure 5.3: A region is
completely surrounded by another region. In this case an additional line has to be added to the
boundary description of the surrounded region. This additional line is placed between the first line
and the polygons and has to contain the region code of the surrounding region. The full syntax is:

is.in,”region code”

The following lines show a section of the boundary file of Germany, where region ”9361” is totally
surrounded by region ”9371”:

...

”9361”,7
is.in,”9371”
4155.84668,2409.58496
4161.69922,2449.38330
4201.49756,2461.08862
4224.90820,2478.64673
4250.66016,2418.94922
4193.30371,2387.34448
4155.84668,2409.58496

...

Finally, we want to draw attention to an important limitation of the current version of BayesX. In
most cases map objects serve as auxiliary objects to estimate spatial effects with bayesreg objects or
remlreg objects. In this case the names of the regions of the map and the values of the corresponding
spatial covariate have to match. Since only numerical variables allowed in dataset objects, the names
of the regions in the map object have to be numbers, although, in principle, there is no limitation
for the names of regions in map objects.
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Structure of a graph file

A graph file stores the nodes and the edges of a graph G = (N,E), see for example George & Liu
(1981, Ch. 3) for a brief introduction to graph theory. A graph is a convenient way to represent
the neighborhood structure of a geographical map, where the nodes of the graph correspond to the
region codes while the neighborhood structure is represented by the edges of the graph. In some
situations it can be useful to define weights associated with the edges of a graph which can be
stored in the graph file as well.

In BayesX, the first line of a graph file has to contain the total number of nodes of the graph.
Afterwards, each region (or node) is represented by a block of three lines. The first of these lines
contains the name of the node (typically the name of the geographical region). The second line
states the number of edges for that particular node. The third line contains the corresponding
edges of the node, represented by the index of a neighboring node. Note that the index starts with
zero, i.e. the first node is represented by the index 0, the second node by the index 1, and so on.

We illustrate the structure of a graph file with an example. The following few lines are the beginning
of the graph file corresponding to the map of (former) West Germany:

327
9162
3
1 2 3
9174
6
0 4 2 3 5 6
9179
6
0 1 7 3 8 6

...

The first line specifies the total number of nodes, 327 in the present example. The subsequent
three lines correspond to the node with name ’9162’, which is the first region in the map of West
Germany. Region ’9162’ has 3 neighbors, namely the second, third and fourth node appearing in
the graph file. Once again, note that the index starts with zero, i.e. 0 corresponds to the first node,
1 corresponds to the second node and so on. Lines 5 to 7 in the example correspond to node ’9174’
and its neighbors and lines 8 to 10 correspond to node ’9179’.

Graph files also allow to specify weights associated with the edges of the nodes. Since no weights

breite

ho
eh

e

Figure 5.2: Example for a region that is divided into subregions.
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have been explicitly specified in the preceding example, all weights are automatically defined to be
equal to one. Nonequal weights can specified in the graph file by adding them following the edges
of a particular node. An example of the beginning of a graph file with weights is given below:

327
9162
3
1 2 3 0.4 1.2 0.7
9174
6
0 4 2 3 5 6 0.4 0.3 0.8 0.8 1.4 1.6
9179
6
0 1 7 3 8 6 1.2 0.8 0.2 1.8 1.7 1.3

...

In this case, the edges of the first node ’9162’ have weights 0.4, 1.2 and 0.7.

Options

• graph

If graph is specified as an additional option, BayesX expects a graph file rather than a
boundary file.

• weightdef=adjacency | centroid | combnd
Option weightdef allows to request the computation of weights associated with each pair of
neighbors. Currently there are three weight specifications available: weightdef=adjacency,
weightdef=centroid and weightdef=combnd. For weightdef=adjacency all weights are set
equal to one. This is the most common choice in spatial statistics and also the default weight
method.

Specifying weightdef=centroid results in weights which are inverse proportional to the
distance of the centroids of neighboring regions. More specifically, the weight wus of two
neighboring regions u and s is set to wus = c ·exp(−d(u, s)), where d is the Euclidian distance
between the centroids of the two sites and c is a normalizing constant. In analogy to adjacency
weights, the constant c is chosen in such a way that the total sum of weights is equal to the
total number of neighbors.
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Figure 5.3: Example for a region that is totally surrounded by another region.
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The third choice weightdef=combnd results in weights proportional to the length of the com-
mon boundary of two regions. Similarly to weightdef=centroid, the weights are normalized,
i.e. the total sum of weights is equal to the number of neighbors.

Note that the specification of the weightdef option is only meaningful if a boundary file is
read. For graph files the option has no effect since the boundary information of regions is
missing and the computation of weights is therefore not possible.
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5.2 Method outfile

Description

Method outfile performs the reverse of the infile command, i.e. the current map infor-
mation is written to an external file. The map information can be written either in boundary
file or in graph file format.

Syntax

> objectname.outfile [, options] using filename

outfile writes the map information to the external file specified in filename. If graph is
specified as an additional option, the file format will be a graph file and a boundary file
otherwise.

Options

• graph

Forces the program to store the map information in graph file format rather than in boundary
file format.

• includeweights

Option includeweights is meaningful only if the storing format is a graph file, i.e. if option
graph is specified. In this case, the weights associated with the edges (neighbors) of the nodes
(regions) are stored in addition to the graph structure.

• replace

The replace option allows BayesX to overwrite an already existing file. If replace is omitted
in the optionlist an error will be raised if you attempt to overwrite an existing file. This
prevents you from overwriting an existing file unintentionally.
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5.3 Method reorder

Description

Method reorder reorders the regions of a map to obtain an adjacency matrix with minimal
envelope. A new map should always be reordered before using it with bayesreg objects since
MCMC updates for spatial covariates will be much faster with an optimised envelope. BayesX
uses the reverse Cuthill Mc-Kee algorithm to reorder maps, see George & Liu (1981, p. 58ff).

Syntax

> objectname.reorder

reorder reorders the regions of a map in order to obtain the smallest envelope of the corre-
sponding adjacency matrix.

Options

not allowed.
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graph objects

Graph objects are used to visualize data or estimation results obtained with the regression objects in
the GUI version of BayesX. No graph objects are available in the command line version of BayesX.
However, the R package accompanying BayesX provides similar functionality for visualising data
and estimation results as implemented for graph objects.

Currently, graph objects can be used to draw scatterplots between variables (section 6.2, method
plot), or to draw and color geographical maps stored in map objects (section 6.1, method drawmap).
The resulting plots are either printed on the screen or stored as postscript files for further use in
other documents (e.g. LATEX documents).

A graph object is created by typing

> graph objectname

in the command window.

49
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6.1 Method drawmap

Description

Method drawmap is used to draw geographical maps and color the regions according to some
numerical characteristics.

Syntax

> objectname.drawmap [plotvar regionvar] [if expression], map=mapname [options]
> [using dataset]

Method drawmap draws the map stored in the map object mapname and prints the graph
either on the screen or stores it as a postscript file (if option outfile is specified). The
regions with regioncode regionvar are colored according to the values of the variable plotvar.
The variables plotvar and regionvar are supposed to be stored in the dataset object dataset.
An if statement may be specified to use only a part of the data in dataset. Several options are
available, e.g. for changing from grey scale to color scale or to store the map as a postscript
file. See the options list below for more details.

Options

The most important option, which therefore is obligatory, is the map option. This option
specified the name of the map object containing the boundary information to be drawn.
Additional options for method drawmap (in alphabetical order) are:

• color

The color option allows to choose between a grey scale and a colored scale. If the keyword
color is specified, a colored scale is used instead of a grey scale.

• drawnames

In some situations it may be useful to print the names of the regions into the graph (although
the result will probably be confusing in most cases). This can be achieved by specifying the
additional option drawnames. By default the names of the regions are omitted in the map.

• fontsize = integer

Specifies the font size (in pixels) for labelling the legend and writing the names of the regions
(if specified). Note, that the title is scaled accordingly (see option titlesize). The default
is fontsize=12.

• hcl

Requests that a color palette from the HCL color space should be used instead of an RGB
palette. The HCL colors will be selected diverging from a neutral center (grey) to two
different extreme colors (red and green) in contrast to the RGB colors diverging from yellow
to red and green. HCL colors are particularly useful for electronic presentations since they
are device-independent. The option hcl is only meaningful in combination with the option
color.

• lowerlimit = realvalue

Lower limit of the range to be drawn. If lowerlimit is omitted, the minimum numerical
value in plotvar will be used as the lower limit instead.
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• map = mapname

mapname specifies the name of the map object containing the boundary information to be
drawn. This option is obligatory.

• nolegend

By default a legend is drawn into the graph. Specifying the option nolegend will exclude the
legend from the graph.

• nrcolors = integer

To color the regions according to their numerical characteristics, the data are divided into
a (typically large) number of ordered categories. Afterwards a color is associated with each
category. The nrcolors option can be used to specify the number of categories (and therefore
the number of different colors). The maximum number of colors is 256, which is also the
default value.

• outfile = filename

If option outfile is specified the graph will be stored as a postscript file rather than being
printed on the screen. The full path and the filename have to be specified in filename. By
default, an error will be raised if the specified file is already existing or if the path is invalid.
To overwrite an already existing file, option replace has to be specified in addition. This
prevents you from overwriting your files unintentionally.

• pcat

If you want to visualize posterior probabilities, it is convenient to specify pcat. In this case,
method drawmap expects a variable containing only the values -1, 0 and 1. Of course you can
achieve the same result by setting nrcolors=3, lowerlimit=-1 and upperlimit=1.

• replace

The replace option is only meanigful in combination with option outfile. Specifying
replace as an additional option allows the program to overwrite an already existing file
(specified in outfile), otherwise an error will be raised.

• swapcolors

In some situations it may be favorable to swap the order of the colors, i.e. black (red) shades
corresponding to large values and white (green) shades corresponding to small values. This
is achieved by specifying swapcolors. By default, small values are colored in black shades
(red shades) and large values in white shades (green shades).

• title = characterstring

Adds a title to the graph. If the title contains more than one word, characterstring must be
enclosed by quotation marks (e.g. title="my first map").

• titlesize = realvalue

Specifies the factor by which the size of the title is scaled relative to the size of the labels of
the legend (compare option fontsize). The default is titlesize=1.5.

• upperlimit = realvalue

Upper limit of the range to be drawn. If upperlimit is omitted, the maximum numerical
value in plotvar will be used as the upper limit instead.
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Example

This example shows how to draw the map of Munich and how to color the subquarters in Mu-
nich according to some numerical characteristics. The boundary file of Munich (munich.bnd)
as well as the data set rent94means.raw containing the distribution of the average rents
across subquarters are included in the subfolder examples of the BayesX installation direc-
tory. In the following we assume that BayesX is installed in the folder c:\bayesx. We start
by creating a dataset object d and a map object m and proceed with reading the rent data set
and the map of Munich:

> dataset d

> d.infile using c:\bayesx\examples\rent94means.raw

> map m

> m.infile using c:\bayesx\examples\munich.bnd

Afterwards we create a graph object g and draw the map of Munich:

> graph g

> g.drawmap , map=m

Figure 6.1: Map of Munich

The map of Munich appears on the screen in a separate window, compare Figure 6.1. Before
closing the window you are asked whether you want to save the map or not. If you agree the
map will be stored as a postscript file in the folder you specify. Of course, the map can be
directly stored in postscript format using the outfile option. In this case the map is not
shown on the screen. Typing

> g.drawmap , map=m outfile=c:\temp\munich.ps

stores the map of Munich in the file c:\temp\munich.ps and the graph is not printed on the
screen.

Usually maps are drawn to visualize numerical characteristics of their regions. For instance,
typing

> g.drawmap R L , map=m color using d
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displays the distribution of the average rents R across subquarters L, see Figure 6.2. The areas
in the figure shaded with diagonal lines mark subquarters for which no data are available.
The specification of the second variable L is required to match the names of the subquarters
stored in the map object m with the data set d. Option color is specified to obtain a colored
graph. Specifying option hcl in addition yields the same information visualized in HCL colors
(see Figure 6.3).

> g.drawmap R L , map=m color hcl using d

3.446667 29.0

Figure 6.2: Distribution of the average rents per square meter in Munich visualized in RGB colors.
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Figure 6.3: Distribution of the average rents per square meter in Munich visualized in HCL colors.
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6.2 Method plot

Description

Method plot is used to draw scatterplots between two or more variables. Several options for
labelling axes, connecting points, saving the graph etc. are available.

Syntax

> objectname.plot xvar yvar1 [yvar2 yvar3 . . . ] [if expression] [, options] using dataset

Method plot draws scatterplots of yvar1, yvar2, yvar3 . . . against xvar into a single graph
using the data set specified in dataset. An if statement may be used to apply the method
only to a part of the data. In addition, several options may be specified for labelling axes,
connecting points, saving the graph in postscript format etc., see the options list below.

Options

The following options are available for method plot (listed in alphabetical order):

• connect = 1|2|3|4|5[specifications for further variables]

Option connect specifies how points in the scatterplot are connected. There are currently 5
different specifications:

1 draw straight lines between the points (default)
2, 3, 4 draw dashed lines (numbers 2 – 4 indicate different variants)
5 do not connect, i.e. plot points only

If you draw more than one scatterplot in the same graph (i.e. more than one yvar is specified)
the points for each yvar can be connected differently by specifying the corresponding number
(1,2,3,4,5) separately for every yvar. Typing for example

connect=15

connects the points corresponding to yvar1 and xvar by straight lines, but does not connect
the points corresponding to yvar2 (if specified) and xvar. Points corresponding to additional
variables yvar3, etc. are connected by straight lines (the default).

An equivalent way of specifying the different variants is available via the symbols ’l’, ’d’, ’_’,
’-’ and ’p’, which correspond to the numbers 1-5, i.e.

connect=12345 is equivalent to connect=ld_-p

• fontsize = integer

Specifies the font size (in pixels) for labelling axes etc. Note that the title is scaled accordingly.
The default is fontsize=12.

• height = integer

Specifies the height (in pixels) of the graph. The default is height=210.

• linecolor = B|b|c|G|g|o|m|r|y [specifications for further variables]

Option linecolor specifies the color to be used for drawing lines (or points, see option
connect) in the scatterplot. Currently the following specifications are available:
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B black (default)
b blue
c cyan
G gray
g green
o orange
m magenta
r red
y yellow

If you draw more than one scatterplot in the same graph (i.e. more than one yvar is specified)
you can use different colors for each yvar by simply specifying the corresponding symbol
(B,b,c,G,g,o,m,r,y) for each yvar. Typing for example

linecolor = Bgr

colors the lines (points) corresponding to yvar1 and xvar in black, whereas the points corre-
sponding to yvar2 and yvar3 (if specified) and xvar are colored in green and red, respectively.

• linewidth = integer

Specifies how thick lines should be drawn. The default is linewidth=5.

• outfile = filename

If option outfile is specified, the graph will be stored as a postscript file rather than being
printed on the screen. The full path and the filename have to be specified in filename. By
default, an error will be raised if the specified file is already existing or if the specified folder is
not valid. To overwrite an already existing file, option replace must be specified in addition.
This prevents you from overwriting your files unintentionally.

• pointsize = integer

Specifies the size of the points (in pixels) if drawing points rather than lines. The default is
pointsize=20.

• replace

The replace option is useful only in combination with option outfile. Specifying replace

as an additional option allows the program to overwrite an already existing file (specified in
outfile), otherwise an error will be raised.

• title = characterstring

Adds a title to the graph. If the title contains more than one word, characterstring must be
enclosed by quotation marks (e.g. title="my first title").

• titlesize = realvalue

Specifies the factor by which the size of the title is scaled relative to the size of the labels of
the axes (compare option fontsize). The default is titlesize=1.5.

• width = integer

Specifies the width (in pixels) of the graph. The default is width=356.

• xlab = characterstring

Labels the x-axis. If the label contains more than one word, characterstring must be enclosed
by quotation marks (e.g. xlab="x axis").
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• xlimbottom = realvalue

Specifies the minimum value at the x-axis to be drawn. The default is the minimum value in
the data set. If xlimbottom is above the minimum value in the data set, only a part of the
graph will be visible.

• xlimtop = realvalue

Specifies the maximum value at the x-axis to be drawn. The default is the maximum value
in the data set. If xlimtop is below the maximum value in the data set, only a part of the
graph will be visible.

• xstart = realvalue

Specifies the value where the first tick on the x-axis should be drawn. The default is the
minimum value on the x-axis.

• xstep = realvalue

If xstep is specified, ticks are drawn at the x-axis with stepwidth realvalue starting at the
minimum value on the x-axis (or at the value specified in option xstart). By default, five
equally spaced ticks are drawn at the x-axis.

• ylab = characterstring

Labels the y-axis. If the label contains more than one word, characterstring must be enclosed
by quotation marks (e.g. ylab="y axis").

• ylimbottom = realvalue

Specifies the minimum value at the y-axis to be drawn. The default is the minimum value in
the data set. If ylimbottom is above the minimum value in the data set, only a part of the
graph will be visible.

• ylimtop = realvalue

Specifies the maximum value at the y-axis to be drawn. The default is the maximum value
in the data set. If ylimtop is below the maximum value in the data set, only a part of the
graph will be visible.

• ystart = realvalue

Specifies the value where the first tick on the y-axis should be drawn. The default is the
minimum value on the y-axis.

• ystep = realvalue

If ystep is specified, ticks are drawn at the y-axis with stepwidth realvalue starting at the
minimum value on the y-axis (or at the value specified in option ystart). By default, five
equally spaced ticks are drawn at the y-axis.

• Further options for representing dates

In the following we describe options that may be useful if the variable on the x-axis represents
dates. An example is a variable with values ranging from 1 to 19, representing the time period
from January 1983 to July 1984. In this case, we might prefer that the x-axis is labelled in
terms of dates rather than in the original coding (from 1 to 19). To achieve this, BayesX
provides the options month, year and xstep. Options year and month are used to specify
the year and the month (1 for January, 2 for February, . . . ) corresponding to the minimum
covariate value. In the example mentioned above year=1983 and month=1 will produce the
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correct result. In addition, option xstep may be specified to define the periodicity in which
your data are collected. For example xstep=12 (the default) corresponds to monthly data,
while xstep = 4, xstep = 2 and xstep = 1 correspond to quarterly, half yearly and yearly
data, respectively.

Example

We use the Munich rent data set rent94.raw to demonstrate the usage of method plot. The
data set is included in the subfolder examples of the BayesX installation directory. In the
following we assume that BayesX has been installed to the folder c:\bayesx. We start by
reading the data by typing:

> dataset d

> d.infile using c:\bayesx\examples\rent94.raw

Then we generate a graph object g and draw a scatterplot between floor space (variable F)
and rent per square meter (variable R):

> graph g

> g.plot R F using d

The strange picture shown in Figure 6.4 appears on the screen. The problem is that the
points are connected by straight lines although the values of F are not sorted. Hence, to
obtain an improved scatterplot, we could either sort the data set with respect to F or simply
avoid connecting the points. Typing

> d.sort F

> g.plot R F using d

yields the first option. Typing

> g.plot R F, connect=p using d

yields the second option mentioned above. The corresponding graphs are shown in Figure 6.5
and Figure 6.6, respectively. To further improve the appearance of the scatterplot we add a
title and label the x- and y-axes by typing

> g.plot R F, title="scatterplot between F and R" ylab="rent"

xlab="floor space in square meters" connect=p using d

The result is shown in Figure 6.7. Finally, we add the outfile option to save the graph in
postscript format:

> g.plot R F, title="scatterplot between F and R" ylab="rent"

xlab="floor space in square meters" connect=p

outfile=c:\temp\plotrf.ps using d
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Figure 6.4: Scatterplot between floor space and rent per square meters (first try).
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Figure 6.5: Scatterplot between floor space and rent per square meters (second try).
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Figure 6.6: Scatterplot between floor space and rent per square meters (third try).
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Figure 6.7: Scatterplot between floor space and rent per square meters (final try).
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6.3 Method plotautocor

Description

Method plotautocor visualizes the autocorrelation functions obtained with method autocor

of bayesreg objects, see also section 7.2.

Syntax

> objectname.plotautocor [,options] using dataset

Plots the autocorrelation functions stored in dataset. The data set must have the special
structure described in section 7.2, i.e. method plotautocor is meaningful only if Bayesian
regression models have been estimated in advance using bayesreg objects and autocorrelation
functions of sampled parameters have been computed using method autocor of bayesreg
objects.

Options

• mean

If option mean is specified, only minimum, mean and maximum autocorrelations are plotted
for each lag number and model term. This typically leads to a considerable reduction in
computing time and storing size.

• outfile = filename

If option outfile is specified, the graph will be stored as a postscript file instead of being
printed on the screen. The path and the filename have to be specified in filename. An error
will be raised if the specified file is already existing and the replace option has not been
specified.

• replace

The replace option is only meaningful in combination with option outfile. Specifying
replace as an additional option allows the program to overwrite an already existing file
(specified in outfile), otherwise an error will be raised.
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6.4 Method plotsample

Description

Method plotsample visualizes the sampling paths of sampled parameters obtained with
method getsample of bayesreg objects, see also section 7.3. The application of method
plotsample is meaningful only if Bayesian regression models have been estimated in ad-
vance using bayesreg objects and sampled parameters have been computed and stored using
method getsample.

Syntax

> objectname.plotsample [,options] using dataset

Plots sampled parameters stored in dataset. The data set must have the special structure
described in section 7.3.

Options

• outfile = filename

If option outfile is specified, the graph will be stored as a postscript file instead of being
printed on the screen. The full path and the filename have to be specified in filename. An
error will be raised if the specified file is already existing and the replace option has not
been specified.

• replace

The replace option is only useful in combination with option outfile. Specifying replace

as an additional option allows the program to overwrite an already existing file (specified in
outfile), otherwise an error will be raised.
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bayesreg objects

bayesreg objects are used to fit (multivariate) exponential family, hazard rate or multi-state models
with structured additive predictor subsumed in the class of structured additive regression (STAR)
models, see Fahrmeir, Kneib & Lang (2004). Inference is based on fully Bayesian approach imple-
mented via Markov Chain Monte Carlo (MCMC) simulation techniques. The methodology manual
provides brief introduction to structured additive regression and MCMC-based inference. More
details can be found in Fahrmeir & Lang (2001), Fahrmeir & Lang (2001), Lang & Brezger (2004),
Brezger & Lang (2006), Fahrmeir & Osuna (2006) and Hennerfeind, Brezger & Fahrmeir (2006).
Introductions to (Bayesian) generalized linear models as well as to semi- and nonparametric mod-
els are given in Fahrmeir et al. (2013). The paper of Chib & Greenberg (1995), the monograph
Markov Chain Monte Carlo in Practice edited by Gilks, Richardson & Spiegelhalter (1996) and the
introductory article by Green (2001) give a thorough overview over MCMC simulation techniques.

First steps with bayesreg objects can be done with the tutorial like example in chapter 1 of the
tutorials manual which provides a self-contained demonstrating example.

63
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7.1 Method regress

7.1.1 Description

Method regress estimates a structured additive regression model.

7.1.2 Syntax

> objectname.regress model [weight weightvar] [if expression] [, options] using dataset

Method regress estimates the regression model specified in model using the data specified in
dataset. dataset has to be the name of a dataset object created before. The details of correct
models are covered in subsubsection 7.1.2.2. The distribution of the response variable can be either
Gaussian, gamma, binomial, multinomial or Poisson. In addition, BayesX supports continuous
time survival and multi-state models, see also Table 7.6 for a more detailled overview. The response
distribution is specified using option family, see subsubsection 7.1.2.4 below and the options list
in subsection 7.1.3. The default value is family=binomial with a logit link. An if statement may
be specified to analyze only parts of the data set, i.e. the observations where expression is true.

7.1.2.1 Optional weight variable

An optional weight variable weightvar may be specified to estimate weighted regression models.
For Gaussian responses BayesX assumes that yr|ηr, σ2 ∼ N(η, σ2/weightvarr). Thus, for grouped
Gaussian responses the weights must be the number of observations in the groups if the yr’s
are the average of individual responses. If the yr’s are the sum of responses in every group,
the weights have to be the reciprocal of the number of observations in the groups. Of course,
estimation of usual weighted regression models with heteroscedastic errors is also possible. In this
case the weights should be proportional to the reciprocal of the heteroscedastic variances. If the
response distribution is binomial, it is assumed that the values of the weight variable correspond
to the number of replications and that the values of the response variable itself correspond to
the number of successes. If weight is omitted, BayesX assumes that the number of replications
is one, i.e. the values of the response must be either zero or one. For grouped Poisson data the
weights have to be the number of observations in a group and the yi’s are assumed to be the
average of individual responses. In the case of gamma distributed responses, BayesX assumes
yr ∼ G(exp(ηr), ν/weightvarr) where µr = exp(ηr) is the mean and sr = ν/weightvarr is the scale
parameter.

If estimation is based on latent utility representations, the specification of weights is not allowed.
Similarly, for hazard regression and multi-state models, weighted regression is not implemented yet.

7.1.2.2 Syntax of possible model terms

The general syntax of models is:

depvar = term1 + term2 + · · ·+ termr

where depvar specifies the dependent variable in the model and term1,. . . ,termr define the specific
form of covariate effects on the dependent variable. The different terms have to be separated by
’+’ signs. A constant intercept is automatically included in the models and does not have to be
requested by the user. This section reviews all possible model terms that are currently supported
by bayesreg objects and provides some specific examples. Note that all described terms may be
combined in arbitrary order. An overview about the capabilities of bayesreg objects is given in
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Table 7.1. Table 7.2 shows how interactions between covariates are specified. Full details about all
available options are given in subsubsection 7.1.2.3.

Throughout this section Y will denote the dependent variable.

Offset

Description: Adds an offset term to the predictor.

Predictor: η = · · ·+ offs + · · ·

Syntax: offs(offset)

Example:

The following model statement can be used to estimate a Poisson model with offs as offset
term and W1 and W2 as fixed effects (if family=poisson is specified in addition):

Y = offs(offset) + W1 + W2

Fixed effects

Description: Incorporates covariate W1 as a fixed effect into the model.

Predictor: η = · · ·+ γ1W1 + · · ·

Syntax: W1

Example:

The following model statement specified a model with q fixed (linear) effects:

Y = W1 + W2 + · · · + Wq

Shrinkage of fixed effects

Description: Defines a shrinkage-prior for the corresponding parameters γj , j = 1, . . . , q,
q ≥ 1 of the linear effects X1,...Xq. There are three priors possible: ridge-, lasso- and
Normal Mixture of inverse Gamma (NMIG)-prior.

Predictor: η = · · ·+ γ1X1 + · · ·+ γqXq + · · ·

Syntax:

– Ridge-prior: X1(ridge[, options])

– Lasso-prior: X1(lasso[, options])

– NMIG-prior: X1(nigmix[, options])

Example: The following model statement can be used to estimate a model with q lasso-
penalized linear effects

Y = X1(lasso)+...+ Xq(lasso)

By default, the starting value of the shrinkage parameter in the Markov chain is set to 1
and the shrinkage parameter is estimated by the data. It is also possible to fix the shrinkage
parameter through the iterations in order to use a prespecified amount for shrinkage. To do
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so the the option shrinkagefix have to be set in the corresponding terms and this results in
fixing the shrinkage parameter at the starting value assigned in the option shrinkage.

The following model term defines a lasso-penalty with shrinkage parameter fixed at the value
1.5:

Y = X1(lasso)+...+ Xq(lasso,shrinkage=1.5,shrinkagefix)

Full details about all possible options for shrinkage-effects are given in 7.1.2.3.

Important Remark: Except the option tau2 for the variances of lasso or ridge (and resp. the
options I and t2 for nigmix), all the other possible options used in the shrinkage-methods
are those which are specified in the first term of the corresponding penalty, e.g.

Y = X2(lasso,shrinkagepar=2,shrinkagefix)+ X1(lasso,shrinkagepar=1.5)

uses the options of X2. If the option adaptive is specified the options from each term are
used.

Nonlinear effects of continuous covariates and time scales

First or second order random walk

Description: Defines a first or second order random walk prior for the effect of X1.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(rw1[, options])

X1(rw2[, options])

Example:

Suppose that X1 is a continuous covariate with possibly nonlinear effect. The following model
statement defines a second order random walk prior for f1:

Y = X1(rw2,a=0.001,b=0.001)

The term X1(rw2,a=0.001,b=0.001) indicates, that the effect of X1 should be included
nonparametrically using a second order random walk prior. A first order random walk is ob-
tained by modifying the first argument in X1(rw2,a=0.001,b=0.001) from rw2 to rw1 yield-
ing X1(rw1,a=0.001,b=0.001). The second and third argument in the expression above are
used to specify the hyperparameters of the inverse gamma prior for the variance of the random
walk. Besides the options a and b, some more options are available, see subsubsection 7.1.2.3
for details.

P-spline with first or second order random walk penalty

Description: Defines a P-spline with a first or second order random walk penalty for the
parameters of the spline.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(psplinerw1[, options])

X1(psplinerw2[, options])
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Example:

A P-spline with second order random walk penalty is obtained by:

Y = X1(psplinerw2)

By default, the degree of the spline is 3 and the number of inner knots is 20. The following
model term defines a quadratic P-spline with 30 knots:

Y = X1(psplinerw2,degree=2,nrknots=30)

Full details about all possible options for P-splines are given in subsubsection 7.1.2.3.

Seasonal effect of a time scale

Description: Defines a seasonal effect of time.

Predictor: η = · · ·+ fseason(time) + · · ·

Syntax:

time(season[, options])

Example:

A seasonal component for a time scale time is specified by

Y = time(season,period=12).

where the second argument specifies the period of the seasonal effect. In the example above
the period is 12, corresponding to monthly data.

Spatial Covariates

Markov random field

Description:

Defines a Markov random field prior for the spatial covariate region. BayesX allows to
incorporate spatial covariates with geographical information stored in the map object specified
in option map.

Predictor: η = · · ·+ fspat(region) + · · ·

Syntax:

region(spatial,map=characterstring[, options])

Example:

For the specification of a Markov random field prior, map is an obligatory argument that rep-
resents the name of a map object (see chapter 5) containing all necessary spatial information
about the geographical map, i.e. the neighbors of each region and the weights associated with
the neighbors. For example the statement

Y = region(spatial,map=germany)

defines a Markov random field prior for region where the geographical information is stored
in the map object germany. An error will be raised if germany is not existing. It is advisable to
reorder the regions of a map prior to estimation of a spatial effect to obtain a band matrix like
precision matrix. This can be achieved using method reorder of map objects, see section 5.3
for details.
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Two-dimensional P-spline with first order random walk penalty

Description:

Defines a two-dimensional P-spline for the spatial covariate region with a two-dimensional
first order random walk penalty for the parameters of the spline. Estimation is based on the
coordinates of the centroids of the regions. The centroids are computed using the geographical
information stored in the map object specified in the option map.

Predictor: η = · · ·+ f(centroids) + · · ·

Syntax:

region(geospline,map=characterstring[, options])

Example:

For the specification of a two-dimensional P-spline (geospline) map is an obligatory argu-
ment indicating the name of a map object (see chapter 5) that contains all necessary spatial
information about the geographical map, i.e. the neighbors of each region and the weights
associated with the neighbors. The model term

Y = region(geospline,map=germany)

specifies a two-dimensional cubic P-spline with first order random walk penalty where the
geographical information is stored in the map object germany.

Unordered group indicators

Unit- or cluster-specific unstructured effect

Description: Defines an unstructured (uncorrelated) random effect with respect to grouping
variable grvar.

Predictor: η = · · ·+ f(grvar) + · · ·

Syntax:

grvar(random[, options])

Example:

Gaussian i.i.d. random effects allow to cope with unobserved heterogeneity among units or
clusters of observations. Suppose the analyzed data set contains a group indicator grvar that
gives information about the individual or cluster a particular observation belongs to. Then
an individual-specific uncorrelated random effect is defined by

Y = grvar(random)

The inclusion of more than one random effect term in the model is possible, leading to the
estimation of multilevel models. However, we have only limited experience with multilevel
models so that it is not clear how well these models can be estimated in BayesX.

Nonlinear baseline effect in hazard regression or multi-state models

P-spline with second order random walk penalty

Description: Defines a P-spline with second order random walk penalty for the parameters
of the spline for the log-baseline effect log(λ0(time)).
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Predictor: η = log(λ0(time)) + · · ·

Syntax:

time(baseline[, options])

Example:

Suppose continuous-time survival data (time, delta) together with additional covariates
(W1,X1) are given where time denotes the vector of observed duration times, delta is the
vector of corresponding indicators of non-censoring, W1 is a discrete covariate, and X1 is a
continuous covariate. The following continuous time survival model with hazard rate λ and
log-baseline effect log(λ0(time))

λ(time) = λ0(time) exp(γ0 + γ1W1 + f(X1)) = exp (log(λ0(time)) + γ0 + γ1W1 + f(X1))

is estimated by the model statement

delta = time(baseline) + W1 + X1(psplinerw2)

Similarly, baseline effects on the transition intensities can be specified in multi-state models.

Varying coefficients with continuous covariates as effect modifier

First or second order random walk

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of
X2. Therefore covariate X2 is called the effect modifier. The smoothness prior for f(X2) is a
first or second order random walk.

Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(rw1[, options])

X1*X2(rw2[, options])

Example:

A varying coefficient term with a second order random walk smoothness prior is defined as
follows:

Y = X1*X2(rw2)

P-spline with first or second order random walk penalty

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of X2.
The smoothness prior for f(X2) is a P-spline with first or second order random walk penalty.

Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(psplinerw1[, options])

X1*X2(psplinerw2[, options])
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Example:

A varying coefficient term with a second order random walk smoothness prior is defined as
follows:

Y = X1*X2(psplinerw2)

Seasonal prior

Description:

Defines a varying coefficients term where the effect of X1 varies over the range of the effect
modifier time. A seasonal prior is assumed for the effect of time.

Predictor: η = · · ·+ fseason(time)X1 + · · ·

Syntax:

X1*time(season[, options])

Example:

The inclusion of a varying coefficients term with a seasonal prior may be meaningful if we
expect a different seasonal effect with respect to a binary variable X1. In this case we can
include an additional seasonal effects for observations with X1=1 by

Y = X1*time(season)

Time-varying effects in hazard regression or multi-state models

P-spline with second order random walk penalty

Description: Defines a varying coefficients term where the effect of X1 varies over the range
of the effect modifier time, i.e. variable X1 is assumed to have a time-varying effect. The
smoothness prior for f(time) is a P-spline with second order random walk penalty.

Predictor: η = log(λ0(time)) + f(time)X1 · · ·

Syntax:

X1*time(baseline[, options])

Example:

Suppose continuous-time survival data (time, delta) together with an additional covariate
X1 are given, where time denotes the vector of observed duration times and delta is the
vector of corresponding indicators of non-censoring. The following Cox model with hazard
rate

λ(time) = λ0(time) exp(γ0 + f(time)X1)

= exp (log(λ0(time)) + γ0 + f(time)X1)

is estimated by the model statement

delta = time(baseline) + X1*time(baseline)

Similarly, time-varying effects on the transition intensities can be specified in multi-state
models.
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Varying coefficients with spatial covariates as effect modifiers

Markov random field

Description:

Defines a varying coefficients term where the effect of X1 varies smoothly over the range of
the spatial covariate region. A Markov random field is estimated for fspat(region). The
geographical information is assumed to be stored in the map object specified in the option
map.

Predictor: η = · · ·+ fspat(region)X1 + · · ·

Syntax:

X1*region(spatial,map=characterstring[,options])

Example:

The statement

Y = X1*region(spatial,map=germany)

defines a varying coefficient term with the spatial covariate region as the effect modifier
and a Markov random field as spatial smoothness prior. Weighted Markov random fields
can be estimated by including an appropriate weight definition when creating the map object
germany (see section 5.1).

Varying coefficients with unordered group indicators as effect modifiers (random slopes)

Unit- or cluster-specific unstructured effect

Description:

Defines a varying coefficient term where the effect of X1 varies over the range of the group
indicator grvar. Models of this type are usually referred to as models with random slopes. A
Gaussian i.i.d. random effect with respect to grouping variable grvar is assumed for f(grvar).
A main effect γX1 is additionally estimated using a diffuse prior for γ. Therefore the random
slope effect f(grvar)X1 can be seen as the deviation from the main effect. Estimation
is carried out using hierarchical centering, see Gelfand, Sahu & Carlin (1996). Note that
nonsensical results are obtained if an additional fixed effect of X1 is added in the model
statement because the fixed effect is automatically included.

Predictor: η = · · ·+ γX1 + f(grvar)X1 + · · ·

Syntax:

X1*grvar(random[, options])

Example:

A random slope with additional incorporation of X1 as fixed effect is specified as follows:

Y = X1*grvar(random)

If the linear effect of X1 should be omitted, the option nofixed has to be specified:

Y = X1*grvar(random,nofixed)
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Surface estimators

Two-dimensional P-spline with first order random walk penalty

Description:

Defines a two-dimensional P-spline with a two-dimensional first order random walk penalty
for the parameters of the spline.

Predictor: η = · · ·+ f(X1, X2) + · · ·

Syntax:

X1*X2(pspline2dimrw1[, options])

Example:

The model term

Y = X1*X2(pspline2dimrw1)

specifies a two-dimensional cubic P-spline with first order random walk penalty.

In many applications it is favorable to additionally incorporate the one-dimensional main
effects of X1 and X2 into the model. In this case the two-dimensional surface can be seen as
the deviation from the main effects. Note, that the number of inner knots has to be the same
for the main effects and the interaction effect. For example, splines with 10 inner knots are
estimated by

Y = X1(psplinerw2,nrknots=10) + X2(psplinerw2,nrknots=10)

+ X1*X2(pspline2dimrw1,nrknots=10)

7.1.2.3 Description of additional options for terms of bayesreg objects

All arguments described in this section are optional and can therefore be omitted. Generally, all
options are specified by adding the option name to the specification of the model term type in
the parentheses, separated by commas. Boolean options are specified by simply adding the option
name. For example, a random intercept term with a=b=0.001 as parameters for the inverse gamma
prior of the variance parameter, with updating according to IWLS and without incorporation of
X1 as fixed effect is specified as follows:

X1*grvar(random,a=0.001,b=0.001,proposal=iwls,nofixed)

Note that all options may be specified in arbitrary order. Table 7.3 and Table 7.4 provide expla-
nations and the default values of all possible options. All reasonable combinations of model terms
and options can be found in Table 7.5.
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Type Syntax example Description

Offset offs(offset) Variable offs is an offset term.

Linear effect W1 Linear effect of W1.

Ridge effect X1(ridge) Linear effect of X1 with ridge-penalty.

Lasso effect X1(lasso) Linear effect of X1 with lasso-penalty.

NMIG effect X1(nigmix) Linear effect of X1 with NMIG-penalty.

First or second or-
der random walk

X1(rw1)

X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)

X1(psplinerw2)

Nonlinear effect of X1.

Seasonal prior time(season,period=12) Time-varying seasonal effect of time with period
12.

Markov random
field

region(spatial,map=m) Spatial effect of region where region indicates the
region an observation pertains to. The boundary
information and the neighborhood structure are
stored in the map object m.

Two dimensional
P-spline

region(geospline,map=m) Spatial effect of region. Estimates a two dimen-
sional P-spline based on the centroids of the re-
gions. The centroids are obtained from the map
object m.

Random intercept grvar(random) I.i.d. Gaussian (random) effect of the group indi-
cator grvar, e.g. grvar may be an individual indi-
cator when analyzing longitudinal data.

Baseline in Cox
or multi-state
models

time(baseline) Nonlinear shape of the baseline effect λ0(time) of
a Cox model. log(λ0(time)) is modelled by a P-
spline with second order penalty.

Table 7.1: Overview over different model terms for bayesreg objects.

Type of interaction Syntax example Description

Varying coefficient term X1*X2(rw1)

X1*X2(rw2)

X1*X2(psplinerw1)

X1*X2(psplinerw2)

X1*time(season)

Effect of X1 varies smoothly over the range
of the continuous covariate X2 or time.

Random slope X1*grvar(random) The regression coefficient of X1 varies with
respect to the unit- or cluster-index vari-
able grvar.

Geographically weighted
regression

X1*region(spatial,map=m) Effect of X1 varies geographically. Covari-
ate region indicates the region an obser-
vation pertains to.

Two dimensional
surface

X1*X2(pspline2dimrw1) Two dimensional surface for the continu-
ous covariates X1 and X2.

Time-varying effect in
Cox or multi-state
models X1*time(baseline) Nonlinear, time-varying effect of X1.

Table 7.2: Possible interaction terms for bayesreg objects.
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Option Description Default

a,b 1. The options a and b specify the hyperparameters of the inverse
Gamma prior for the variance τ2.

a=0.001, b=0.001

2. The options a and b specify the hyperparameters of the inverse
Gamma prior for the shrinkage parameter λ if the lasso- or the ridge-
prior is used (**).

a=0.001, b=0.001

3. The options a and b specify the hyperparameters the inverse Gamma
prior for the variance parameters t2j if the NMIG-penalty is used.

a=5, b=50

adaptive Specifies adaptive versions of the shrinkge priors. -

aw,bw The options aw and bw specify the hyperparameters of the Beta prior
for the parameter ω if the NMIG-penalty is used (**).

a=0.001, b=0.001

contourprob Forces the computation of contour probabilities for P-splines as de-
scribed in Brezger & Lang (2008). For instance, contourprob=4 spec-
ifies that contour probabilities for difference orders zero to four are
computed. Note that the global simple option approx may addition-
ally be specified. In this case the computation of contour probabilities
is based on stochastic approximations for quantiles as described in
Tierney (1983).

contourprob=4

degree Specifies the degree of B-spline basis functions. degree=3

derivative If specified, first order derivatives of the function estimate are com-
puted (for P-splines only).

-

gridsize The option gridsize can be used to restrict the number of points
(on the x-axis) for which estimates are computed. By default, esti-
mates are computed at every distinct covariate value in the data set
(indicated by gridsize=-1). This may be relatively time consuming
in situations where the number of distinct covariate values is large. If
gridsize=nrpoints is specified, estimates are computed on an equidis-
tant grid with nrpoints knots.

gridsize=-1

I Provides a starting value of for the indicator variable Ij of the corre-
sponding effect if the NMIG-penalty is used. Values have to be 0 or 1
and have to be set in each shrinkage term.

I=1

lambda Provides a starting value for the smoothing parameter λ. lambda=0.1

min,max The options min and max define the minimum and maximum block
sizes of block move updates. In every iteration, BayesX randomly
chooses the block size within this range. If omitted, the minimum
and maximum block sizes are automatically determined during the
burnin period such that the average acceptance rate is between 30%
and 70%. The specification of minimum and maximum block sizes
is only meaningful in combination with conditional prior proposals
and therefore has no effect for Gaussian responses, categorical probit
models, or if proposal=iwls or proposal=iwlsmode is specified.

automatic determination

monotone Defines monotonicity constraints for P-splines. Specifying
monotone=increasing yields increasing nonlinear functions and
monotone=decreasing yields decreasing functions.

monotone = unrestricted

nofixed The option nofixed suppresses the estimation of the main effect γX1
for random slopes.

-

nrknots Specifies the number of inner knots for a P-spline term. nrknots=20

Table 7.3: Optional arguments for bayesreg object terms in alphabetical order (1).
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Option Description Default

w Specifies the starting value of the complexity parameter ω if the NMIG-
penalty is used. Values have to be in the interval (0,1) (*).

w=0.5

wfix Specifies if the complexity parameter ω should take the fixed value
given in option w if the NMIG-penalty is used (**).

-

period Period of the seasonal effect. The default is period=12 which corre-
sponds to monthly data.

period=12

proposal Specifies the type of proposal. proposal=cp means conditional prior
proposal, proposal=iwls stands for iteratively weighted least squares
(IWLS) proposal and proposal=iwlsmode indicates IWLS based on
posterior mode estimation.

proposal=iwls

shrinkagefix Specifies if the shrinkage parameter λ should take the fixed value given
in option shrinkage (*).

-

shrinkage Provides a starting value of for the shrinkage parameter λ if the lasso-
or ridge -penalty is used. Values have to be positive (**).

shrinkage=1

t2 Provides a starting value of for the variance parameter t2j of the corre-
sponding effect if the NMIG-penalty is used. Values have to be positive
and have to be set in each shrinkage term.

t2=11

tau2 Provides a starting value of for the variance parameter τ2
j of the cor-

responding effect if the lasso- or the ridge-prior is used. Values have
to be positive and have to be set in each shrinkage term.

tau2=0.1

updateW The option updateWmay be used to specify how often the IWLS weight
matrix should be updated. updateW=0 means never, updateW=1 means
in every iteration (which is the default), updateW=2 means in every
second iteration and so on.

updateW=1

v0, v1 Hyperparameters that determine the modes of the marginal variances
if the NMIG-penalty is used. Values have to be nonnegative (*).

v0=0.005, v1=1

(*) these options are specified in the first covariate occurring in term
of the corresponding penalty.
(**) these options are specified in the first covariate occurring in term
of the corresponding penalty in the nonadaptive case and in each co-
variate in the adaptive case.

Table 7.4: Optional arguments for bayesreg object terms in alphabetical order (2).
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7.1.2.4 Specifying the response distribution

Supported univariate distributions are Gaussian, binomial (with logit or probit link), Poisson and
gamma. Supported multivariate models are multinomial logit or probit models for categorical
responses with unordered categories and the cumulative threshold model with probit link for cate-
gorical responses with ordered categories. Continuous survival times as well as multi-state models
can be analysed based on semiparametric models with Cox-type hazard rates, see subsections 7.1.2.5
and 7.1.2.6. An overview over the supported models is given in Table 7.6. The distribution of the
response is specified by adding the additional option family to the (global) options list of the
regression call. For instance, family=gaussian defines the response to be Gaussian distributed.
In some cases, one or more additional options associated with the specified response distribution
can be specified. An example is the reference option for multinomial responses, which defines
the reference category. In the following we give detailed instructions on how to specify the various
models.

Gaussian responses

For Gaussian responses BayesX assumes yi|ηi, σ2 ∼ N(ηi, σ
2/weightvari) or, equivalently, in matrix

notation y|η, σ2 ∼ N(η, σ2C−1), where C = diag(weightvar1, . . . , weightvarn) is a known weight
matrix. Gaussian regression models are obtained by adding

family=gaussian

to the options list.

An optional weight variable weightvar can be specified to estimate weighted regression models,
see subsubsection 10.1.2.1 for details. For grouped Gaussian responses, the weights represent the
number of observations in the groups if the yi’s are the average of individual responses. If the yis
are the sum of responses in every group, the weights are given by the reciprocal of the number
of observations in the groups. Of course, estimation of usual weighted regression models with
heteroscedastic errors is also possible. In this case, the weights should be proportional to the
reciprocal of the heteroscedastic variances. If no weight variable is specified, BayesX assumes
weightvari = 1, i = 1, . . . , n.

For Gaussian responses, the additional parameter σ2 for the error variancehas to be estimated.
An additional inverse gamma prior with hyperparameters aresp and bresp is defined for σ2. The
default for the hyperparameters is aresp=0.001 and bresp=0.001. The default values may be
changed using the aresp and bresp option. For instance, adding

aresp=0.01 bresp=0.01

to the options list set both a and b equal to 0.01.

Gamma distributed responses

In the literature, the density function of the gamma distribution is parameterized in various ways.
In the context of regression analysis, the density is usually parameterized in terms of the mean µ
and the scale parameter s. Then, the density of a gamma distributed random variable y is given
by

p(y) ∝ ys−1 exp

(
− s
µ
y

)
(7.1)

for y > 0. For the mean and the variance we obtain E(y) = µ and V ar(y) = µ2/s. We write
y ∼ G(µ, s).
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A second parameterization is typically employed for hyperparameters a and b of priors for variance
parameters in the context of Bayesian hierarchical models. In this case, the density is given by

p(y) ∝ ya−1 exp(−by) (7.2)

for y > 0. In this parameterization we obtain E(y) = a/b and V ar(y) = a/b2 for the mean and the
variance, respectively. We write y ∼ G(a, b)
In BayesX a gamma distributed response variable is parameterised in the first form (7.1). For the
rth observation BayesX assumes yr|ηr, ν ∼ G(exp(ηr), ν/weightvarr) where µr = exp(ηr) is the
mean and s = ν/weightvarr is the scale parameter. A gamma distributed response is specified by
adding

family=gamma

to the options list. An optional weight variable weightvar can be specified to estimate weighted
regression models, see subsubsection 10.1.2.1 for details.

In analogy to the variance parameter in Gaussian response models, we assume a Gamma prior
(second parameterization (7.2)) with hyperparameters aν and bν for the scale parameter ν, i.e. ν ∼
Gamma(aν , bν). The default for the hyperparameters is aν = 1 and bν = 0.005. The default values
may be changed using the aresp and bresp option.

Updating of the scale parameter ν is implemented via MH-steps based on a gamma proposal
distribution with mean E(νprop) = νc equal to the current state of the chain νc and a fixed variance
V ar(νprop). The variance V ar(νprop) can be considered a tuning parameter. It is specified by the
additional option gammavar. For example, when adding

gammavar=0.0001

V ar(νprop) = 0.0001 is used in the proposal distribution. The default is gammavar=0.001.

It is also possible to assume a fixed deterministic scale parameter. The scale parameter is defined
to be fixed by adding

scalegamma = fixed

to the options list. The (fixed) value of the scale parameter is specified by adding:

scale = realvalue

Typing e.g.

scale = 1

defines the scale parameter to be fixed at the value ν = 1.

Binomial logit and probit models

A binomial logit model is requested by the option

family=binomial

while a probit model is obtained by adding

family=binomialprobit

to the option list.

For logit models a weight variable may be specified in addition, see subsubsection 10.1.2.1 for
details. BayesX assumes that the weight variable corresponds to the number of replications and
the response variable to the number of successes. If a weight variable is omitted, BayesX assumes
that the number of replications is one, i.e. the values of the response must be either zero or one.
For probit models the specification of a weight variable is not allowed.
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Multinomial logit and probit models

A multinomial logit model is specified by adding the option

family=multinomial

to the options list, while a multinomial probit model is requested by

family=multinomialprobit

A further option (reference) can be added to the options list to define the reference category. If
the response variable has three categories 1, 2 and 3, the reference category can be set to 2, by
adding

reference=2

to the options list. If the option is omitted, the smallest number will be used as the reference
category.

Cumulative threshold models

So far, bayesreg objects support only cumulative probit models. Such a model is specified by adding

family=cumprobit

to the options list. The reference category will always be the largest value of the response and can
not be changed by the user.

An important problem with Bayesian cumulative threshold models is the mixing and convergence
of MCMC samples for the threshold parameters. Usually the mixing is relatively poor implying
the necessity for quite large MCMC samples in order to obtain reliable estimation results. An
exception are cumulative models with three categories of the response. In this case, BayesX uses
a reparameterized model for which the mixing of the threshold parameters is typically quite sat-
isfactory. A description of this reparameterization can be found in Fahrmeir & Lang (2001) or
in Chen & Dey (2000). However, parameter estimates are given in the original parameterization.
To estimate three categorical response models without reparameterization the additional option
notransform can be added to the options list (not recommended).

Poisson regression

A Poisson regression model is specified by adding

family=poisson

to the options list.

A weight variable may be specified in addition, see subsubsection 10.1.2.1 for details. For grouped
Poisson data, the weights must be the number of observations in a group and the responses are
assumed to be the average of individual responses.

7.1.2.5 Continuous time survival analysis

BayesX offers two alternatives of estimating continuous time survivals models with semiparametric
predictor η, both of which are described in subsection 7.2 of the methodology manual. The first
alternative is to assume that all time-dependent values are piecewise constant, leading to the so
called piecewise exponential model (p.e.m.). The second alternative is to estimate the log-baseline
effect log(λ0(t)) = f0(t) based on a P-spline with second order random walk penalty.
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Piecewise exponential model (p.e.m.)

In subsection 7.2 of the methodology manual we demonstrated how continuous time survival data
has to be manipulated to transform it to a Poisson for model estimation. Suppose that the following
modified data set is available

y indnr a δ ∆ x1 x2

0 1 0.1 1 log(0.1) 0 3
0 1 0.2 1 log(0.1) 0 3
1 1 0.3 1 log(0.05) 0 3

0 2 0.1 0 log(0.1) 1 5
0 2 0.2 0 log(0.02) 1 5
...

...
...

...
...

...
...

with indicator y, interval limit a, indicator of non-censoring δ and offset ∆ defined as in subsection
7.2 of the methodology manual. Let x1 be a covariate with linear effect and x2 a continuous
covariate with nonlinear effect. Then the correct syntax for estimating a p.e.m. with a bayesreg
object named b would be as follows:

> b.regress y = a(rw1) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

or

> b.regress y = a(rw2) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

Note that a time-varying effect of an additional covariate X may be estimated by simply adding the
term

X*a(rw1) or X*a(rw2)

to the model statement.

Specifying a P-spline prior for the log-baseline

For a continuous time survival model with a P-spline prior with second order random walk penalty
for the baseline effect,

family=cox

has to be specified in the options list. The number of knots and degree of the P-spline prior for f0(t)
can be specified as additional options for the baseline term. Note that it is obligatory that there is
a baseline term specified for the vector of observed duration times. The indicator of non-censoring
δi has to be specified as the dependent variable in the model statement. Data augmentation and
the specification of an offset term are not required here. To handle left truncation and time-varying
covariates, the additional variable beginvar, that records when the observation became at risk,
may be specified by adding begin=beginvar to the options list.

In the example above with survival data

t δ x1 x2

0.25 1 0 3

0.12 0 1 5
...

...
...

...

a continuous time survival model with a quadratic P-spline prior with 15 knots for the log-baseline
would be estimated as follows:
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Figure 7.1: Schematic representation of sleep stages and transitions of interest.

> b.regress delta = t(baseline,degree=2,nrknots=15)+ x1 + x2(psplinerw2),

family=cox

Again a time-varying effect of a covariate X can be estimated by simply adding the term

X*time(baseline)

to the model statement.

7.1.2.6 Continuous time multi-state models

Multi-state models describe the temporal development of discrete phenomena in continuous time
based on transition intensities for each of the observable transition types. Consider for example a
multi-state model for human sleep as depicted in Figure 7.1 and that the transition intensities for
the four possible transitions are specified as

λAS,i(t) = exp
[
g
(AS)
0 (t) + b

(AS)
i

]
,

λSA,i(t) = exp
[
g
(SA)
0 (t) + b

(SA)
i

]
,

λNR,i(t) = exp
[
g
(NR)
0 (t) + ci(t)g

(NR)
1 (t) + b

(NR)
i

]
λRN,i(t) = exp

[
g
(RN)
0 (t) + ci(t)g

(RN)
1 (t) + b

(RN)
i

]
Each of the transitions is parameterised in terms of a baseline effect g

(h)
0 (t) and a transition specific

frailty term (random effect) b
(h)
i . In addition, time-varying effects g

(h)
1 (t) of binary indicators ci(t)

for a high blood level of cortisol are introduced for the transitions between REM and Non-REM.

The corresponding data set should be arranged as follows:

id st beg end tas tsa trn tnr cort corthigh

1 2 0 1 0 1 0 0 52.6 0

1 1 1 5 1 0 0 0 52.6 0

1 2 5 8 0 1 0 0 52.6 0

1 1 8 10 1 0 0 0 52.6 0

1 2 10 36 0 0 0 0 52.6 0

1 2 36 76 0 0 0 0 46.9 0

1 2 76 108 0 0 0 1 47.5 0

1 3 108 109 0 0 1 0 47.5 0
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1 2 109 110 0 0 0 1 47.5 0

1 3 110 111 0 0 1 0 47.5 0

1 2 111 115 0 0 0 1 47.5 0

1 3 115 116 0 0 0 0 47.5 0

1 3 116 126 0 0 1 0 37.4 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

2 2 0 12 0 1 0 0 22.5 0

2 1 12 15 1 0 0 0 22.5 0

2 1 15 28 0 1 0 0 88.6 1

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Each path observed for the multi-state model is transformed into several lines in the data set,
where id identifies the original paths. In the above example, parts of the first two observations
are displayed. Each line of the data set represents a time interval identified by the variables beg
and end. Variable st indicates the current state of the process. Note that the states have to
be numbered consecutively from 1 to H. Since we are considering continuous time scales, an
observation should start at t = 0 (unless the observation is left truncated) and the variables beg
and end should be generated so that within each observation process beg equals the value of end
in the previous row (unless observations are fragmentary only).

The variables tas, tsa, trn and tnr are binary indicators for the four transitions sleep → awake
(tsa), awake → sleep (tas), Non-REM → REM (tnr) and REM → Non-REM (trn). Such an
indicator equals one if the corresponding transition is observed at the end of the interval and zero
otherwise. Note that there are lines in the data set, where none of the transitions is observed.
These correspond to intervals where the value of the time-varying covariate cort (cortisol-level)
changes. The variable corthigh is a dichotomized version of cort which indicates a high level of
cortisol (cort>60).

The model specified above is estimated by entering the following command

> bayesreg msm

> msm.mregress tas = end(baseline) + id(random):

tsa = end(baseline) + id(random):

trn = end(baseline) + corthigh*end(baseline) + id(random):

tnr = end(baseline) + corthigh*end(baseline) + id(random),

family=multistate begin=beg state=st iterations=30000 burnin=10000

step=20 using sleep

Note that a separate model equation has to specified for each transition with the binary transition
indicator as response. Instead of method regress, method mregress has to be called since multiple
model equations are combined. The right and the left boundary of the time intervals have to
specified as covariate for the the baseline effect and as global option begin, respectively. Similarly,
the state variable has to specified via the global option state.

More details about Bayesian semiparametric multi-state models including a detailed description of
the human sleep data application can be found in Kneib & Hennerfeind (2006).
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7.1.3 Options

Options for controlling MCMC simulations

Options for controlling MCMC simulations are listed in alphabetical order.

• burnin = integer
Changes the number of burn-in iterations to integer, where integer must be a positive integer
number or zero (i.e. no burn-in period). The number of burn-in iterations must be smaller
than the number of iterations (see option iterations).
DEFAULT: burnin=2000

• iterations = integer
Changes the number of MCMC iterations to integer, where integer must be a positive integer
number. The number of iterations must be larger than the number of burn-in iterations.
DEFAULT: iterations=52000

• maxint = integer
If first or second order random walk priors are specified, in some cases the data will be
slightly grouped: The range between the minimal and maximal observed covariate values will
be divided into (small) intervals, and for each interval one parameter will be estimated. The
grouping has almost no effect on estimation results as long as the number of intervals is large
enough. With the maxint option the amount of grouping can be determined by the user.
integer is the maximum number of intervals allowed. For equidistant data, maxint = 150 for
example, means that no grouping will be done as long as the number of different observations
is equal to or below 150. For non equidistant data some grouping may be done even if the
number of different observations is below 150.
DEFAULT: maxint=150

• step = integer
Defines the thinning parameter for MCMC simulation. For example, step = 50 means, that
only every 50th sampled parameter will be stored and used to compute characteristics of
the posterior distribution as means, standard deviations or quantiles. The aim of thinning
is to reach a considerable reduction of disk storing and autocorrelations between sampled
parameters.
DEFAULT: step=50

Options for specifying the response distribution

Options for specifying the response distribution are listed in alphabetical order below.

• aresp = realvalue
Defines the value of the hyperparameter a for the inverse gamma prior of the overall variance
parameter σ2, if the response distribution is Gaussian. realvalue must be a positive real valued
number.
DEFAULT: aresp=1

• bresp = realvalue
Defines the value of the hyperparameter b for the inverse gamma prior of the overall variance
parameter σ2, if the response distribution is Gaussian. realvalue must be a positive real valued
number.
DEFAULT: bresp=0.005
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level1=99

to the options list computes credible intervals for a nominal level of 99% rather than 95%.

• level2 = integer
Besides the posterior means and medians, BayesX provides pointwise posterior credible in-
tervals for every effect in the model. In a Bayesian approach based on MCMC simulation
techniques credible intervals are estimated by computing the respective quantiles of the sam-
pled effects. By default, BayesX computes (pointwise) credible intervals for nominal levels
of 80% and 95 %. The option level2 allows to redefine one of the nominal levels (80%).
Adding, for instance,

level2=70

to the options list computes credible intervals for a nominal level of 70% rather than 80%.

• predict

Option predict may be specified to compute samples of the deviance D, the effective
number of parameters pD and the deviance information criterion DIC of the model, see
Spiegelhalter et al. (2002). The computation of these quantities is based on the unstan-
dardized deviance which is defined as D(θ) = −2 log(p(y|θ)) where θ = (µ, σ2) for Gaussian
responses and θ = µ for non-Gaussian responses. The effective number of parameters is
defined by pD = D(θ) − D(θ̄) where D(θ) is the posterior mean deviance and D(θ̄) is the
deviance of the posterior mean of θ. The deviance information criterion is defined as

DIC = D(θ) + pD = D(θ̄) + 2pD

. BayesX prints sample properties of the deviance, the effective number of parameters pD and
the DIC in the output window or in an open log file. The complete sample of the deviance
is stored in a file with ending deviance.raw. The complete filename including the storage
folder is given in the output window or the log file. The last two entries of that file contain
again the effective number of parameters pD and the DIC. Additionally, a file with ending
predictmean.raw is created that contains for every observation the posterior mean of the
predictor ηi and the expectation E(yi|ηi) = µi as well as the saturated deviance Dsat

i and
leverage statistics pDi . The saturated deviance is defined as D(µ, σ2) = −2 log(p(y|µ, σ2)) +
2 log(p(y|µ = y, σ2)). For non-Gaussian responses the variance σ2 disappears. The individual
saturated deviance Dsat

i can be used to compute deviance residuals. The deviance residuals
are given by ri = sign(yi−µi)

√
Dsat

i . The leverage statistics pDi is defined as the contribution
of the ith observation to pD. More details about the quantities discussed above can be found
in Spiegelhalter et al. (2002). To clarify the computation of D, pD, DIC etc. Table 7.7
provides formulas of the p.d.f. and the (unstandardized) deviance D for the different response
distributions provided in BayesX.

7.1.4 Estimation output

The way the estimation output is presented depends on the estimated model. Estimation results
of fixed effects are displayed in a tabular form in the output window and/or in a log file (if cre-
ated before). Shown will be the posterior mean, the standard deviation, the 2.5% and the 97.5%
quantiles. Other quantiles may be obtained by specifying the level1 and/or level2 option, see
subsection 7.1.3 for details. Additionally a file is created where estimation results for fixed effects
are replicated. The name of the file is given in the output window and/or in a log file. Estimation
effects of nonlinear effects of continuous and spatial covariates as well as unstructured random
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distribution density D =-2 Loglikelihood

Gaussian p(y|µ, σ2) = 1√
2πσ2/c

log(2πσ
2

c ) + c
σ2 (y − µ)2

exp(− c
2σ2 (y − µ)2)

Binomial p(y|µ) ∝ µy(1− µ)c−y −2y log(µ)− 2(c− y) log(1− µ)
Poisson p(y|µ) ∝ exp((y log(µ)− µ)c) −2c(y log(µ)− µ)

Negative Binomial p(y|µ, δ) ∝ Γ(y+δ)
Γ(δ)

(
δ

δ+µ

)δ (
µ

δ+µ

)y
−2{log(Γ(y + δ))− log(Γ(δ)) + δ log(δ)

+y log(µ)− (δ + y) log(δ + µ)}
Zero inflated p(0|µ, θ) = θ + (1− θ) exp(−µ) −2 log(θ + (1− θ) exp(−µ))
Poisson p(y|µ, θ) ∝ (1− θ) exp(−µ)µy −2 log(1− θ)− 2(y log(µ)− µ)

Zero inflated p(0|µ, δ, θ) = θ + (1− θ)
(

δ
δ+µ

)δ
−2 log

(
θ + (1− θ)

(
δ

δ+µ

)δ
)

Negative Binomial p(y|µ, δ, θ) ∝ (1− θ)Γ(y+δ)
Γ(δ) −2{log(1− θ)(

δ
δ+µ

)δ (
µ

δ+µ

)y
+ log(Γ(y + δ))− log(Γ(δ)) + δ log(δ)

+y log(µ)− (δ + y) log(δ + µ)}
Multinomial logit p(y|µ) ∝

∏
µ
yj
j −2(

∑
yj log(µj))

Multinomial probit not available

Cumulative probit p(y|µ) ∝
∏
µ
yj
j −2(

∑
yj log(µj))

Table 7.7: Formulas of the probability densities, the unstandardized deviance and the saturated deviance for
the various response distributions. The quantity c in the formulas corresponds to the weights specified in a
weight statement, see weightspecification for details on how to specify weights. In the case of multinomial
logit and cumulative probit models the variables yj are indicator variables where yj = 1 denotes that the j-th
category of the response y has been observed.

effects are presented in a different way. Results are stored in an external ASCII-file whose con-
tents can be read into any general purpose statistics program (e.g. STATA, R, S-plus) to further
analyze and/or visualize the results. The structure of the files is as follows: There will be one file
for every nonparametric effect in the model. The name of the files and the storing directory are
displayed in the output window and/or a log file. The files contain ten or eleven columns depending
on whether the corresponding model term is an interaction effect. The first column contains a
parameter index (starting with one), the second column (and the third column if the estimated
effect is a two-dimensional P-spline) contain the values of the covariate(s) whose effect is estimated.
In the following columns the estimation results are given in form of the posterior means and the
2.5%, 10%, 50%, 90% and 97.5% quantiles. The last two columns contain posterior probabilities
based on nominal levels of 95% and 80%. A value of 1 corresponds to a strictly positive 95% or 80%
credible interval and a value of -1 to a strictly negative credible interval. A value of 0 indicates that
the corresponding credible interval contains zero. Other quantiles may be obtained by specifying
the level1 and/or level2 option, see subsection 7.1.3 for details. As an example compare the
following few lines, that are the beginning of a file containing the results for a particular covariate,
x say:

intnr x pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80
1 -2.778436 -0.0730973 -0.349922 -0.259827 -0.0765316 0.109233 0.211572 0 0
2 -2.723671 -0.167492 -0.39718 -0.322043 -0.168924 -0.0167056 0.075335 0 -1
3 -2.633617 -0.320366 -0.497797 -0.433861 -0.321034 -0.198619 -0.129246 -1 -1
4 -2.547761 -0.455913 -0.623495 -0.560266 -0.458746 -0.347443 -0.296006 -1 -1
5 -2.455208 -0.591498 -0.744878 -0.694039 -0.592381 -0.484629 -0.440857 -1 -1
6 -2.385378 -0.687709 -0.858153 -0.802932 -0.687944 -0.577029 -0.522391 -1 -1
7 -2.34493 -0.736406 -0.914646 -0.851548 -0.73536 -0.623369 -0.561035 -1 -1
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8 -2.291905 -0.785899 -0.962212 -0.895262 -0.783646 -0.674511 -0.609532 -1 -1
9 -2.178096 -0.876173 -1.0428 -0.982029 -0.877516 -0.768126 -0.708452 -1 -1

Note that the first row always contains the names of the variables in the ten columns.

The estimated nonlinear effects can be visualized by using either the graphics capabilities of BayesX
or the BayesX R package, see section 11.1 and section 11.2, respectively. Of course, any other
(statistics) software package with plotting facilities may be used as well.

7.1.5 Examples

Here we give only a few examples about the usage of method regress. More detailed examples
can be found in chapter 1 of the tutorial manual.

Suppose that we have a data set test with a binary response variable y, and covariates x1, x2, x3
and t, where t is assumed to be a time scale measured in months. Suppose further that we have
already created a bayesreg object b.

Fixed effects

We first specify a model with y as the response variable and fixed effects for the covariates x1, x2
and x3. Hence the predictor is

η = γ0 + γ1x1 + γ2x2 + γ3x3

This model is estimated by typing:

> b.regress y = x1 + x2 + x3, iterations=12000 burnin=2000

step=10 family=binomial using test

Here, step=10 defines the thinning parameter, i.e. only every 10th sampled parameter will be
stored and used for estimation. test is the data set that is used for estimation. By specifying
option family=binomial, a binomial logit model is estimated. A probit model can be estimated
by specifying family=binomialprobit.

Additive models

Suppose now that we want to allow for possibly nonlinear effects of x2 and x3. Defining cubic
P-splines with second order random walk penalty as smoothness priors, we obtain

> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2), iterations=12000

burnin=2000 step=10 family=binomial using test

which corresponds to the predictor

η = γ0 + γ1x1 + f1(x2) + f2(x3).

Suppose now for a moment that the response is not binary but multicategorical with unordered
categories 1, 2 and 3. In that case we can estimate either a multinomial logit or a probit model. A
logit model is estimated by typing:

> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2), iterations=12000

burnin=2000 step=10 family=multinomial reference=2 using test

That is, family=binomial was altered to family=multinomial, and the option reference=2 was
added in order to define the value 2 as the reference category. Accordingly, a multinomial probit
model is estimated by typing
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> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2), iterations=12000

burnin=2000 step=10 family=multinomialprobit reference=2 using test

Time scales

In our next step we extend the model by incorporating an additional trend and a flexible seasonal
component for the time scale t:

> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) + t(psplinerw2) +

t(season,period=12), iterations=12000 burnin=2000 step=10

family=binomial using test

Note that we passed the period of the seasonal component as a second argument.

Spatial covariates

Suppose now that we have an additional spatial covariate region, which indicates the geographical
region an observation belongs to. To incorporate a structured spatial effect, we first have to create
a map object and read in the boundary information of the different regions (polygons that form the
regions, neighbors etc.). If you are unfamiliar with map objects please read chapter 5 first.

> map m

> m.infile using c:\maps\map.bnd

In a second step we reorder the regions of the map using the reorder command to obtain minimal
bandwidths of the corresponding adjacency matrix of the map. This usually speeds up MCMC
simulation for spatial effects.

> m.reorder

Since we normally need the map again in further sessions, we store the reordered map in graph file
format, because reading graph files is much faster than reading boundary files.

> m.outfile , graph using c:\maps\mapgraph.gra

We can now extend our predictor with a spatial effect:

> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) + t(psplinerw2) +

t(season,period=12) + region(spatial,map=m), iterations=12000 burnin=2000

step=10 family=binomial using test

In some situations it may be reasonable to incorporate an additional unstructured random effect
into the model in order to split the total spatial effect into a structured and an unstructured
component. This is done by typing

> b.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) + t(psplinerw2) +

t(season,period=12) + region(spatial,map=m) + region(random), iterations=12000

burnin=2000 step=10 family=binomial using test

7.2 Method autocor

Description

This method is a post estimation command, i.e. its usage is meaningful only if method regress
has been applied before. Method autocor computes the autocorrelation functions of all
sampled (and stored) parameters. The computed functions will be written to an external
file whose name and storing path is printed in the output window and/or an additional log
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file. The computed autocorrelations can be visualized by using either method plotautocor

of graph objects or the R function plotautocor.

Syntax

> objectname.autocor [, options]

The execution of this command computes autocorrelation functions for all sampled and stored
parameters. An error will be raised if regression results are not yet available. The computed
functions will be stored in an external file. The storing directory will be the current output
directory of the bayesreg object. By default, this directory is <INSTALLDIRECTORY>\output,
but the current output directory may be changed by redefining the global option outfile,
see section 7.4. The filename will be the current output name extended by the ending
_autocor.raw. By default, the output name is the name of the particular bayesreg ob-
ject. Thus, if for example your bayesreg object name is bayes, the complete filename will be
bayes_autocor.raw. Once again, the default output name may be changed using the global
option outfile (section 7.4). Note that the autocorrelation file will be overwritten when-
ever method autocor is applied. As a remedy the current output directory and/or output
name should be changed before estimating a new model, using the global option outfile, see
section 7.4.

The structure of the file with the stored autocorrelation functions is the following: The com-
puted functions are stored in a matrix like fashion. For every parameter the autocorrelation
function will be stored columnwise, with autocorrelation for lag 1 in row 1, for lag 2 in row 2
and so on. The first column of the file contains the lag number. In addition, for each term in
the estimated model, minimum, mean and maximum autocorrelations will be computed and
stored. Note finally that the very first row of the file contains the column names.

The computed autocorrelations can be visualized by using either method plotautocor of
graph objects or the R function plotautocor. However, since the structure of the file is very
simple, the visualization of the functions can be done with every software package which has
graphics capabilities.

Options

• maxlag = integer
With the maxlag option, the maximum lag number for computing autocorrelations may be
specified. integer must be a positive integer valued number.
DEFAULT: maxlag=250

Examples

Suppose we have already defined a bayesreg object b and estimated a (simple) regression model
with Gaussian responses using the following regress statement

> b.regress Y = X, family=gaussian using d

where d is the analyzed data set. The model contains only a fixed effect for covariate X and
an intercept. We may now want to check the mixing of the sampled parameters (one for
the overall variance parameter, one for the intercept and one for the fixed effect of X) by
computing autocorrelation functions. The following statement computes autocorrelations up
to lag 100 and stores the result in the default output directory with filename b_autocor.raw:

> b.autocor, maxlag=100
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The default output directory is <INSTALLDIRECTORY>\output. So if, for in-
stance, BayesX is installed in c:\bayes, the autocorrelation functions will the stored in
c:\bayes\output\b_autocor.raw. If you wish to store the file in another directory, c:\data
say, and under another name, for example estimate1, you must use the global option outfile

before estimation (see also section 7.4). The following commands produce the desired result
(program output between the different statements omitted):

> b.outfile = c:\data\estimate1

> b.regress Y = X, family=gaussian using d

> b.autocor , maxlag=100

Now the autocorrelation functions will be stored under c:\data\estimate1_autocor.raw.
The computed autocorrelation functions may now be visualized using the R function
plotautocor. The function plots the autocorrelation functions for all estimated parame-
ters (in our example only three) against the lag number. If the option mean.autocor=T is
specified, only minimum, mean and maximum autocorrelations for each term in the model
are plotted against the lag number. Obviously, this is much faster than the first alternative,
where the autocorrelation functions of all parameters are plotted.

The autocorrelation functions can be plotted directly in BayesX using method plotautocor

of graph objects. For that purpose, the computed autocorrelation functions must be first read
into BayesX as a new data set, a say, and then visualized using method plotautocor of graph
objects. The following commands produce the desired results:

> b.outfile = c:\data\estimate1

> b.regress Y = X, family=gaussian using d

> b.autocor, maxlag=100

> dataset a

> a.infile using c:\data\estimate1_autocor.raw

> graph g

> g.plotautocor using a

A third way for plotting autocorrelation functions is given by applying method plotautocor

of bayesreg objects. Here autocorrelations are computed and plotted in one step.
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7.3 Method getsample

Description

This method is a post estimation command, that is only meaningful if method regress has
been applied before. With method getsample all sampled parameters will be stored in (one or
more) ASCII file(s). Afterwards, sampling paths can be plotted and stored in a postscript file
either by using method plotsample of graph objects or by using the R function plotsample.
Of course, any other program with graphics capacities could be used as well.

Syntax

> objectname.getsample

This command stores all sampled parameters in ASCII file(s). An error will be raised, if
regression results are not yet available. The storing directory will be the current output direc-
tory of the bayesreg object. By default, this directory is <INSTALLDIRECTORY>\output,
but you can change the current output directory by redefining the global option outfile.
The filenames will be the current output name extended by an ending depending on the
type of the estimated effect. For example for fixed effects, the complete filename will be
b_FixedEffects1_sample.raw, if b is the name of the bayesreg object. The total number of
created files and their filenames are printed in the output window and/or an open log file. By
default, the output name is the name of the bayesreg object. Once again, the default name
may be changed using the global option outfile. Note that it can happen that some or
all files will be overwritten, if method getsample is applied more than once with the same
bayesreg object. To avoid such problems change the current output directory and/or output
name before estimating a new model using the global option outfile.

The structure of the created files is as follows: The very first row contains the parameter
names. In the following lines, the parameters are stored in a matrix like fashion. In the first
row (to be precise the second row, since the first contains the names) the first sampled value
of each parameter separated by blanks is stored. In the second row the second value is stored
and so on. In the first column of each row the sampling number is printed.

Options

not allowed

Examples

Suppose we have already defined a bayesreg object b and estimated a (simple) regression model
with Gaussian errors using the following regress statement:

> b.regress Y = X, family=gaussian using d

The model contains only a fixed effect for covariate X and an intercept. We may now want
to check the mixing of the sampled parameters (one for the overall variance σ2, one for
the intercept and one for X) by storing sampled parameters in an ASCII-file and visualizing
sampling paths. The statement

> b.getsample

forces BayesX to store the sampled parameters in files named:

b_FixedEffects1_sample.raw

b_intercept_sample.raw

b_scale_sample.raw
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The storing directory is the current output directory, which is by default
<INSTALLDIRECTORY\output. The current output directory can be changed using the
global option outfile. For example the two commands

> b.outfile = c:\data\estimate1

> b.getsample

force the program to store the sampled parameters in the files:

c:\data\estimate1_FixedEffects1_sample.raw.
c:\data\estimate1_intercept_sample.raw

c:\data\estimate1_scale_sample.raw

The first few lines of the first file look like this:

intnr b 1
1 -2.00499
2 -1.97745
3 -1.98498
4 -1.97108
5 -2.00004

...

We can now visualize the sampling paths directly using method plotsample of graph objects.
We first read in sampled parameters by typing:

> dataset s1

> s1.infile using c:\data\estimate1_FixedEffects1_sample.raw

We proceed by creating a graph object g and applying method plotsample:

> graph g

> g.plotsample using s1

Alternatively we could use R function plotsample for visualizing sampling paths. We type,
for instance

> plotsample("c:\\data\\estimate1_FixedEffects1_sample.raw")

7.4 Global options

The purpose of global options is to affect the global behavior of a bayesreg object. The main
characteristic of global options is, that they are not associated with a certain method.

The syntax for specifying global options is

> objectname.optionname = newvalue

where newvalue is the new value of the option. The type of the value depends on the respective
option.

The following global options are currently available for bayesreg objects:

• outfile = filename
By default, the estimation output produced by the regress procedure will be written to the
default output directory, which is

<INSTALLDIRECTORY>\output.
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The default filename is composed of the name of the bayesreg object and the type of the
file. For example, if you estimated a nonparametric effect for a covariate X, say, then the
estimation output will be written to

<INSTALLDIRECTORY>\output\b_nonpX.res

where b is the name of the bayesreg object. In most cases, however, it may be necessary to
save estimation results into a different directory and/or under a different filename than the
default. This can be done using the outfile option. With the outfile option you have to
specify the directory where the output should be stored to and in addition a base filename.
The base filename should not be a complete filename. For example specifying

> b.outfile = c:\data\res

would force BayesX to store the estimation result for the nonparametric effect of X in file

c:\data\res_nonpX.res

• iterationsprint = integer

By default, the current iteration number is printed in the output window (or in an additional
log file) after every 100th iteration. This can lead to rather big and complex output files. The
iterationsprint option allows to redefine after how many iterations the current iteration
number is printed. For example iterationsprint=1000 forces BayesX to print the current
iterations number only after every 1000th iteration rather than after every 100th iteration.

7.5 Visualizing estimation results

Visualization of estimation results is described in chapter 11.

7.6 Examples

In this Section we present a couple of complex examples about the usage of bayesreg objects.
The first example contains a reanalysis of the ’credit scoring’ data set that is described in
subsection 2.6.2, which contains also a (incomplete) list of some publications where the ’credit
scoring’ data set has already been analyzed. The second example is a Bayesian analysis of determi-
nants of childhood undernutrition in Zambia. The data set is described in subsection 2.6.3. This
section contains also a list of publications where the data set has been analyzed. Both data sets are
shipped together with BayesX and are stored in the directory examples, which is a subdirectory of
the installation directory. Since the main focus here is on illustrating the usage of bayesreg objects,
we omit any interpretation of estimated effects.

7.6.1 Binary data: credit scoring

All BayesX statements of this section can be found in the examples directory in the file credit.prg.
In principle, the commands in credit.prg can be executed using the usefile command for running
batch files, see section 3.5. Note, however, that the specified directories therein may not exist on
your computer. Thus, to avoid errors, the file must be modified first to execute correctly.

7.6.1.1 Reading the data into BayesX

In order to analyze the ’credit scoring’ data set, we first have to load the data set into BayesX.
For the rest of this section we assume that BayesX is installed in the directory c:\bayes. In this
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case, the ’credit scoring’ data set can be found in c:\bayes\examples under the name credit.raw.
With the following two commands (entered in the command window) we first create a dataset object
credit and afterwards load the data set into BayesX using the infile command:

> dataset credit

> credit.infile using c:\bayes\examples\credit.res

Since the first row of the file already contains the variable names, it is not necessary to specify
variable names in the infile statement. If the first row of the data set does not contain the
variable names, they must be additionally specified in the infile command, e.g. for the ’credit
scoring’ data set we get

> credit.infile y account duration amount payment intuse marstat

using c:\bayes\examples\credit.res

We now compute effect coded versions of the categorical covariates account, payment, intuse and
marstat:

> credit.generate account1 = 1*(account=1)-1*(account=3)

> credit.generate account2 = 1*(account=2)-1*(account=3)

> credit.generate payment1 = 1*(payment=1)-1*(payment=2)

> credit.generate intuse1 = 1*(intuse=1)-1*(intuse=2)

> credit.generate marstat1 = 1*(marstat=1)-1*(marstat=2)

The reference categories for the covariates are chosen to be 3 for account and 2 for the others.

7.6.1.2 Creating a bayesreg object

Before we are able to estimate Bayesian regression models, we first have to create a bayesreg object:

> bayesreg b

> b.outfile = c:\results\credit

The second command changes the default output directory and name (which is
c:\bayes\output\b) to c:\results\credit. This means that subsequent regression out-
put is stored in the directory c:\results and that all filenames start with credit.

7.6.1.3 Probit models

We can now start estimating models. We first describe how probit models are estimated. The
estimation of probit models is slightly faster than logit models because the full conditionals of the
effects are Gaussian.

We first estimate a model with fixed effects only:

> b.regress y = account1 + account2 + duration + amount + payment1 + intuse1

+ marstat1, predict iterations=6000 burnin=1000 step=5 family=binomialprobit

using credit

Here we specified 6000 iterations, a burnin period of 1000 iterations and a thinning parameter
of 5, i.e. every 5th sampled parameter will be stored and used for estimation. The additional
option predict is used to compute samples of the deviance, the effective number of parameters,
the deviance information criterion (DIC), predicted means etc.

Executing the command yields the following output (simulation output omitted):

SIMULATION TERMINATED
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SIMULATION RUN TIME: 13 seconds

ESTIMATION RESULTS:

Predicted values:

Estimated mean of predictors, expectation of response and

individual deviances are stored in file

c:\results\credit_predictmean.raw

Estimation results for the Deviance:

Unstandardized Deviance (-2*Loglikelihood(y|mu))

Mean: 1027.05

Std. Dev: 4.22501

2.5% Quantile: 1021.01

10% Quantile: 1022.48

50% Quantile: 1026.29

90% Quantile: 1032.73

97.5% Quantile: 1037.28

Saturated Deviance (-2*Loglikelihood(y|mu) + 2*Loglikelihood(y|mu=y))

Mean: 1027.05

Std. Dev: 4.22501

2.5% Quantile: 1021.01

10% Quantile: 1022.48

50% Quantile: 1026.29

90% Quantile: 1032.73

97.5% Quantile: 1037.28

Samples of the deviance are stored in file

c:\results\credit_deviance_sample.raw

Estimation results for the DIC:

DIC based on the unstandardized Deviance

Deviance(bar_mu): 1018.85

pD: 8.20049

DIC: 1035.26

DIC based on the saturated Deviance

Deviance(bar_mu): 1018.85

pD: 8.20049

DIC: 1035.26

FixedEffects1
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Acceptance rate: 100 %

Variable mean Std. Dev. 2.5% quant. median 97.5% quant.

const -0.715437 0.117673 -0.9464 -0.710836 -0.49298

account1 -0.629553 0.0684571 -0.764526 -0.6244 -0.50343

account2 0.50699 0.0625032 0.389608 0.506698 0.63888

duration 0.0204795 0.00471734 0.0111948 0.0205776 0.0298505

amount 0.0172111 0.0189096 -0.0173778 0.0167277 0.0542619

payment1 -0.2919 0.0762402 -0.438703 -0.288309 -0.152512

intuse1 -0.137287 0.0477423 -0.228492 -0.137755 -0.041511

marstat1 -0.158195 0.0476991 -0.254198 -0.157534 -0.0663364

Results for fixed effects are also stored in file

c:\results\credit_FixedEffects1.res

Somewhat surprisingly, we observe that the amount of credit seems to have no (’significant’) in-
fluence on the response. To check this phenomenon more carefully, we run a second estimation,
now allowing for possibly nonlinear effects of the continuous covariates amount and duration. We
choose cubic P-splines with second order random walk penalty as smoothness priors and modify
the regress statement above according to the new model:

> b.regress y = account1 + account2 + duration(psplinerw2) + amount(psplinerw2)

+ payment1 + intuse1 + marstat1, predict iterations=6000 burnin=1000 step=5

family=binomialprobit using credit

We get the following output for the nonlinear functions (output for the rest omitted):

f_duration_pspline

Acceptance rate: 100 %

Results are stored in file c:\results\credit_f_duration_pspline.res

Postscript file is stored in file c:\results\credit_f_duration_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 1

f_duration_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00787338

Std. dev.: 0.0100301

2.5% Quantile: 0.00128376

10% Quantile: 0.00190016

50% Quantile: 0.00487717

90% Quantile: 0.0157856

97.5% Quantile: 0.0315107
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Results for the variance component are also stored in file

c:\results\credit_f_duration_pspline_var.res

f_amount_pspline

Acceptance rate: 100 %

Results are stored in file c:\results\credit_f_amount_pspline.res

Postscript file is stored in file c:\results\credit_f_amount_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 3

f_amount_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00870842

Std. dev.: 0.0115895

2.5% Quantile: 0.0013844

10% Quantile: 0.00220351

50% Quantile: 0.00570725

90% Quantile: 0.0164858

97.5% Quantile: 0.0340326

Results for the variance component are also stored in file

c:\results\credit_f_amount_pspline_var.res

We visualize estimated effects for amount and duration using method plotnonp (as advised by
the program):

> b.plotnonp 1, outfile="c:\results\credit_duration.ps"

> b.plotnonp 3, outfile="c:\results\credit_amount.ps"

This produces the graphs (stored in postscript files) shown in Figure 7.2.

We add a title, x-axis and y-axis labels by typing

> b.plotnonp 1, outfile="c:\results\credit_duration.ps" replace

xlab="duration" ylab="f(duration)" title="effect of duration"

> b.plotnonp 3, outfile="c:\results\credit_amount.ps" replace

xlab="amount" ylab="f(amount)" title="effect of amount"

and obtain the improved graphs shown in Figure 7.3. The option replace is specified to allow
BayesX to overwrite the previously generated postscript files. If the outfile option is omitted,
the graphs are printed on the screen rather than being stored as postscript files.

We now want to check the mixing of the generated Markov chains, although the mixing for probit
models is usually excellent. For that reason we compute and plot the autocorrelation functions by
typing:

> b.plotautocor, outfile="c:\results\credit_autocor.ps"
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Figure 7.2: Estimated effects of duration and amount of credit. Shown is the posterior mean
within 80% and 95% credible regions.

We obtain the file c:\results\credit_autocor.ps containing 9 pages of autocorrelation functions
for all parameters in the model. The first page of this file is shown in Figure 7.4. We see that
autocorrelations die off very quickly.
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Figure 7.3: Improved plots of the effect of duration and amount.
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Figure 7.4: First page of the autocorrelation file.
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7.6.1.4 Logit models

A logit model rather than a probit model is estimated by replacing family=binomialprobit with
family=binomial:

> b.regress y = account1 + account2 + duration(psplinerw2) + amount(psplinerw2)

+ payment1 + intuse1 + marstat1, predict iterations=6000 burnin=1000 step=5

family=binomial using credit

In contrast to binary probit models, the full conditionals for the regression coefficients are no longer
Gaussian. BayesX offers 3 different types of proposal densities. These are iteratively weighted least
squares (IWLS) proposals based either on the current state of the parameters or on the posterior
modes as described in subsubsection 6.1.3 or Brezger & Lang (2006), and conditional prior proposals
as described in Fahrmeir & Lang (2001). We recommend the usage of IWLS proposals, since no
tuning is required and mixing properties are superior to those of conditional prior proposals. The
default are IWLS proposals based on the current state of the parameters. The following statement
causes BayesX to use IWLS proposals based on posterior modes, which usually yield even higher
acceptance probabilities compared to ordinary IWLS proposals:

> b.regress y = account1 + account2 + duration(psplinerw2,proposal=iwlsmode)

+ amount(psplinerw2,proposal=iwlsmode) + payment1 + intuse1 + marstat1,

predict iterations=6000 burnin=1000 step=5

family=binomial using credit

As for the probit model, we visualize the estimated nonlinear effects of duration and amount using
method plotnonp:

> b.plotnonp 1 , outfile="c:\results\credit_logit_duration.ps" replace

xlab="duration" ylab="f(duration)" title="effect of duration"

> b.plotnonp 3 , outfile="c:\results\credit_logit_amount.ps" replace

xlab="amount" ylab="f(amount)" title="effect of amount"

The resulting graphs are shown in Figure 7.5. As could have been expected only the scale of the
estimated effects differs (because of the logit link).

Once again, to check the mixing of the sampled parameters we compute and plot the autocorrelation
functions using method plotautocor:

> b.plotautocor, outfile="c:\results\credit_logit_autocor.ps"

The first page of the resulting postscript file is shown in Figure 7.6. As can be seen, the autocor-
relations for the logit model with IWLS proposals are almost as low as for the probit model.
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Figure 7.5: Effect of duration and amount, if a logit model is estimated rather than a probit
model.
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Figure 7.6: First page of the autocorrelation file, if a logit model is estimated.
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7.6.1.5 Varying the hyperparameters

In the preceding examples we used the default hyperparameters a=0.001 and b=0.001 for the
inverse gamma prior of the variances. In some situations, however, the estimated nonlinear functions
may considerably depend on the particular choice of hyperparameters a and b. This may be the case
for very low signal to noise ratios or/and small sample sizes. It is therefore highly recommended
to estimate all models under consideration using a (small) number of different choices for a and b

(e.g. a=1,b=0.005; a=0.001,b=0.001; a=0.0001,b=0.0001) to assess the dependence of results on
minor changes in the model assumptions. In that sense, the variation of hyperparameters can be
used as a tool for model diagnostics.

We estimate our probit model from subsubsection 7.6.1.3 again, but now with hyperparameters
a=1.0, b=0.005 and a=0.0001, b=0.0001, respectively.

> b.regress y = account1 + account2 + duration(psplinerw2,a=1.0,b=0.005) +

amount(psplinerw2,a=1.0,b=0.005) + payment1 + intuse1 + marstat1,

predict iterations=6000 burnin=1000 step=5 family=binomialprobit using credit

> b.regress y = account1 + account2 + duration(psplinerw2,a=0.0001,b=0.0001) +

amount(psplinerw2,a=0.0001,b=0.0001) + payment1 + intuse1 + marstat1,

predict iterations=6000 burnin=1000 step=5 family=binomialprobit using credit

Figure 7.7 shows the estimated nonlinear effects of variables duration and amount with the different
choices for a and b. We see that in this example estimation results differ only slightly for the different
choices of a and b.
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Figure 7.7: Results for the effect of duration and amount for different values of the hyperparam-
eters for the variances.



Chapter 8

remlreg objects

Remlreg objects are used to fit (multivariate) exponential family, hazard rate or multi-state models
with structured additive predictor subsumed in the class of structured additive regression (STAR)
models, see Fahrmeir, Kneib & Lang (2004). Inference is based on a mixed model representation of
the regression model and yields either penalised likelihood estimates (from a frequentist perspective)
or empirical Bayes / posterior mode estimates (from a Bayesian perspective). The methodological
background is provided in considerable detail in the methodology manual. More details on models
for univariate responses can be found in Fahrmeir, Kneib & Lang (2004). Kneib & Fahrmeir (2006)
describe models for categorical responses. Models for continuous time survival analysis based on
structured hazard regression can be found in Kneib & Fahrmeir (2007). Interval censoring and
some further extensions are discussed in Kneib (2006).

First steps with remlreg objects can be done with the example in chapter 2 of the tutorial manual
which provides a self-contained demonstrating example.

8.1 Method regress

8.1.1 Syntax

> objectname.regress model [weight weightvar] [if expression] [, options] using dataset

Method regress estimates the regression model specified in model using the data specified in
dataset. dataset has to be the name of a dataset object created before. The details of correct
model specification are covered in subsubsection 8.1.1.2. The distribution of the response variable
can be either Gaussian, binomial, multinomial, Poisson or gamma. In addition, BayesX supports
continuous time survival and multi-state models, see also Table 7.6 for a more detailled overview..
The response distribution is specified using option family, see subsubsection 8.1.1.4 below. The
default is family=binomial with a logit link. An if statement can be specified to analyze only
parts of the data set, i.e. the observations where expression is true.

8.1.1.1 Optional weight variable

An optional weight variable weightvar can be specified to estimate weighted regression models.
For Gaussian responses, BayesX assumes that yi|ηi, σ2 ∼ N(ηi, σ

2/weightvari). Thus, for grouped
Gaussian responses the weights represent the number of observations in the groups if the yi’s are
the average of individual responses. If the yis are the sum of responses in every group, the weights
have to be the reciprocal of the number of observations in the groups. Of course, estimation of
usual weighted regression models with heteroscedastic errors is also possible. In this case, the

106
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weights should be proportional to the reciprocal of the heteroscedastic variances. If the response
distribution is binomial, the weight variable should correspond to the number of replications while
the values of the response variable should represent the number of successes. If weight is omitted,
BayesX assumes that the number of replications is one, i.e. the values of the response must be either
zero or one. For grouped Poisson data, the weights have to specify the number of observations in a
group while the yis are assumed to be the average of individual responses. Weights are not allowed
for models with categorical response, continuous survival time models and multi-state models.

8.1.1.2 Syntax of possible model terms

The general syntax of models for remlreg objects is:

depvar = term1 + term2 + · · ·+ termr

depvar specifies the dependent variable whereas term1,. . . ,termr define the form of covariate influ-
ences. The different terms must be separated by ’+’ signs. A constant intercept is automatically
included in the model and therefore has not to be specified by the user.

This section reviews all possible model terms supported in the current version of remlreg objects
and provides some specific examples. Note that all described terms may be combined in arbitrary
order. An overview about the capabilities of remlreg objects is given in Table 8.1. Table 8.2 shows
how interactions between covariates are specified. Full details about all available options are given
in subsubsection 8.1.1.3.

Throughout this section Y denotes the dependent variable.

Type Syntax example Description

Offset offs(offset) Variable offs is an offset term.

Linear effect W1 Linear effect of W1.

Category-specific
linear effect

W1(catspecific) Category-specific linear effect of W1 (in cumulative
or sequential models only).

First or second or-
der random walk

X1(rw1)

X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)

X1(psplinerw2)

Nonlinear effect of X1.

Seasonal prior time(season,period=12) Varying seasonal effect of time with period 12.

Markov random
field

region(spatial,map=m) Spatial effect of region where region indicates the
region an observation pertains to. The bound-
ary information and the neighborhood structure
is stored in the map object m.

Two dimensional
P-spline

region(geospline,map=m) Spatial effect of region. Estimates a two dimen-
sional P-spline based on the centroids of the re-
gions. The centroids are stored in the map object
m.

Stationary Gaus-
sian random field

region(geokriging) Spatial effect of region. Estimates a stationary
Gaussian random field based on the centroids of
the regions. The centroids are stored in the map
object m.

Random intercept grvar(random) I.i.d. Gaussian (random) effect of the group indi-
cator grvar, e.g. grvar may be an individual indi-
cator when analyzing longitudinal data.

Baseline in Cox or
multi-state models

time(baseline) Nonlinear shape of the baseline effect λ0(time) of
a Cox model. log(λ0(time)) is modelled by a P-
spline with second order random walk penalty.

Table 8.1: Overview over different model terms for remlreg objects.



108 Chapter 8. remlreg objects

Type of interaction Syntax example Description

Varying coefficient term X1*X2(rw1)

X1*X2(rw2)

X1*X2(psplinerw1)

X1*X2(psplinerw2)

X1*time(season)

Effect of X1 varies smoothly over the range
of the continuous covariate X2 or time.

Random slope X1*grvar(random) The regression coefficient of X1 varies with
respect to the unit- or cluster index vari-
able grvar.

Geographically weighted
regression

X1*region(spatial,map=m) Effect of X1 varies geographically. Covari-
ate region indicates the region an obser-
vation pertains to.

Two dimensional
surface

X1*X2(pspline2dimrw1) Two dimensional surface for the continu-
ous covariates X1 and X2.

Stationary Gaussian
random field

X1*X2(kriging) Stationary Gaussian random field for co-
ordinates X1 and X2.

Time-varying effect in
Cox or multi-state mod-
els

X1*time(baseline) Nonlinear, time-varying effect of X1.

Table 8.2: Possible interaction terms for remlreg objects.

Offset

Description: Adds an offset term to the predictor.

Predictor: η = · · ·+ offs+ · · ·

Syntax:

offs(offset)

Example:

For example, the following model statement can be used to estimate a poisson model with
offs as offset term and W1 and W2 as fixed effects (if family=poisson is specified in addition):

Y = offs(offset) + W1 + W2

Fixed effects

Description: Incorporates covariate W1 as a fixed effect into the model.

Predictor: η = · · ·+ γ1W1 + · · ·

Syntax:

W1

Example:

The following model statement causes regress to estimate a model with q fixed (linear)
effects:

Y = W1 + W2 + · · · + Wq
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Category-specific fixed effects

Description: In cumulative and sequential models for ordered categorical responses, fixed
effects may either be defined globally or category-specific. To request the estimation of
category-specific fixed effects, the keyword catspecific has to be specified. Category-specific
effects can only be estimated for the response families cumlogit, cumprobit, seqlogit, and
seqprobit.

Predictor: η(j) = · · ·+ γ
(j)
1 W1 + · · ·

Syntax:

W1(catspecific)

Example:

The following model statement causes regress to estimate a model with category-specific
effect of covariate W1 and a global effect of covariate W2:

Y = W1(catspecific) + W2

Nonlinear effects of continuous covariates and time scales

First or second order random walk

Description: Defines a first or second order random walk prior for the effect of X1.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(rw1[, options])

X1(rw2[, options])

Example:

Suppose that X1 is a continuous covariate with possibly nonlinear effect. The following model
statement defines a second order random walk prior for f1:

Y = X1(rw2)

The term X1(rw2,a=0.001,b=0.001) indicates, that the effect of X1 should be incorporated
nonparametrically using a second order random walk prior. A first order random walk can
be requested by specifying X1(rw1) instead.

P-spline with first or second order random walk penalty

Description: Defines a P-spline with first or second order random walk penalty for the pa-
rameters of the spline.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(psplinerw1[, options])

X1(psplinerw2[, options])
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Example:

For example, a P-spline with second order random walk penalty is obtained using the following
model statement:

Y = X1(psplinerw2)

By default, the degree of the spline is 3 and the number of inner knots is 20. The following
model term defines a quadratic P-spline with 30 knots:

Y = X1(psplinerw2,degree=2,nrknots=30)

Seasonal component for time scales

Description: Defines a time-varying seasonal effect of time.

Predictor: η = · · ·+ fseason(time) + · · ·

Syntax:

time(season[, options])

Example:

A seasonal component for a time scale time is specified by

Y = time(season,period=12)

where the second argument indicates the period of the seasonal effect. In the example above,
the period is 12 corresponding to monthly data.

Nonlinear baseline effect in continuous time survival or multi-state models

P-spline with second order random walk penalty

Description: Defines a P-spline with second order random walk penalty for the parameters
of the spline for the log-baseline effect log(λ0(time)).

Predictor: η = log(λ0(time)) + · · ·

Syntax:

time(baseline[, options])

Example:

Suppose continuous-time survival data (time, delta) with additional covariates (W1, X1) are
given, where time denotes the vector of observed duration times, delta is the vector of corre-
sponding indicators of non-censoring, W1 is a discrete covariate, and X1 a continuous covariate.
The following Cox-type model with hazard rate λ and log-baseline effect log(λ0(time))

λ(time) = λ0(time) exp(γ0 + γ1W1 + f(X1))

= exp (log(λ0(time)) + γ0 + γ1W1 + f(X1))

can be estimated by the model statement

delta = time(baseline) + W1 + X1(psplinerw2)

Similarly, baseline effects for the transition intensities in multi-state models can be specified.
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Spatial Covariates

Markov random field

Description:

Defines a Markov random field prior for the spatial covariate region. BayesX allows to
incorporate spatial covariates with geographical information stored in the map object specified
in option map.

Predictor: η = · · ·+ fspat(region) + · · ·

Syntax:

region(spatial,map=characterstring[, options])

Example:

For the specification of a Markov random field prior, map is an obligatory argument that rep-
resents the name of a map object (see chapter 5) containing all necessary spatial information
about the geographical map, i.e. the neighbors of each region and the weights associated with
the neighbors. For example the statement

Y = region(spatial,map=germany)

defines a Markov random field prior for region where the geographical information is stored
in the map object germany. An error will be raised if germany is not existing.

Two-dimensional P-spline with first order random walk penalty

Description:

Defines a two-dimensional P-spline for the spatial covariate region with a two-dimensional
first order random walk penalty for the parameters of the spline. Estimation is based on the
coordinates of the centroids of the regions. The centroids are computed using the geographical
information stored in the map object specified in the option map.

Predictor: η = · · ·+ f(centroids) + · · ·

Syntax:

region(geospline,map=characterstring[, options])

Example:

For the specification of a two-dimensional P-spline (geospline) map is an obligatory argu-
ment indicating the name of a map object (see chapter 5) that contains all necessary spatial
information about the geographical map, i.e. the neighbors of each region and the weights
associated with the neighbors. The model term

Y = region(geospline,map=germany)

specifies a two-dimensional cubic P-spline with first order random walk penalty where the
geographical information is stored in the map object germany.

Stationary Gaussian random field

Description:

Defines a stationary Gaussian random field for the spatial covariate region. Estimation is
based on the coordinates of the centroids of the regions an observation pertains to. The
centroids are computed using the geographical information stored in the map object specified
in option map.
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Predictor: η = · · ·+ f(centroids) + · · ·

Syntax:

region(geokriging,map=characterstring[, options])

Example:

For the specification of a stationary Gaussian random field (geokriging), map is an obligatory
argument indicating the name of a map object (see chapter 5). The model term

Y = region(geokriging,map=germany)

specifies a stationary Gaussian random field where the geographical information is stored in
the map object germany.

Unordered group indicators

Unit- or cluster specific unstructured effect

Description: Defines an unstructured (uncorrelated) random effect with respect to grouping
variable grvar.

Predictor: η = · · ·+ f(grvar

Syntax:

region(ge]TJ sructpTJ /F3 1-34d[(:)-477(�)]TJ /F5 10.9ion=characterstring[, options)
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Example:

For example, a varying coefficient term with a second order random walk smoothness prior
is defined as follows:

Y = X1*X2(rw2)

P-spline with first or second order random walk penalty

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of
X2. The smoothness prior for f is a P-spline with first or second order random walk penalty.

Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(psplinerw1[, options])

X1*X2(psplinerw2[, options])

Example:

For example, a varying coefficient term with a second order random walk smoothness prior
is defined as follows:

Y = X1*X2(psplinerw2)

If the effect of a covariate should vary according to different types of effect modifiers, this
leads to similar identification problems as in usual additive models. To avoid such problems,
option center can be specified to request the estimation of centered effects. For example, if
both X2 and Z2 are assumed to modify the effect of X1, the specification of

Y = X1*X2(psplinerw2) + X1*Z2(psplinerw2)

yields a non-identifiable model. In contrast

Y = X1 + X1*X2(psplinerw2, center) + X1*Z2(psplinerw2, center)

is well-identified. Note that the main effect of X1 has to be included separately. Equivalently,
we could absorb the main effect into the first term, yielding

Y = X1*X2(psplinerw2) + X1*Z2(psplinerw2, center)

However, the former specification has the advantage that the model terms are clearly sepa-
rated.

Models of the type just discussed arise for example if X1 is a binary dummy-variable indicating
two different groups of data. In this case the model

Y = X1 + X2(psplinerw2) + X1*X2(psplinerw2, center) + Z2(psplinerw2) + X1*Z2(psplinerw2, center)

assumes different effects of both X2 and Z2 in the groups.

Seasonal prior

Description:

Defines a varying coefficients term where the effect of X1 varies over the range of the effect
modifier time. A seasonal prior is assumed for the effect of time.

Predictor: η = · · ·+ fseason(time)X1 + · · ·

Syntax:

X1*time(season[, options])
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Example:

The inclusion of a varying coefficients term with a seasonal prior may be meaningful if we
expect a different seasonal effect with respect to a binary variable X1. In this case we can
include an additional seasonal effects for observations with X1=1 by

Y = X1*time(season)

Time-varying effects in continuous-time or multi-state models

P-spline with second order random walk penalty

Description: Defines a varying coefficients term where the effect of X1 varies over the range
of the effect modifier time, i.e. variable X1 is assumed to have a time-varying effect. The
smoothness prior for f(time) is a P-spline with second order random walk penalty.

Predictor: η = log(λ0(time)) + f(time)X1 · · ·

Syntax:

X1*time(baseline[, options])

Example:

Suppose continuous-time survival data (time, delta) together with an additional covariate
X1 are given, where time denotes the vector of observed duration times and delta is the
vector of corresponding indicators of non-censoring. The following Cox model with hazard
rate

λ(time) = λ0(time) exp(γ0 + f(time)X1)

= exp (log(λ0(time)) + γ0 + f(time)X1)

is estimated by the model statement

delta = time(baseline) + X1*time(baseline)

Similarly, time-varying effects on the transition intensities in multi-state models can be spec-
ified.

Varying coefficients with spatial covariates as effect modifiers

Markov random field

Description:

Defines a varying coefficient term where the effect of X1 varies smoothly over the range of the
spatial covariate region. A Markov random field is estimated for fspat. The geographical
information is stored in the map object specified through the option map.

Predictor: η = · · ·+ fspat(region)X1 + · · ·

Syntax:

X1*region(spatial,map=characterstring [, options])

Example:

For example the statement

Y = X1*region(spatial,map=germany)
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defines a varying coefficient term with the spatial covariate region as the effect modifier
and a Markov random field as spatial smoothness prior. Weighted Markov random fields
can be estimated by including an appropriate weight definition when creating the map object
germany (see section 5.1).

Similarly as for varying coefficient terms with continuous effect modifiers, varying coefficients
with spatial effect modifier can be centered to avoid identifiability problems:

Y = X1*region(spatial, map=germany, center)

Varying coefficients with unordered group indicators as effect modifiers (random slopes)

Unit- or cluster specific unstructured effect

Description:

Defines a varying coefficient term where the effect of X1 varies over the range of the group
indicator grvar. Models of this type are usually referred to as models with random slopes.
A Gaussian i.i.d. random effect with respect to grouping variable grvar is assumed for f .

Predictor: η = · · ·+ f(grvar)X1 + · · ·

Syntax:

X1*grvar(random[, options])

Example:

For example, a random slope is specified as follows:

Y = X1*grvar(random)

Note, that in contrast to bayesreg objects, the main effects are not included automatically. If
main effects should be included in the model, they have to be specified as additional fixed
effects. The syntax for obtaining the predictor

η = · · ·+ γX1 + f(grvar)X1 + · · ·
would be

X1 + X1*grvar(random[, options])

Surface estimators

Two-dimensional P-spline with first order random walk penalty

Description:

Defines a two-dimensional P-spline based on the tensor product of one-dimensional P-splines
with a two-dimensional first order random walk penalty for the parameters of the spline.

Predictor: η = · · ·+ f(X1, X2) + · · ·

Syntax:

X1*X2(pspline2dimrw1[, options])

Example:

The model term

Y = X1*X2(pspline2dimrw1)
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specifies a tensor product cubic P-spline with first order random walk penalty.

In many applications it is favorable to additionally incorporate the one-dimensional main
effects of X1 and X2 into the models. In this case the two-dimensional surface can be seen as
the deviation from the main effects. Note, that in contrast to bayesreg objects the number
of inner knots and the degree of the spline may be different for the main effects and for the
interaction. For example, a model with 20 inner knots for the main effects and 10 inner knots
for the two-dimensional P-spline is estimated by

Y = X1(psplinerw2,nrknots=20) + X2(psplinerw2,nrknots=20)

+ X1*X2(pspline2dimrw1,nrknots=10)

Stationary Gaussian random field

Description:

Defines that the parameters of the locations follow a stationary Gaussian random field. De-
pending on the options chosen, locations are given either by the distinct pairs of X1 and X2

or by a subset of these pairs, which we will also refer to as knots. Note that in principle
stationary Gaussian random fields can be used to estimate surfaces depending on arbitrary
variables X1 and X2, but they are defined based on isotropic correlation functions. This means
that correlations between sites that have the same distance also have the same correlation,
regardless of direction and the sites location. Therefore, if Gaussian random fields shall be
used to estimate interactions between variables that do not represent longitude and latitude,
these variables have to be standardized appropriately.

Predictor: η = · · ·+ f(X1, X2) + · · ·

Syntax:

X1*X2(kriging[, options])

Example:

The model term

Y = X1*X2(kriging,nrknots=100)

specifies a stationary Gaussian random field for the effect of X1 and X2 with 100 knots, which
are computed based on the space filling algorithm mentioned in section 4.2 of the methodology
manual. If all distinct pairs of X1 and X2 shall be used as knots, we have to specify

Y = X1*X2(kriging,full)

Note, that the knots computed by the space filling algorithm will be stored in a file in the
outfile directory of the remlreg object (the file name will be printed in the output window with
the estimated effects). These knots can be read into a dataset object which may be passed to
the kriging term if we want to use the same knots as in previous calls:

dataset kn

kn.infile using knotfile
Y = X1*X2(kriging,knotdata=kn)

To determine the actual number of knots, the options are interpreted in a specific sequence.
If option full is specified, both nrknots and knotdata are ignored. Similarly, nrknots is
ignored if knotdata is specified.
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8.1.1.3 Description of additional options for terms of remlreg objects

All arguments described in this section are optional and may be omitted. Generally, options are
specified by adding the option name to the specification of the model term type in the parentheses,
separated by commas. All options may be specified in arbitrary order. Table 8.3 provides expla-
nations and the default values of all possible options. All reasonable combinations of model terms
and options can be found in Table 8.4.

optionname description default

lambdastart Starting value for the smoothing parameter λ. lambdastart=10

degree Degree of B-spline basis functions. degree=3

nrknots Number of inner knots for a P-spline term or number of knots for a
kriging term.

nrknots=20 (P-splines)
nrknots=100 (kriging)

knotdata Dataset object containing the knots to be used with the kriging term no default.

full Specifies that all distinct locations should be used as knots in the
kriging term.

-

nu The smoothness parameter ν of the Matèrn correlation function for
kriging terms.

nu=1.5

maxdist Specifies the value c that is used to determine the scale parameter ρ
of the Matèrn correlation function for kriging terms. Compare section
4.2 of the methodology manual.

default depends on nu

p Parameter p of the coverage criterion for the space filling algorithm
that determines the knots of a kriging term.

p=-20

q Parameter q of the coverage criterion for the space filling algorithm
that determines the knots of a kriging term.

q=20

maxsteps Maximum number of steps to be performed by the space filling algo-
rithm.

maxsteps=300

gridchoice How to choose grid points for numerical integration in Cox and multi-
state models. May be either ’quantiles’, ’equidistant’ or ’all’.

gridchoice=quantiles

tgrid Number of equidistant time points to be used for numerical in-
tegration in Cox and multi-state models. Only meaningful if
gridchoice=equidistant.

tgrid=100

nrquantiles Number of quantiles that are used to define the grid points for nu-
merical integration in Cox and multi-state models. First a grid of
nrquantiles quantiles is computed, then the grid for integration is
defined by nrbetween equidistant points between each quantile. Only
meaningful if gridchoice=quantiles.

nrquantiles=50

nrbetween Number of points between quantiles that are used to define the grid
points for numerical integration in Cox and multi-state models. First
a grid of nrquantiles quantiles is computed, then the grid for integra-
tion is defined by nrbetween equidistant points between each quantile.
Only meaningful if gridchoice=quantiles.

nrbetween=5

map Map object for spatial effects. no default

period Period of a seasonal effect. The default (period=12) corresponds to
monthly data.

period=12

catspecific Requests that the corresponding effect should be modelled category-
specific. Can only be used in cumulative and sequential models for
categorical responses, i.e. with response families cumlogit, cumprobit,
seqlogit and seqprobit.

-

center For varying coefficient terms this option requests that the effect should
be centered to avoid identifiability problems

-

Table 8.3: Optional arguments for remlreg object terms.

8.1.1.4 Specifying the response distribution

Supported univariate distributions are Gaussian, binomial (with logit, probit or cumulative log-log
link), Poisson and gamma. For multivariate responses, BayesX supports multinomial logit models
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for categorical responses with unordered categories and cumulative as well as sequential logit and
probit models for categorical responses with ordered categories. Continuous survival times as well
as multi-state models can be analysed based on semiparametric models with Cox-type hazard rates.
An overview over the supported models is given in Table 8.5. The distribution of the response is
specified by adding the additional option family to the (global) options list of the regression call.
For instance, family=gaussian defines the response to be Gaussian distributed. In some cases, one
or more additional options associated with the specified response distribution can be specified. An
example is the reference option for multinomial responses, which defines the reference category.
In the following we give detailed instructions on how to specify the various models.

value of family response distribution link options

family=gaussian Gaussian identity

family=binomial binomial logit
family=binomialprobit binomial probit
family=binomialcomploglog binomial complementary

log-log

family=multinomial unordered multinomial logit reference

family=multinomialcatsp unordered multinomial (with
category-specific covariates)

logit reference

family=cumprobit cumulative multinomial probit
family=cumlogit cumulative multinomial logit

family=seqprobit sequential multinomial probit
family=seqlogit sequential multinomial logit

family=poisson Poisson log

family=gamma gamma log

family=cox continuous-time survival data leftint,
lefttrunc

family=multistate continuous-time multi-state
data

state,
lefttrunc

Table 8.5: Summary of supported response distributions.

Gaussian responses

For Gaussian responses BayesX assumes yi|ηi, σ2 ∼ N(ηi, σ
2/weightvari) or, equivalently, in matrix

notation y|η, σ2 ∼ N(η, σ2C−1), where C = diag(weightvar1, . . . , weightvarn) is a known weight
matrix. Gaussian regression models are obtained by adding

family=gaussian

to the options list.

An optional weight variable weightvar can be specified to estimate weighted regression models,
see subsubsection 10.1.2.1 for details. For grouped Gaussian responses, the weights represent the
number of observations in the groups if the yi’s are the average of individual responses. If the yis
are the sum of responses in every group, the weights are given by the reciprocal of the number
of observations in the groups. Of course, estimation of usual weighted regression models with
heteroscedastic errors is also possible. In this case, the weights should be proportional to the
reciprocal of the heteroscedastic variances. If no weight variable is specified, BayesX assumes
weightvari = 1, i = 1, . . . , n.
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Binomial logit, probit and complementary log-log models

A binomial logit model is requested by the option

family=binomial

while a probit model is obtained with

family=binomialprobit

and a complementary log-log model with

family=binomialcomploglog

A additional weight variable may be specified, see subsection 8.1.1 for the syntax. BayesX assumes
that the weight variable corresponds to the number of replications and the response variable to
the number of successes. If the weight variable is omitted, BayesX assumes that the number of
replications is one, i.e. the values of the response must be either zero or one.

Multinomial logit models

So far, remlreg objects support only multinomial logit models and no probit models. A multinomial
logit model without category-specific covariates is specified by adding the option

family=multinomial

to the options list.

If there are category-specific covariates, the option has to be altered to

family=multinomialcatsp

Category-specific covariates are included as follows: Suppose that covariate x has been observed
for a response variable with the three categories 1, 2 and 3. Then you have to include the three
variable x1, x2 and x3 into your dataset. Within the regression syntax, you have to specify

x_catspecific

to request a parametric effect of x

x_catspecific(psplinerw2)

for a nonparametric effect of x and

x_catspecific*id(psplinerw2)

to obtain a random effect of x with respect to the grouping variable id. Currently BayesX only
supports these three term types for effects of category-specific effects.

For both family=multinomial and family=multinomialcatsp a second option (reference) can
be added to the options list to define the reference category. If the response variable has three
categories 1, 2 and 3, the reference category can be set to 2, by adding

reference=2

to the options list. If the option is omitted, the smallest number will be used as the reference
category.

If some categories are not available for some observations, BayesX can account for this by including
either category-specific offsets or non-availability indicators. Suppose again that the response has
the three categories 1, 2 and 3. Then offset terms o1, o2 and o3 can be used to account for varying
choice sets. If a category is available, the offset is simply set to zero, while a large negative value
(i.e. -1000) has to be assigned to the offset term of categories which are not available. To account
for the offset term,

o_catspecific(offset)

has to be added to the model specification. Of course, you can also assign different values to the
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offsets, e.g. to account for a priori differences in the availability of some categories.

The usage of offset terms to account for non-availability may in some cases be numerically unstable
(e.g. if several categories are not available or if the reference category is not available). Therefore
an alternative possibility is to include non-availability indicators na1, na2 and na3. Each of the
indicators is assigned the value one if the corresponding category is not available and zero otherwise.
Within the regression syntax, the non-availability indicator has to be specified as a global option,
i.e.

... , family=multinomialcatsp naindicator=na_catspecific

Cumulative logit and probit models

A cumulative logit model is specified by adding

family=cumlogit

to the options list, a cumulative probit is obtained by

family=cumprobit

In both cases, the reference category will always be the largest value of the response.

Note, that in contrast to bayesreg objects remlreg objects can deal with an arbitrary number of
ordered categories. However, for more than about 5 categories estimation may become rather
computer intensive and time demanding (depending on the size of your data set).

By default, all effects in cumulative logit and probit models are considered to be defined globally.
To obtain category-specific effects, the additional keyword catspecific has to be specified. For
example, the specification of the predictor

Y = W1(catspecific) + W2 + X1(psplinerw2, catspecific) + X2(psplinerw2)

requests category-specific effects for the covariates W1 and X1, and global effects for the covariates W2
and X2. Note that complicated ordering restrictions have to be fulfilled for the covariate-dependent
thresholds defined implicitly by category-specific effects. Therefore numerical problems are likely
to be observed in models with sparse data or a lot of category-specific effects.

Sequential logit and probit models

A sequential logit model is specified by adding

family=cumlogit

to the options list, while a sequential probit can be requested by

family=cumprobit

The reference category will always be the largest value of the response.

Similar as in cumulative models, all effects in sequential logit and probit models are considered to be
defined globally by default. To obtain category-specific effects, the additional keyword catspecific

has to be specified. For example, the specification of the predictor

Y = W1(catspecific) + W2 + X1(psplinerw2, catspecific) + X2(psplinerw2)

requests category-specific effects for the covariates W1 and X1, and global effects for the covariates
W2 and X2. In contrast to cumulative models no ordering restrictions are imposed in sequential
models.

Poisson regression

A Poisson regression model is specified by adding
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family=poisson

to the options list.

A weight variable may be specified in addition, see subsection 8.1.1 for the syntax. For grouped
Poisson data, the weights must be the number of observations in a group and the responses are
assumed to be the average of individual responses.

Gamma distributed responses

In the literature, the density function of the gamma distribution is parameterized in various ways.
In the context of regression analysis, the density is usually parameterized in terms of the mean µ
and the scale parameter s. Then, the density of a gamma distributed random variable y is given
by

p(y) ∝ ys−1 exp(− s
µ
y) (8.1)

for y > 0. For the mean and the variance we obtain E(y) = µ and V ar(y) = µ2/s. We write
y ∼ G(µ, s).
A second parameterization is typically employed for hyperparameters a and b of priors for variance
parameters in the context of Bayesian hierarchical models. In this case, the density is given by

p(y) ∝ ya−1 exp(−by) (8.2)

for y > 0. In this parameterization we obtain E(y) = a/b and V ar(y) = a/b2 for the mean and the
variance, respectively. We write y ∼ G(a, b)
In BayesX a gamma distributed response variable is parameterised in the first form (8.1). For the
rth observation BayesX assumes yr|ηr, ν ∼ G(exp(ηr), ν/weightvarr) where µr = exp(ηr) is the
mean and s = ν/weightvarr is the scale parameter. A gamma distributed response is specified by
adding

family=gamma

to the options list. An optional weight variable weightvar can be specified to estimate weighted
regression models, see subsection 8.1.1 for the syntax.

Continuous time survival analysis

BayesX offers two alternatives of estimating continuous time survivals models with semiparametric
predictor η, both of which are described in subsection 7.2 of the methodology manual. The first
alternative is to assume that all time-dependent values are piecewise constant, leading to the so
called piecewise exponential model (p.e.m.). The second alternative is to estimate the log-baseline
effect log(λ0(t)) = f0(t) based on a P-spline with second order random walk penalty.

Piecewise exponential model (p.e.m.)

In subsection 7.2 of the methodology manual we demonstrated how continuous time survival data
has to be manipulated to transform it to a Poisson for model estimation. Suppose that the following
modified data set is available
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y indnr a δ ∆ x1 x2

0 1 0.1 1 log(0.1) 0 3
0 1 0.2 1 log(0.1) 0 3
1 1 0.3 1 log(0.05) 0 3

0 2 0.1 0 log(0.1) 1 5
0 2 0.2 0 log(0.02) 1 5
...

...
...

...
...

...
...

with indicator y, interval limit a, indicator of non-censoring δ and offset ∆ defined as in subsection
7.2 of the methodology manual. Let x1 be a covariate with linear effect and x2 a continuous
covariate with nonlinear effect. Then the correct syntax for estimating a p.e.m. with a remlreg
object named r is e.g. as follows:

> r.regress y = a(rw1) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

or

> r.regress y = a(rw2) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

Note that a time-varying effect of an additional covariate X may be estimated by simply adding the
term

X*a(rw1) or X*a(rw2)

to the model statement.

Specifying a P-spline prior for the log-baseline

For a continuous time survival model with a P-spline prior with second order random walk penalty
for the baseline effect,

family=cox

has to be specified in the options list. The number of knots and degree of the P-spline prior for f0(t)
can be specified as additional options for the baseline term. Note that it is obligatory that there is
a baseline term specified for the vector of observed duration times. The indicator of non-censoring
δi has to be specified as the dependent variable in the model statement. Data augmentation and
the specification of an offset term are not required here. In the example above with survival data

t δ x1 x2

0.25 1 0 3

0.12 0 1 5
...

...
...

...

a continuous time survival model with a quadratic P-spline prior with 15 knots for the log-baseline
would be estimated as follows:

> r.regress delta = t(baseline,degree=2,nrknots=15)+ x1 + x2(psplinerw2),

family=cox . . .

Again a time-varying effect of a covariate X can be estimated by simply adding the term

X*time(baseline)

to the model statement.
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Interval censoring and left truncation

Interval censoring and left truncation can be incorporated using the additional options leftint

and lefttrunc of remlreg objects. These two variables represent the lower interval boundary Tlo
and the left truncation time Ttr as discussed in section 7.3 of the methodology manual. The time
variable specified in the baseline statement corresponds to Tup, the upper boundary of the interval.
In general an observation can now be described completely by the quadruple (Ttr, Tlo, Tup, δ), with

Tlo = Tup, δ = 1 if the observation is uncensored,
Tlo = Tup, δ = 0 if the observation is right censored,
Tlo < Tup, δ = 0 if the observation is interval censored.

For left truncated observations we have Ttr > 0 while Ttr = 0 for observations which are not
truncated.

An example for a statement that estimates a model with left truncation and interval censoring is
given by

> r.regress delta = tup(baseline)+ x1 + x2(psplinerw2), family=cox

lefttrunc=ttr leftint=tlo . . .

Continuous time multi-state models

Multi-state models describe the temporal development of discrete phenomena in continuous time
based on transition intensities for each of the observable transition types. Consider for example a
multi-state model for human sleep as depicted in Figure 8.1 and that the transition intensities for
the four possible transitions are specified as

λAS,i(t) = exp
[
g
(AS)
0 (t) + b

(AS)
i

]
,

λSA,i(t) = exp
[
g
(SA)
0 (t) + b

(SA)
i

]
,

λNR,i(t) = exp
[
g
(NR)
0 (t) + ci(t)g

(NR)
1 (t) + b

(NR)
i

]
λRN,i(t) = exp

[
g
(RN)
0 (t) + ci(t)g

(RN)
1 (t) + b

(RN)
i

]
Each of the transitions is parameterised in terms of a baseline effect g

(h)
0 (t) and a transition specific

frailty term (random effect) b
(h)
i . In addition, time-varying effects g

(h)
1 (t) of binary indicators ci(t)

for a high blood level of cortisol are introduced for the transitions between REM and Non-REM.

The corresponding data set should be arranged as follows:

id st beg end tas tsa trn tnr cort corthigh

1 2 0 1 0 1 0 0 52.6 0

1 1 1 5 1 0 0 0 52.6 0

1 2 5 8 0 1 0 0 52.6 0

1 1 8 10 1 0 0 0 52.6 0

1 2 10 36 0 0 0 0 52.6 0

1 2 36 76 0 0 0 0 46.9 0

1 2 76 108 0 0 0 1 47.5 0

1 3 108 109 0 0 1 0 47.5 0

1 2 109 110 0 0 0 1 47.5 0

1 3 110 111 0 0 1 0 47.5 0
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Figure 8.1: Schematic representation of sleep stages and transitions of interest.

1 2 111 115 0 0 0 1 47.5 0

1 3 115 116 0 0 0 0 47.5 0

1 3 116 126 0 0 1 0 37.4 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

2 2 0 12 0 1 0 0 22.5 0

2 1 12 15 1 0 0 0 22.5 0

2 1 15 28 0 1 0 0 88.6 1

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Each path observed for the multi-state model is transformed into several lines in the data set,
where id identifies the original paths. In the above example, parts of the first two observations
are displayed. Each line of the data set represents a time interval identified by the variables beg
and end. Variable st indicates the current state of the process. Note that the states have to
be numbered consecutively from 1 to H. Since we are considering continuous time scales, an
observation should start at t = 0 (unless the observation is left truncated) and the variables beg
and end should be generated so that within each observation process beg equals the value of end
in the previous row (unless observations are fragmentary only).

The variables tas, tsa, trn and tnr are binary indicators for the four transitions sleep → awake
(tsa), awake → sleep (tas), Non-REM → REM (tnr) and REM → Non-REM (trn). Such an
indicator equals one if the corresponding transition is observed at the end of the interval and zero
otherwise. Note that there are lines in the data set, where none of the transitions is observed.
These correspond to intervals where the value of the time-varying covariate cort (cortisol-level)
changes. The variable corthigh is a dichotomized version of cort which indicates a high level of
cortisol (cort>60).

The model specified above is estimated by entering the following command

> remlreg msm

> msm.mregress tas = end(baseline) + id(random):

tsa = end(baseline) + id(random):

trn = end(baseline) + corthigh*end(baseline) + id(random):

tnr = end(baseline) + corthigh*end(baseline) + id(random),
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family=multistate lefttrunc=beg state=st using sleep

Note that a separate model equation has to specified for each transition with the binary transition
indicator as response. Instead of method regress, method mregress has to be called since multiple
model equations are combined. The right and the left boundary of the time intervals have to
specified as covariate for the the baseline effect and as global option lefttrunc, respectively.
Similarly, the state variable has to specified via the global option state.

8.1.2 Options

Options for controlling the estimation process

• eps = realvalue
Defines the termination criterion of the estimation process. If both the relative changes in the
regression coefficients and the variance parameters are less than eps, the estimation process
is assumed to have converged.
DEFAULT: eps = 0.00001

• lowerlim = realvalue
Since small variances are close to the boundary of their parameter space, the usual Fisher-
scoring algorithm for their determination has to be modified. If the fraction of the penalized
part of an effect relative to the total effect is less than lowerlim, the estimation of the
corresponding variance is stopped and the estimator is defined to be the current value of the
variance (see section 6.2 of the methodology manual for details).
DEFAULT: lowerlim = 0.001

• maxit = integer
Defines the maximum number of iterations to be used in estimation. Since the estimation
process will not necessarily converge, it may be useful to define an upper bound for the
number of iterations. Note, that BayesX returns results based on the current values of all
parameters even if no convergence could be achieved within maxit iterations, but a warning
message will be printed in the output window.
DEFAULT: maxit=400

• maxchange = realvalue
Defines the maximum value that is allowed for relative changes in parameters in one iteration
to prevent the program from crashing because of numerical problems. Note, that BayesX
produces results based on the current values of all parameters even if the estimation procedure
is stopped due to numerical problems, but an error message will be printed in the output
window.
DEFAULT: maxchange=1000000

Options for the analysis of survival times and multi-state models

• leftint = variablename
Gives the name of the variable that contains the lower (left) boundary Tlo of the interval
[Tlo, Tup] for an interval censored observation. For right censored or uncensored observations
we have to specify Tlo = Tup. If leftint is missing, all observations are assumed to be right
censored or uncensored, depending on the corresponding value of the censoring indicator.

• lefttrunc = variablename
Option lefttrunc specifies the name of the variable containing the left truncation time Ttr.
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For observations that are not truncated, we have to specify Ttr = 0. If lefttrunc is missing,
all observations are assumed to be not truncated. For multi-state models variable lefttrunc
specifies the left endpoint of the corresponding time interval (compare page 125).

• state = variablename
For multi-state models, state specifies the current state of the process (compare page 125).

Further options

• level1 = integer
Besides the posterior mode, regress provides (approximate) pointwise posterior credible
intervals for every effect in the model. By default, BayesX computes credible intervals for
nominal levels of 80% and 95%. The option level1 allows to redefine one of the nominal
levels (95%). Adding, for instance,

level1=99

to the options list leads to the computation of credible intervals for a nominal level of 99%
rather than 95%.

• level2 = integer
Besides the posterior mode, regress provides (approximate) pointwise posterior credible
intervals for every effect in the model. By default, BayesX computes credible intervals for
nominal levels of 80% and 95%. The option level2 allows to redefine one of the nominal
levels (80%). Adding, for instance,

level2=70

to the options list leads to the computation of credible intervals for a nominal level of 70%
rather than 80%.

8.1.3 Estimation output

The way the estimation output is presented depends on the estimated model. Estimation results
for fixed effects are displayed in a tabular form in the output window and/or in a log file (if
created before). This table will contain the posterior mode, the standard deviation, p-values and
an approximate 95% credible interval. Other credible intervals may be obtained by specifying the
level1 option, see subsection 8.1.2 for details. Additionally, a file replicating results for the fixed
effects is created. The name of this file is supplied in the output window and/or in a log file.

Estimated nonparametric effects are presented in a different way. Here, results are stored in external
ASCII-files that can be read into any general purpose statistics program (e.g. STATA, R, S-plus)
to further analyze and/or visualize the results. The structure of these files is as follows: There
will be one file for every nonparametric effect in the model. The names of the files and the storing
directory are displayed in the output window and/or a log file. The files contain ten columns (for
main effects) or eleven columns (for interaction effects). The first column contains a parameter
index (starting with one), the second column (and the third column if the estimated effect is an
interaction) contain the values of the covariate(s) whose effect has been estimated. In the following
columns the estimation results are given in form of the posterior mode, the lower boundaries of the
(approximate) 95% and 80% credible intervals, the standard deviation and the upper boundaries of
the 80% and 95% credible intervals. The last two columns contain approximations to the posterior
probabilities based on nominal levels of 95% and 80%. A value of 1 corresponds to a strictly
positive 95% or 80% credible interval while a value of -1 to a strictly negative credible interval. A
value of 0 indicates that the corresponding credible interval contains zero. Other credible intervals
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and posterior probabilities may be obtained by specifying the level1 and/or level2 option, see
subsection 8.1.2 for details. As an example, compare the following lines, which are the beginning
of a file containing the results for a nonparametric effect of a particular covariate, x say:

intnr x pmode ci95lower ci80lower std ci80upper ci95upper pcat95 pcat80

1 -2.87694 -0.307921 -0.886815 -0.686408 0.295295 0.070567 0.270973 0 0

2 -2.86203 -0.320479 -0.885375 -0.689815 0.288154 0.0488558 0.244416 0 0

3 -2.8515 -0.329367 -0.88473 -0.69247 0.283292 0.0337362 0.225997 0 0

4 -2.85066 -0.330072 -0.884692 -0.692689 0.282913 0.0325457 0.224549 0 0

5 -2.82295 -0.3535 -0.884544 -0.700703 0.270887 -0.00629671 0.177545 0 -1

6 -2.79856 -0.37418 -0.886192 -0.708939 0.261178 -0.0394208 0.137832 0 -1

7 -2.79492 -0.377272 -0.886579 -0.710263 0.259798 -0.0442813 0.132035 0 -1

8 -2.79195 -0.379788 -0.886921 -0.711358 0.258689 -0.0482183 0.127345 0 -1

9 -2.78837 -0.382834 -0.887367 -0.712704 0.257363 -0.0529641 0.1217 0 -1

Note that the first row of the files always contains the names of the columns.

The estimated nonlinear effects can be visualized by using either the graphics capabilities of BayesX
or the BayesX R package, see section 11.1 and section 11.2, respectively. Of course, any other
(statistics) software package with plotting facilities may be used as well.

Estimation results for the variances and the smoothing parameters of nonparametric effects are
printed in the output window and/or a log file. Additionally, a file is created containing the same
information. For example, the file corresponding to the nonparametric effect presented above
contains:

variance smoothpar stopped

0.0492324 20.3118 0

The value in the last row indicates whether the estimation of the variance has been stopped before
convergence. A value of 1 corresponds to a ’stopped’ variance.

8.1.4 Examples

Here we give only a few examples about the usage of method regress. A more detailed, tutorial
like example can be found in chapter 2 of the tutorial manual.

Suppose that we have a data set test with a binary response variable y, and covariates x1, x2, x3,
t and region, where t is assumed to be a time scale measured in months and region indicates
the geographical region an observation belongs to. Suppose further that we have already created a
remlreg object r.

Fixed effects

We first specify a model with y as the response variable and fixed effects for the covariates x1, x2
and x3. Hence the predictor is

η = γ0 + γ1x1 + γ2x2 + γ3x3

This model is estimated by typing:

> r.regress y = x1 + x2 + x3, family=binomial using test

By specifying option family=binomial, a binomial logit model is estimated. A probit model can
be obtained by specifying family=binomialprobit.
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Additive models

Suppose now that we want to allow for possibly nonlinear effects of x2 and x3. Defining cubic
P-splines with second order random walk penalty as smoothness priors, we obtain

> r.regress y = x1 + x2(psplinerw2) + x3(psplinerw2), family=binomial using test

which corresponds to the predictor

η = γ0 + γ1x1 + f1(x2) + f2(x3).

If the response is not binary but categorical with unordered categories 1, 2 and 3, we can estimate
a multinomial logit model by typing:

> r.regress y = x1 + x2(psplinerw2) + x3(psplinerw2), family=multinomial

reference=2 using test

In this case, family=binomial has to be altered to family=multinomial, and the option
reference=2 was added to define the value 2 as the reference category.

Time scales

In the next step we extend the model by incorporating an additional trend and a flexible seasonal
component for the time scale t:

> r.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) +

t(psplinerw2) + t(season,period=12), family=binomial using test

Note that we passed the period of the seasonal component as a second argument.

Spatial covariates

To incorporate a structured spatial effect, we have to create a map object first. Afterwards we read
the boundary information of the different regions (polygons that form the regions, neighbors etc.).
If you are unfamiliar with map objects please read chapter 5 first.

> map m

> m.infile using c:\maps\map.bnd

Since we usually need the map again in further sessions, we store it in graph file format, because
reading graph files is much faster than reading boundary files.

> m.outfile , graph using c:\maps\mapgraph.gra

We can now augment our predictor with a spatial effect:

> r.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) + t(psplinerw2)

+ t(season,period=12) + region(spatial,map=m), family=binomial using test

In some situations it may be reasonable to incorporate an additional unstructured random effect
into the model in order to split the total spatial effect into a structured and an unstructured
component. This is achieved by

> r.regress y = x1 + x2(psplinerw2) + x3(psplinerw2) + t(psplinerw2)

+ t(season,period=12) + region(spatial,map=m) + region(random),

family=binomial using test
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8.2 Global options

The purpose of global options is to affect the global behavior of a remlreg object. The main
characteristic of global options is, that they are not associated with a certain method.

The syntax for specifying global options is

objectname.optionname = newvalue

where newvalue is the new value of the option. The type of the value depends on the respective
option.

Currently only one global option is available for remlreg objects:

• outfile = filename
By default, the estimation output produced by the regress procedure will be written to the
default output directory, which is

<INSTALLDIRECTORY>\output

The default file name is composed of the name of the remlreg object and the type of the file.
For example, if you estimated a nonparametric effect for a covariate X, say, using a P-spline,
then the estimation output will be written to

<INSTALLDIRECTORY>\output\r_f_X_pspline.res

where r is the name of the remlreg object. In most cases, however, it may be necessary
to save estimation results into a different directory and/or under a different file name than
the default. This can be achieved using the outfile option. Here, you have to specify the
directory where the output should be stored and a base file name. This base file name should
not be a complete file name. For example specifying

outfile = c:\data\res1

would cause BayesX to store the estimation result for the nonparametric effect of X in file

c:\data\res1_f_X_pspline.res

8.3 Visualizing estimation results

Visualization of estimation results is described in chapter 11



Chapter 9

stepwisereg objects

stepwisereg objects are used to fit models with structured additive predictor subsumed in the class
of structured additive regression (STAR) models, see Belitz & Lang (2008) and Fahrmeir, Kneib &
Lang (2004). In addition to bayesreg and remlreg objects described in the previous two chapters,
stepwisereg objects are also able to perform model choice and variable selection. Model choice and
estimation of the parameters is done simultaneously. The algorithms of stepwisereg objects are able
to

• decide whether a particular covariate enters the model,

• decide whether a continuous covariate enters the model linearly or nonlinearly,

• decide whether a spatial effect enters the model,

• decide whether a unit- or cluster specific heterogeneity effect enters the model,

• select complex interaction effects (two dimensional surfaces, varying coefficient terms),

• select the degree of smoothness of nonlinear covariate, spatial or cluster specific heterogeneity
effects.

Inference is based on penalized likelihood in combination with fast algorithms for selecting relevant
covariates and model terms. Different models are compared via various goodness of fit criteria, e.g.
AIC, BIC, GCV and 5 or 10 fold cross validation. Models with structured additive predictor and
the algorithms for model choice and variable selection are described in considerable detail in the
methodology manual. More details on the algorithms for model choice and variable selection are
given in Belitz & Lang (2008) and Belitz (2007).
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9.1 Method regress

9.1.1 Syntax

> objectname.regress model [weight weightvar] [if expression] [, options] using dataset

Method regress estimates the regression model specified in model using the data specified in
dataset. dataset is the name of a dataset object created before. The details of correct model
specification are covered in subsubsection 9.1.1.2. The distribution of the response variable can be
either Gaussian, binomial, multinomial, gamma or Poisson. The response distribution is specified
using option family, see subsubsection 9.1.1.4 below. The default is family=binomial with a logit
link. An if statement can be specified to analyze only parts of the data set, i.e. the observations
where expression is true.

9.1.1.1 Optional weight variable

An optional weight variable weightvar can be specified to estimate weighted regression models.
For Gaussian responses, BayesX assumes that yi|ηi, σ2 ∼ N(ηi, σ

2/weightvari). Thus, for grouped
Gaussian responses the weights represent the number of observations in the groups if the yi’s are
the average of individual responses. If the yi’s are the sum of responses in every group, the weights
have to be the reciprocal of the number of observations in the groups. Of course, estimation of
usual weighted regression models with heteroscedastic errors is also possible. In this case, the
weights should be proportional to the reciprocal of the heteroscedastic variances. If the response
distribution is binomial, the weight variable should correspond to the number of replications while
the values of the response variable should represent the number of successes. If weight is omitted,
BayesX assumes that the number of replications is one, i.e. the values of the response must be
either zero or one. For grouped Poisson data, the weights specify the number of observations in a
group while the yi’s are assumed to be the average of individual responses. Weights are not allowed
for models with multicategorical responses.

9.1.1.2 Syntax of possible model terms

The general syntax of models for stepwisereg objects is:

depvar = term1 + term2 + · · ·+ termr

depvar specifies the dependent variable whereas term1,. . . ,termr define the form of covariate influ-
ences. The different terms must be separated by ’+’ signs. A constant intercept is automatically
included in the model.

This section reviews all possible model terms supported in the current version of stepwisereg objects
and provides some specific examples. Note that all terms may be combined in arbitrary order. An
overview about the capabilities of stepwisereg objects is given in Table 9.1. Table 9.2 shows how
interactions between covariates are specified. Full details about all available options for the different
term types are given in subsubsection 9.1.1.3.

Throughout this section Y denotes the dependent variable.

Offset

Description: Adds an offset to the predictor.

Predictor: η = · · ·+ offs+ · · ·
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Type Syntax example Description

offset offs(offset) Variable offs is an offset term.

linear effect W1 Linear effect for W1.

factor F1(factor) Effect of categorical variable F1

P-spline X1(psplinerw1)

X1(psplinerw2)

Nonlinear effect of X1.

degree zero P-spline X1(rw1)

X1(rw2)

Nonlinear effect of X1.

seasonal prior time(season) Varying seasonal effect of time.

Markov random
field

region(spatial,map=m) Spatial effect of region where region indicates
the region an observation pertains to. The bound-
ary information and the neighborhood structure
are stored in the map object m .

Two dimensional
P-spline

region(geosplinerw1,map=m)

region(geosplinerw2,map=m)

Spatial effect of region. Estimates a two dimen-
sional P-spline based on the centroids of the re-
gions. The centroids are stored in the map object
m.

random intercept grvar(random) I.i.d. Gaussian random effect of the group indi-
cator grvar , e.g. grvar may be an individuum
indicator when analyzing longitudinal data.

Table 9.1: Overview over different model terms for stepwisereg objects.

Syntax:

offs(offset)

Example:

For instance, the following model statement can be used to estimate a Poisson model with
offs as offset term and W1 and W2 as linear effects (if family=poisson is specified in addition):

Y = offs(offset) + W1 + W2

Linear effects

Description: Incorporates covariate W1 as a linear effect into the model.

Predictor: η = · · ·+ γ1W1 + · · ·

Syntax:

W1

Example:

The following model statement causes regress to estimate a model with q linear effects:

Y = W1 + W2 + · · · + Wq

Effects of categorical covariates

Description: Creates dummy (or effect coded) variables of the categorical covariate W and
incorporates the dummies into the model. Since stepwisereg objects perform variable selection
the dummies for W are either completely included in the model or completely excluded. Hence
it is not possible that only a subset of the dummies enter the model. Usually interpretation
of results is difficult if only a subset of a categorical covariate is included by the variable
selection algorithm.
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Type of interaction Syntax example Description

Varying coefficient term X1*X2(rw1)

X1*X2(rw2)

X1*X2(psplinerw1)

X1*X2(psplinerw2)

Effect of X1 varies smoothly over the range of
the continuous covariate X2.

random slope X1*grvar(random) The regression coefficient of X1 varies with
respect to the unit- or cluster-index variable
grvar.

Geographically weighted
regression

X1*region(spatial,map=m) Effect of X1 varies geographically. Covariate
region indicates the region an observation per-
tains to.

Two dimensional surface X1*X2(pspline2dimrw1)

X1*X2(pspline2dimrw2)

Two dimensional surface for the continuous co-
variates X1 and X2.

ANOVA type interaction X1*X2(psplineinteract) +

X1(psplinerw2) +

X2(psplinerw2)

ANOVA type interaction for the continuous co-
variates X1 and X2. Note that P-splines with
first order difference penalty for the main effects
are possible as well.

Table 9.2: Possible interaction terms for stepwisereg objects.

Predictor: η = · · ·+ γ1W1 + γ2W2 + · · ·+ γqWq + · · ·
where W1, . . . ,Wq are the dummies for W .

Syntax:

W(factor[, options])

W(factor[, options])

Example:

The following model statement causes regress to estimate a model with categorical covariate
W :

Y = W(factor)

By default, the category with value 1 (if existing or not) is assumed to be the reference.
Usually the reference category is different from 1 and must be explicitly specified. This is
achieved with option reference. For instance,

Y = W(factor,reference=3)

assumes the category with value 3 as the reference.

Effect coding rather than dummy coding is obtained by

Y = W(factor,reference=3,coding=effect)

While both coding schemes produce equivalent models effect coding is favorable from a tech-
nical point of view. In particular, convergence of the algorithms for model choice and variable
selection is considerably improved with effect coding. Hence, effect coding is strongly recom-
mended.

Nonlinear effects of continuous covariates and time scales

P-spline with first or second order difference penalty

Description: Defines a P-spline with first or second order difference penalty for the parameters
of the spline.



9.1. Method regress 135

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(psplinerw1[, options])

X1(psplinerw2[, options])

Examples:

A P-spline with second order random walk penalty is obtained using the following model
statement:

Y = X1(psplinerw2)

By default, the degree of the spline is 3 and the number of inner knots is 20. The following
model term defines a quadratic P-spline with 30 knots:

Y = X1(psplinerw2,degree=2,nrknots=30)

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. However, in some situations it may be favorable to define the list
of smoothing parameters manually. stepwisereg objects provide three alternative ways for
manually specifying the ordered list of smoothing parameters of a model term. They are
specified via option sp and - depending on its value - a couple of accompanying options.

– Degrees of freedom: The first alternative is to define the list of smoothing parameters via
the concept of equivalent degrees of freedom of a model term. Zero (covariate excluded
from the model) and one (linear fit) degrees of freedom are always included in the
list. The remaining smoothing parameters are chosen such that they correspond to an
equidistant grid of degrees of freedom between dfmin and dfmax. The total number
of smoothing parameters, respectively degrees of freedom (in addition to 0 and 1), is
supplied via the option number. For instance,

Y = X1(psplinerw2,sp=df,dfmin=2,dfmax=5,number=4,dfstart)

defines the smoothing parameters such that they correspond to 0,1,2,3,4 and 5 degrees
of freedom. Specifying

Y = X1(psplinerw2,sp=df,dfmin=2,dfmax=5,number=8)

results in 0, 1, 2, 2.5, 3, 3.5, . . . , 5 possible degrees of freedom.

In general, it is advisable to compare the list of degrees of freedom with the degrees of
freedom of the selected model. In particular if the degree of freedom of the selected best
model is close to or even equal to dfmax the selection should be rerun with an increased
value for dfmax.

It is also possible to define the smoothing parameters of the start model. This is done in
two steps. First, the global option startmodel=userdefined must be set. Second, the
smoothing parameter of the start model is defined via option dfstart. For instance,

Y = X1(psplinerw2,sp=df,dfmin=2,dfmax=5,number=4,dfstart=2)

, startmodel=userdefined

defines a P-spline with 2 degrees of freedom for X1 as the start model. Note, however,
that the model selection algorithms are typically not sensitive to the choice of the start
model. Hence, option dfstart will be rarely used.

– Degrees of freedom, smoothing parameters on a log-scale: This alternative also defines
the list of smoothing parameters via the equivalent degrees of freedom. The difference
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to the first alternative is that the corresponding smoothing parameters between dfmin

and dfmax are chosen on a log-scale resulting in non-equidistant degrees of freedom. A
log-scale is specified using the additional option logscale. An example is the term:

Y = X1(psplinerw2,sp=df,dfmin=2,dfmax=5,number=4,logscale)

– Smoothing parameters on a log-scale: The third alternative allows to specify the smooth-
ing parameters directly using the options sp, spmin, spmax, spstart and number. The
smoothing parameters are chosen between spmin and spmax on a log-scale. Again ex-
clusion of the covariate from the model as well as a linear fit is always included in the
list of modeling alternatives. As an example consider the term

Y = X1(psplinerw2,sp=direct,spmin=10,spmax=10000,number=10)

which defines a list of 10 smoothing parameters on a log-scale between 10 and 10000.

The smoothing parameters of the start model are specified by setting the global option
startmodel=userdefined and the local option spstart.

Zero degree P-spline

Description: Defines a zero degree P-spline with first or second order difference penalty for
the effect of X1. A zero degree P-spline typically estimates for every distinct covariate value in
the data set a separate parameter. Usually there is no reason to prefer zero degree P-splines
over higher order P-splines. An exception are ordinal covariates or continuous covariates
with only a small number of different values. For ordinal covariates higher order P-splines
are not meaningful while zero degree P-splines might be an alternative to modeling nonlinear
relationships via a dummy approach with completely unrestricted regression parameters.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax:

X1(rw1[, options])

X1(rw2[, options])

Example:

Suppose that X1 is at least ordinal with possibly nonlinear effect. The following model
statement defines zero degree P-splines with second order difference penalties for f1:

Y = X1(rw2)

First order differences are obtained by specifying X1(rw1).

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Seasonal component for time scales

Description: Defines a time-varying seasonal effect of time.

Predictor: η = · · ·+ fseason(time) + · · ·

Syntax:

time(season[, options])
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Example:

A seasonal component for a time scale time is specified by

Y = time(season,period=12)

where the second argument indicates the period of the seasonal effect. In the example above,
the period is 12 corresponding to monthly data.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Spatial Covariates

Pairwise difference penalty

Description:

Defines a pairwise difference penalty for the spatial covariate region. BayesX allows to
incorporate spatial covariates with geographical information stored in the map object specified
in option map.

Predictor: η = · · ·+ fspat(region) + · · ·

Syntax:

region(spatial,map=characterstring[, options])

Example:

For the specification of a pairwise difference penalty, map is an obligatory argument that rep-
resents the name of a map object (see chapter 5) containing all necessary spatial information
about the geographical map, i.e. the neighbors of each region and the weights associated with
the neighbors. For example the statement

Y = region(spatial,map=germany)

defines a pairwise difference penalty for region where the geographical information is stored
in the map object germany. An error will be raised if germany is not existing.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Two-dimensional P-spline with first or second order random walk penalty

Description:

Defines a two-dimensional P-spline for the spatial covariate region with a two-dimensional
first or second order difference penalty for the parameters of the spline. Estimation is based
on the coordinates of the centroids of the regions. The centroids are computed using the
geographical information stored in the map object specified in the option map.

Predictor: η = · · ·+ f(centroids) + · · ·
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Syntax:

region(geosplinerw1,map=characterstring[, options])
region(geosplinerw2,map=characterstring[, options])

Example:

For the specification of a two-dimensional P-spline (geospline) map is an obligatory argu-
ment indicating the name of a map object (see chapter 5) that contains all necessary spatial
information about the geographical map, i.e. the neighbors of each region and the weights
associated with the neighbors. The model term

Y = region(geosplinerw1,map=germany)

specifies a two-dimensional cubic P-spline with second order difference penalty where the
geographical information is stored in the map object germany.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Unordered group indicators

Unit- or cluster specific unstructured effect

Description: Defines an unstructured (uncorrelated) random effect (ridge type penalty) with
respect to grouping variable grvar.

Predictor: η = · · ·+ f(grvar) + · · ·

Syntax:

grvar(random[, options])

Example:

Gaussian i.i.d. random effects allow to cope with unobserved heterogeneity among units or
clusters of observations. Suppose the analyzed data set contains a group indicator grvar that
gives information about the individual or cluster a particular observation belongs to. Then
an individual-specific uncorrelated random effect is defined by

Y = grvar(random)

The inclusion of more than one random effect term in the model is possible, allowing the
estimation of multilevel models. However, we have only limited experience with multilevel
models so that it is not clear how well these models can be estimated using stepwisereg objects.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).
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Varying coefficients with continuous covariates as effect modifier

P-spline with first or second order difference penalty

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of
X2. For f a P-spline with first or second order difference penalty is assumed.

Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(psplinerw1[, options])

X1*X2(psplinerw2[, options])

Example:

For example, a varying coefficient term with a second order difference penalty is defined as
follows:

Y = X1*X2(psplinerw2)

If the effect of a covariate should vary according to different types of effect modifiers, this
leads to similar identification problems as in usual additive models. To avoid such problems,
option center can be specified to request the estimation of centered effects. For example, if
both X2 and Z2 are assumed to modify the effect of X1, the specification of

Y = X1*X2(psplinerw2) + X1*Z2(psplinerw2)

yields a non-identifiable model. In contrast

Y = X1 + X1*X2(psplinerw2, center) + X1*Z2(psplinerw2, center)

is well-identified. Note that the main effect of X1 has to be included separately. Equivalently,
we could absorb the main effect into the first term, yielding

Y = X1*X2(psplinerw2) + X1*Z2(psplinerw2, center)

However, the former specification has the advantage that the model terms are clearly sepa-
rated.

Models of the type just discussed arise for example if X1 is a binary dummy-variable indicating
two different groups of data. In this case the model

Y = X1 + X2(psplinerw2) + X1*X2(psplinerw2, center) + Z2(psplinerw2) +

X1*Z2(psplinerw2, center)

assumes different effects of both X2 and Z2 in the groups.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Zero degree P-spline

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of
X2. Therefore covariate X2 is called the effect modifier of X1. The smoothness of f(X2) is
induced by defining a first or second order difference penalty.
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Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(rw1[, options])

X1*X2(rw2[, options])

Example:

For example, a varying coefficient term with a zero degree P-spline and a second order differ-
ence penalty is defined as follows:

Y = X1*X2(rw2)

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Varying coefficients with spatial covariates as effect modifiers

Pairwise difference penalty

Description:

Defines a varying coefficient term where the effect of X1 varies smoothly over the range of the
spatial covariate region. A pairwise difference penalty is assumed for fspat. The geographical
information is stored in the map object specified through the option map.

Predictor: η = · · ·+ fspat(region)X1 + · · ·

Syntax:

X1*region(spatial,map=characterstring [, options])

Example:

For example the statement

Y = X1*region(spatial,map=germany)

defines a varying coefficient term with the spatial covariate region as the effect modifier and
an unweighted pairwise difference penalty. Weighted difference penalties can be estimated
by including an appropriate weight definition when creating the map object germany (see
section 5.1).

Similarly as for varying coefficient terms with continuous effect modifiers, varying coefficients
with spatial effect modifier can be centered to avoid identifiability problems:

Y = X1*region(spatial, map=germany, center)

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).
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Two-dimensional P-spline with first or second order difference penalty

Description:

Defines a varying coefficient term where the effect of X1 varies smoothly over the range of the
spatial covariate region. A two-dimensional P-spline for the spatial covariate region with
a two-dimensional first order difference penalty for the parameters of the spline are defined.
Estimation is based on the coordinates of the centroids of the regions. The centroids are
computed using the geographical information stored in the map object specified in the option
map.

Predictor: η = · · ·+ f(centroids)X1 + · · ·

Syntax:

X1*region(geosplinerw1,map=characterstring[, options])
X1*region(geosplinerw2,map=characterstring[, options])

Example:

For the specification of a two-dimensional P-spline (geospline) map is an obligatory argu-
ment indicating the name of a map object (see chapter 5) that contains all necessary spatial
information about the geographical map, i.e. the neighbors of each region and the weights
associated with the neighbors. The model term

Y = X1*region(geosplinerw1,map=germany)

specifies a two-dimensional cubic P-spline with first order difference penalty where the geo-
graphical information is stored in the map object germany.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Varying coefficients with unordered group indicators as effect modifiers (random slopes)

Unit- or cluster specific unstructured effect

Description:

Defines a varying coefficient term where the effect of X1 varies over the range of the group
indicator grvar. Models of this type are usually referred to as models with random slopes.
A Gaussian i.i.d. random effect (ridge type penalty) with respect to grouping variable grvar
is assumed for f .

Predictor: η = · · ·+ f(grvar)X1 + · · ·

Syntax:

X1*grvar(random[, options])

Example:

For example, a random slope is specified as follows:

Y = X1*grvar(random)



142 Chapter 9. stepwisereg objects

Note, that in contrast to bayesreg objects, the main effects are not included automatically. If
main effects should be included in the model, they have to be specified as additional fixed
effects. The syntax for obtaining the predictor

η = · · ·+ γX1 + f(grvar)X1 + · · ·

would be

X1(linear) + X1*grvar(random[, options])

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see subsection 6.3 in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

Surface estimators

Two-dimensional P-spline with first or second order difference penalty

Description:

Defines a two-dimensional P-spline based on the tensor product of one-dimensional P-splines
with a two-dimensional first or second order difference penalty for the parameters of the
spline.

Predictor: η = · · ·+ f(X1, X2) + · · ·

Syntax:

X1*X2(pspline2dimrw1[, options])
X1*X2(pspline2dimrw2[, options])

Example:

The model term

Y = X1*X2(pspline2dimrw1)

specifies a tensor product cubic P-spline with first order difference penalty.

ANOVA type interaction

Description: In some applications it is desirable to decompose the effect of the two covariates
X1 andX2 into two main effects modeled by one dimensional functions and a two dimensional
interaction effect, i.e.

f (X1, X2) = f1 (X1) + f2 (X2) + f1|2 (X1, X2) . (9.1)

stepwisereg objects allow such decompositions using the approach described in section
subsubsection 3.1.2 of the methodology manual.

Predictor: η = · · ·+ f1(X1) + f2(X2) + f1|2(X1, X2) + · · ·

Syntax:

X1(psplinerw2[, options]) + X2(psplinerw2[, options]) +
X1*X2(psplineinteract[, options])
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Example:

The model term

Y = X1(psplinerw2) + X2(psplinerw2) + X1*X2(psplineinteract)

specifies an ANOVA type interaction effect with second order difference penalty for the main
effects.

To perform model choice and variable selection an ordered list of smoothing parameters must
be defined, see autorefstepwiseest in the methodology manual. BayesX automatically defines
an appropriate list of smoothing parameters, i.e. it is usually not necessary to specify the
smoothing parameters. The list of smoothing parameters is specified manually in the same
way as for P-splines, see the entry above (page 134).

9.1.1.3 Description of additional options for terms of stepwisereg objects

All arguments described in this section are optional and may be omitted. Generally, options are
specified by adding the option name to the specification of the model term type in the parentheses,
separated by commas. All options may be specified in arbitrary order. Table 9.3 provides expla-
nations and the default values of all possible options. All reasonable combinations of model terms
and options can be found in Table 9.4.
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9.1.1.4 Specifying the response distribution

Supported univariate distributions are Gaussian, binomial (with logit or probit link), Poisson and
gamma. For multivariate responses, stepwisereg objects currently support only multinomial logit
models for categorical responses with unordered categories. Continuous time survival models may
be estimated by assuming a piecewise exponential model which is estimated via an equivalent
Poisson model. An overview over the supported models is given in Table 9.5. The distribution
of the response is specified by adding the additional option family to the (global) options list
of the regression call. For instance, family=gaussian defines the response to be Gaussian. In
some cases, one or more additional options associated with the specified response distribution can
be specified. An example is the reference option for multinomial responses, which defines the
reference category. In the following we give details on how to specify the models.

value of family response distribution link options

family=gaussian Gaussian identity

family=binomial binomial logit
family=binomialprobit binomial probit

family=multinomial unordered multinomial logit reference

family=poisson Poisson log
family=gamma gamma log

Table 9.5: Summary of supported response distributions.

Gaussian responses

For Gaussian responses BayesX assumes yi|ηi, σ2 ∼ N(ηi, σ
2/weightvari) or, equivalently, in matrix

notation y|η, σ2 ∼ N(η, σ2C−1), where C = diag(weightvar1, . . . , weightvarn) is a known weight
matrix. Gaussian regression models are obtained by adding

family=gaussian

to the options list.

An optional weight variable weightvar can be specified to estimate weighted regression models,
see subsubsection 9.1.1.1 for details. For grouped Gaussian responses, the weights represent the
number of observations in the groups if the yi’s are the average of individual responses. If the yi’s
are the sum of responses in every group, the weights are given by the reciprocal of the number
of observations in the groups. Of course, estimation of usual weighted regression models with
heteroscedastic errors is also possible. In this case, the weights should be proportional to the
reciprocal of the heteroscedastic variances. If no weight variable is specified, BayesX assumes
weightvari = 1, i = 1, . . . , n.

Gamma distributed responses

In the literature, the density function of the gamma distribution is parameterized in various ways.
In the context of regression analysis, the density is usually parameterized in terms of the mean µ
and the scale parameter s. Then, the density of a gamma distributed random variable y is given
by

p(y) ∝ ys−1 exp

(
− s
µ
y

)
(9.2)
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for y > 0. For the mean and the variance we obtain E(y) = µ and V ar(y) = µ2/s. We write
y ∼ G(µ, s).
A second parametrization is typically employed for hyperparameters a and b of priors for variance
parameters in the context of Bayesian hierarchical models. In this case, the density is given by

p(y) ∝ ya−1 exp(−by) (9.3)

for y > 0. In this parametrization we obtain E(y) = a/b and V ar(y) = a/b2 for the mean and the
variance, respectively. We write y ∼ G(a, b)
In BayesX a gamma distributed response variable is parameterized in the first form (Equation 9.2).
For the rth observation BayesX assumes yr|ηr, ν ∼ G(exp(ηr), ν/weightvarr) where µr = exp(ηr) is
the mean and s = ν/weightvarr is the scale parameter. A gamma distributed response is specified
by adding

family=gamma

to the options list. An optional weight variable weightvar can be specified to estimate weighted
regression models, see subsubsection 10.1.2.1 for details.

It is possible to assume a fixed scale parameter. The scale parameter is defined to be fixed by
adding

scalegamma = fixed

to the options list. The (fixed) value of the scale parameter is specified by adding:

scale = realvalue

Typing e.g.

scale = 1

defines the scale parameter to be fixed at the value ν = 1.

Binomial logit and probit models

A binomial logit model is requested by the option

family=binomial

while a probit model is obtained with

family=binomialprobit.

A additional weight variable may be specified, see subsubsection 9.1.1.1 for the syntax. BayesX
assumes that the weight variable corresponds to the number of replications and the response variable
to the number of successes. If the weight variable is omitted, BayesX assumes that the number of
replications is one, i.e. the values of the response must be either zero or one.

Multinomial logit models

So far, stepwisereg objects support only multinomial logit models and no probit models. A multi-
nomial logit model is specified by adding the option

family=multinomial

to the options list. A second option (reference) may be added to the options list to define the
reference category. If the response variable has three categories 1, 2 and 3, the reference category
can be set to 2, by adding

reference=2
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to the options list. If the option is omitted, the smallest number will be used as the reference
category.

Poisson regression

A Poisson regression model is specified by adding

family=poisson

to the options list.

A weight variable may be specified in addition, see subsubsection 9.1.1.1 for the syntax. For grouped
Poisson data, the weights must be the number of observations in a group and the responses are
assumed to be the average of individual responses.

Piecewise exponential model (p.e.m.)

In subsection 7.2 of the methodology manual we demonstrated how continuous time survival data
are manipulated to transform it to a Poisson model for estimation. Suppose that the following
modified data set is available

y indnr a δ ∆ x1 x2

0 1 0.1 1 log(0.1) 0 3
0 1 0.2 1 log(0.1) 0 3
1 1 0.3 1 log(0.05) 0 3

0 2 0.1 0 log(0.1) 1 5
0 2 0.2 0 log(0.02) 1 5
...

...
...

...
...

...
...

with indicator y, interval limit a, indicator of non-censoring δ and offset ∆ defined as in subsection
7.2 of the methodology manual. Let x1 be a covariate with linear effect and x2 a continuous
covariate with nonlinear effect. Then the correct syntax for estimating a p.e.m. with a stepwisereg
object named s is e.g. as follows:

> s.regress y = a(rw1) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

or

> s.regress y = a(rw2) + Delta(offset) + x1 + x2(psplinerw2), family=poisson . . .

Note that a time-varying effect of an additional covariate X may be estimated by simply adding the
term

X*a(rw1) or X*a(rw2)

to the model statement.

9.1.2 Options

Options for controlling the selection algorithms

• algorithm = stringvalue

Specifies the selection algorithm. Possible values are cdescent1 (adaptive algorithms in
the methodology manual, see subsection 6.3), cdescent2 (adaptive algorithms 1 and 2 with
backfitting, see remarks 1 and 2 of section 3 in Belitz & Lang (2008)), cdescent3 (search
according to cdescent1 followed by cdescent2 using the selected model in the first step as
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the start model) and stepwise (stepwise algorithm implemented in the gam routine of S-plus,
see Chambers and Hastie, 1991). This option will rarely be specified by the user.
DEFAULT: algorithm = cdescent1

• criterion = stringvalue

Specifies the goodness of fit criterion. Possible values are listed in table Table 9.6. If
criterion = MSEP is specified the data are randomly divided into a test- and validation
data set. The test data set is used to estimate the models and the validation data set is used
to estimate the mean squared prediction error (MSEP) which serves as the goodness of fit
criterion to compare different models. The proportion of data used for the test and validation
sample can be specified using option proportion, see below. The default is to use 75% of
the data for the training sample.
DEFAULT: criterion = AIC imp

• proportion = realvalue

This option may be used in combination with option criterion=MSEP, see above. In this case
the data are randomly divided into a training and a validation sample. proportion defines
the fraction (between 0 and 1) of the original data used as training sample.
DEFAULT: proportion = 0.75

• startmodel = stringvalue

Defines the start model for variable selection. Possible values are listed in table Table 9.6.
DEFAULT: startmodel = empty

• trace=stringvalue

Specifies how detailed the output in the output window will be. Possible values are given in
table Table 9.6.
DEFAULT: trace = trace half

• steps=integervalue

Defines the maximum number of iterations. If the selection process has not converged after
steps iterations the algorithm terminates and a warning is raised. Setting steps=0 allows
the user to estimate a certain model without any model choice. This option will rarely be
specified by the user.
DEFAULT: steps = 100

Options for computing confidence intervals

• CI = stringvalue

By default confidence intervals for linear and nonlinear terms are not computed. Option
CI allows to compute confidence intervals. stepwisereg objects provide two alternatives for
confidence interval estimation. These are

– confidence intervals conditional on the selected model, i.e. model uncertainty is not
taken into account. The confidence intervals are based on MCMC simulations from the
posterior. Pointwise (Bayesian) confidence intervals are simply obtained by computing
the respective quantiles of simulated parameters and function evaluations. Conditional
confidence intervals are specified by CI = MCMCselect.

– unconditional confidence intervals where model uncertainty is taken into account. The
computation is based on bootstrap confidence intervals proposed by Wood (2006b), see
the methodology manual for details. Unconditional confidence intervals are specified
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global option type default values description

algorithm string cdescent1 cdescent1 adaptive search
cdescent2 exact search
cdescent3 adaptive/exact search
stepwise stepwise algorithm

criterion string AIC imp GCV Generalized Cross Validation based on deviance
residuals, see e.g. Wood (2006a)

GCVrss Generalized Cross Validation based on residual sum
of squares (for Gaussian responses GCV and GCVrss
coincide), see e.g. Wood (2006a)

AIC Akaike Information Criterion, see e.g. Burnham &
Anderson (1998)

AIC imp improved AIC with bias correction for regression
models, see e.g. Burnham & Anderson (1998)

BIC Bayesian information criterion, see e.g. Hastie, Tib-
shirani & Firedman (2001)

MSEP Mean Squared Error Prediction
CV5 5–fold cross validation, see e.g. Hastie, Tibshirani &

Firedman (2001)
CV10 10–fold cross validation, see e.g. Hastie, Tibshirani

& Firedman (2001)
AUC area under the ROC curve (binary response only)

proportion numeric
(real)

0.75 (0; 1) in combination with criterion=MSEP (see descrip-
tion above)

startmodel string linear linear start model with degrees of freedom equal to one for
model terms

empty empty model containing only an intercept
full most complex possible model
userdefined start model is specified by the user;

otherwise the linear one

trace string trace on trace on output shows full selection path
trace half output shows only the best model of each iteration
trace off no output except start and final model

steps numeric
(integer)

1000 {0; 10000} maximum number of iterations

Table 9.6: Global options controlling the selection algorithm.

by CI = MCMCbootstrap. The number of bootstrap samples is specified using option
bootstrapsamples, see below.

Both alternatives are computer intensive. Conditional confidence intervals take much less
computing time than unconditional intervals. The advantage of unconditional confidence
intervals is that sampling distributions for the degrees of freedom or smoothing parameters
are obtained.
DEFAULT: CI = none

• bootstrapsamples = integervalue

Defines the number of bootstrap samples used for CI=MCMCbootstrap.
DEFAULT: bootstrapsamples=99

• iterations=integervalue

Defines the number of MCMC iterations used for CI=MCMCselect or CI=MCMCbootstrap.
With CI=MCMCbootstrap, option iterations specifies the total number of iterations, i.e. the
sum of iterations used for the individual conditional MCMC estimations. The number of
iterations are then divided equally between the individual conditional estimations so that
the number of iterations used for one model is iterations / (bootstrapsamples + 1).
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Typically 99 bootstrap samples (plus the original data set yields 100) are used to approxi-
mate the sampling distribution of the smoothing parameters. If we wish for every bootstrap
replication 200 samples from the posterior iterations=20000 is required.
DEFAULT: iterations=20000

• step=integervalue

Defines the thinning parameter for MCMC simulation with CI=MCMCselect or
CI=MCMCbootstrap. For example, step = 20 means, that only every 20th sampled parame-
ter will be stored and used to compute characteristics of the posterior distribution. The aim
of thinning is to reach a considerable reduction of disk storing and computing time.
DEFAULT: step=20

• burnin = integervalue

Defines the number of MCMC iterations used for the burn–in iterations at the beginning
of each conditional MCMC estimation. Usually a certain number of burn–in iterations are
required to achieve convergence of the Markov chain towards its stationary (i.e. the posterior)
distribution. In our case, the initial estimates for each conditional MCMC estimation are the
posterior mode estimates, i.e. the Markov chain already starts in its stationary distribution.
Hence, burn–in iterations are not necessarily needed here and we can define burnin=0 which
saves considerable computing time. Anyway, specifying this option is meaningful only in
combination with CI=MCMCbootstrap or CI=MCMCselect.
DEFAULT: burnin=0

• level1 = integer
By default, BayesX computes confidence intervals for nominal levels of 80% and 95%. The
option level1 allows to redefine one of the nominal levels (95%). Adding, for instance,

level1=99

to the options list leads to the computation of confidence intervals for a nominal level of 99%
rather than 95%.
DEFAULT: level1 = 95

• level2 = integer
By default, BayesX computes credible intervals for nominal levels of 80% and 95%. The
option level2 allows to redefine one of the nominal levels (80%). Adding, for instance,

level2=70

to the options list leads to the computation of credible intervals for a nominal level of 70%
rather than 80%.
DEFAULT: level2 = 80

Further options

• family = stringvalue
Specifies the response distribution and link function, see subsubsection 9.1.1.4 for details.
DEFAULT: family = binomial

• predict

By specifying predict an additional file with ending predictmean.raw is created that con-
tains for every observation the estimated predictor η̂i and expectation Ê(yi|ηi) = µ̂i as well
as the deviance Di. If bootstrap replications are available (see option CI for details) model
averaged estimates for ηi and µi are additionally computed.
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• reference = realvalue
Option reference is meaningful only if family=multinomial is specified as the response
distribution. In this case reference defines the reference category to be chosen. Suppose, for
instance, that the response is three categorical with categories 1, 2 and 3. Then reference=2

defines the value 2 to be the reference category.
DEFAULT: reference = 1

9.1.3 Estimation output

The estimation output depends on the estimated model. Estimation results for linear effects are
displayed in a tabular form in the output window and/or in a log file (if created before). This
table always contains the estimated coefficient. Standard deviations and 95% confidence intervals
are available only if option CI = MCMCbootstrap or CI = MCMCselect have been specified. A
different confidence level may be obtained by specifying the level1 option, see section 9.1.2 for
details. Additionally, a file replicating results for the fixed effects is created. The name of this file
is supplied in the output window and/or in a log file.

Estimated nonparametric effects are presented in a different way. Here, results are stored in external
ASCII-files that can be read into any general purpose statistics program (e.g. STATA, R, S-plus) to
further analyze and/or visualize the results. The structure of these files is as follows: There will be
one file for every nonparametric effect in the model. The names of the files and the storing directory
are displayed in the output window and/or a log file. The files contain ten columns (for main effects)
or eleven columns (for interaction effects). The first column contains a parameter index (starting
with one), the second column (and the third column if the estimated effect is an interaction)
contain the values of the covariate(s) whose effect has been estimated. In the following columns the
estimation results are given in form of the point estimate, the lower boundaries of the 95% and 80%
credible intervals, the standard deviation and the upper boundaries of the 80% and 95% credible
intervals. The last two columns contain approximations to the posterior probabilities based on
nominal levels of 95% and 80%. A value of 1 corresponds to a strictly positive 95% or 80% credible
interval while a value of -1 to a strictly negative credible interval. A value of 0 indicates that the
corresponding credible interval contains zero. Other credible intervals and posterior probabilities
may be obtained by specifying the level1 and/or level2 option, see section 9.1.2 for details. As
an example, compare the following lines, which are the beginning of a file containing the results for
a nonparametric effect of a particular covariate, x say:

intnr x pmean pqu2p5 pqu10 pmed pqu90 pq97p5 pcat95 pcat80

1 -2.87694 -0.307921 -0.886815 -0.686408 0.295295 0.070567 0.270973 0 0

2 -2.86203 -0.320479 -0.885375 -0.689815 0.288154 0.0488558 0.244416 0 0

3 -2.8515 -0.329367 -0.88473 -0.69247 0.283292 0.0337362 0.225997 0 0

4 -2.85066 -0.330072 -0.884692 -0.692689 0.282913 0.0325457 0.224549 0 0

5 -2.82295 -0.3535 -0.884544 -0.700703 0.270887 -0.00629671 0.177545 0 -1

6 -2.79856 -0.37418 -0.886192 -0.708939 0.261178 -0.0394208 0.137832 0 -1

7 -2.79492 -0.377272 -0.886579 -0.710263 0.259798 -0.0442813 0.132035 0 -1

8 -2.79195 -0.379788 -0.886921 -0.711358 0.258689 -0.0482183 0.127345 0 -1

9 -2.78837 -0.382834 -0.887367 -0.712704 0.257363 -0.0529641 0.1217 0 -1

Note that credible intervals, standard deviations etc. are available only if option CI = MCMC-
bootstrap or CI = MCMCselect have been specified.

The estimated nonlinear effects can be visualized using either the graphics capabilities of BayesX
or a couple of R functions, see section 11.1 and section 11.2, respectively. Of course, any other
(statistics) software package with plotting facilities can be used as well.

Estimation results for the variances and the smoothing parameters of nonparametric effects are
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printed in the output window and/or a log file. Additionally, a file is created containing the same
information.

9.1.4 Examples

Here we give only a few examples about the usage of method regress. A more detailed, tutorial
like example can be found in chapter 3 of the tutorial manual.

Suppose that we have a data set test with a continuous response variable y, and covariates x1,
x2, x3, and region, where region indicates the geographical location an observation belongs to.
Suppose further that we have already created a stepwisereg object s.

Linear effects

We first specify a model with y as the response variable and fixed effects for the covariates x1, x2
and x3. Hence the predictor is

η = γ0 + γ1x1 + γ2x2 + γ3x3

This model is estimated by typing:

> s.regress y = x1 + x2 + x3, family=gaussian using test

By specifying option family=gaussian, a linear model with Gaussian errors is estimated and
relevant variables are selected.

Suppose now that covariate x1 is categorical with three categories 1,2 and 3. In this case x1 should
be incorporated as a factor variable. We obtain

> s.regress y = x1(factor,reference=2) + x2 + x3, family=gaussian using test

where the reference category for x1 is 2. BayesX automatically creates dummy variables for x1. If
effect coding should be used instead of dummy coding we have to write

> s.regress y = x1(factor,reference=2,coding=effect) + x2 + x3, family=gaussian

using test

Additive models

Suppose now that we want to allow for possibly nonlinear effects of x2 and x3. Defining cubic
P-splines with second order difference penalty, we obtain

> s.regress y = x1(factor,reference=2) + x2(psplinerw2) + x3(psplinerw2),

family=gaussian using test

which corresponds to the predictor

η = γ0 + γ1x1 1 + γ2x1 3 + f1(x2) + f2(x3),

where x1_1 and x1_3 are dummy variables for x1

Spatial covariates

To incorporate a structured spatial effect, we first have to create a map object. Afterwards we read
the boundary information of the different regions (polygons that form the regions, neighbors etc.).
If you are unfamiliar with map objects please read chapter 5 first.
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> map m

> m.infile using c:\maps\map.bnd

Since we usually need the map again in further sessions, we store it in graph file format, because
reading graph files is much faster than reading boundary files.

> m.outfile , graph using c:\maps\mapgraph.gra

We can now augment our predictor with a spatial effect:

> s.regress y = x1(factor,referenc=2+ x2(psplinerw2) + x3(psplinerw2)+

region(spatial,map=m), family=gaussian using test

9.2 Global options

The purpose of global options is to affect the global behavior of a stepwisereg object. The main
characteristic of global options is, that they are not associated with a certain method.

The syntax for specifying global options is

objectname.optionname = newvalue

where newvalue is the new value of the option. The type of the value depends on the respective
option.

Currently only one global option is available for stepwisereg objects:

• outfile = filename
By default, the estimation output produced by the regress procedure will be written to the
default output directory, which is

<INSTALLDIRECTORY>\output

The default file name is composed of the name of the stepwisereg object and the type of the
file. For example, if you estimated a nonparametric effect for a covariate X, say, using a
P-spline, then the estimation output will be written to

<INSTALLDIRECTORY>\output\r_f_X_pspline.res

where r is the name of the stepwisereg object. In most cases, however, it may be necessary
to save estimation results into a different directory and/or under a different file name than
the default. This can be achieved using the outfile option. Here, you have to specify the
directory where the output should be stored and a base file name. This base file name should
not be a complete file name. For example specifying

outfile = c:\data\res1

would cause BayesX to store the estimation result for the nonparametric effect of X in file

c:\data\res1_f_X_pspline.res

9.3 Visualizing estimation results

Visualization of estimation results is described in chapter 11
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mcmcreg objects

mcmcreg objects are used to fit Bayesian quantile regression and (multivariate) distributional re-
gression models with structured additive predictor, see Klein, Kneib & Lang (2014). Hierarchical
data structures may be considered using hierarchical or multilevel structured additive predictors.
For multilevel structured additive models see Lang et al. (2014). Inference is based on a fully
Bayesian approach implemented via Markov Chain Monte Carlo (MCMC) simulation techniques.
The methodology manual provides a brief introduction to (multilevel) structured additive regres-
sion and MCMC-based inference. More details can be found in the references cited above and in
the book by Fahrmeir et al. (2013).

155
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10.1 Method hregress

10.1.1 Description

Method hregress estimates (hierarchical) distributional structured additive regression models.

10.1.2 Syntax

> objectname.hregress model [weight weightvar] [if expression] [, options] using dataset

Method hregress estimates the regression model specified in model using the data specified in
dataset. dataset has to be the name of a dataset object created before. The details of correct
models are covered in subsubsection 10.1.2.2. The distribution of the response variable can be
chosen from a wide range of uni- and multivariate distributions. It is specified using options family
and equationtype, see subsubsection 10.1.2.4 below and the options list in subsection 10.1.3. The
default value is family=gaussian and equationtype=mu with an identity link. An if statement
may be specified to analyze only parts of the data set, i.e. the observations where expression is
true.

10.1.2.1 Optional weight variable

An optional weight variable weightvar may be specified to estimate weighted regression models.

10.1.2.2 Syntax of possible model terms

The general syntax of models is:

depvar = term1 + term2 + · · ·+ termr

where depvar specifies the dependent variable in the model and term1,. . . ,termr define the specific
form of covariate effects on the dependent variable. The different terms have to be separated by
’+’ signs. A constant intercept is (in contrast to bayesreg objects) NOT automatically included in
the models and must be specified by the analyst using the term const. This section reviews all
possible model terms that are currently supported by mcmcreg objects and provides some specific
examples. Note that all described terms may be combined in arbitrary order. An overview about the
capabilities of mcmcreg objects is given in Table 10.1. Table 10.2 shows how interactions between
covariates are specified. Full details about all available options are given in subsubsection 10.1.2.3.

Throughout this section, Y will denote the dependent variable.

Offset

Description: Adds an offset term to the predictor.

Predictor: η = · · ·+ offs + · · ·

Syntax: offs(offset)

Example:

The following model statement can be used to estimate a Poisson model with offs as offset
term and W1 and W2 as fixed effects (if family=poisson is specified in addition):

Y = offs(offset) + W1 + W2

Note that the offset variable is included on the level of the predictor.
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Fixed effects

Description: Incorporates covariate W1 as a fixed effect into the model.

Predictor: η = · · ·+ γ1W1 + · · ·

Syntax: W1

Example:

The following model statement specifies a model with q fixed (linear) effects and an intercept:

Y = const + W1 + W2 + · · · + Wq

Shrinkage of fixed effects

Description: Defines a shrinkage prior for the corresponding parameters γj , j = 1, . . . , q,
q ≥ 1 of the linear effects X1,. . . ,Xq. There are two priors possible: ridge and lasso type
priors.

Predictor: η = · · ·+ γ1X1 + · · ·+ γqXq + · · ·

Syntax:

– Ridge-prior: X1(ridge[, options])

– Lasso-prior: X1(lasso[, options])

Example: The following model statement can be used to estimate a model with q lasso-
penalized linear effects

Y = X1(lasso)+...+ Xq(lasso)

By default, the starting value of the shrinkage parameter in the Markov chain is set to 1
and the shrinkage parameter is estimated by the data. It is also possible to fix the shrinkage
parameter through the iterations in order to use a prespecified amount of shrinkage. To do
so, the option shrinkagefix has to be set in the corresponding terms and this results in
fixing the shrinkage parameter at the starting value assigned in the option shrinkage.

The following model term defines a lasso penalty with shrinkage parameter fixed at the value
1.5:

Y = X1(lasso)+...+ Xq(lasso,shrinkage=1.5,shrinkagefix)

Full details about all possible options for shrinkage effects are given in Section 7.1.2.3.

Important Remark: Except for the option tau2 for the variances of lasso and ridge (and the
options I and t2 for nigmix), all the other possible options used in the shrinkage methods
are those which are specified in the first term of the corresponding penalty, e.g.

Y = X2(lasso,shrinkagepar=2,shrinkagefix)+ X1(lasso,shrinkagepar=1.5)

uses the options of X2. If the option adaptive is specified the options from each term are
used.
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Nonlinear effects of continuous covariates and time scales

Description: Defines a P-spline with a first or second order random walk prior for the param-
eters of the spline.

Predictor: η = · · ·+ f1(X1) + · · ·

Syntax: X1(pspline[, options])

Example:

A P-spline with second order random walk prior is obtained by:

Y = X1(pspline)

By default, a second order random walk prior is used, the degree of the spline is 3 and the
number of inner knots is 20. The following model term defines a quadratic P-spline with 30
knots and a first order random walk prior:

Y = X1(pspline,degree=2,nrknots=30,difforder=1)

Full details about all possible options for P-splines are given in subsubsection 10.1.2.3.

Spatial Covariates

Description:

Defines a Markov random field prior for the spatial covariate region. BayesX allows to
incorporate spatial covariates with geographical information stored in the map object specified
in option map.

Predictor: η = · · ·+ fspat(region) + · · ·

Syntax:

region(spatial,map=characterstring[, options])

Example:

For the specification of a Markov random field prior, map is an obligatory argument that rep-
resents the name of a map object (see chapter 5) containing all necessary spatial information
about the geographical map, i.e. the neighbors of each region and the weights associated with
the neighbors. For example the statement

Y = region(spatial,map=germany)

defines a Markov random field prior for region where the geographical information is stored
in the map object germany. An error will be raised if germany is not existing. It is advisable to
reorder the regions of a map prior to estimation of a spatial effect to obtain a band matrix like
precision matrix. This can be achieved using method reorder of map objects, see section 5.3
for details.

Unordered group indicators

Description: Defines an unstructured (uncorrelated) random effect with respect to grouping
variable grvar.

Predictor: η = · · ·+ f(grvar) + · · ·
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Syntax:

grvar(random[, options])

Example:

Gaussian i.i.d. random effects allow to cope with unobserved heterogeneity among units or
clusters of observations. Suppose the analyzed data set contains a group indicator grvar that
gives information about the individual or cluster a particular observation belongs to. Then
an individual-specific uncorrelated random effect is defined by

Y = grvar(random)

Note that BayesX allows the specification of hierarchical or multilevel models that go far
beyond the simple random intercept term described above, see subsubsection 10.1.2.5.

Varying coefficients with continuous covariates as effect modifier

Description:

Defines a varying coefficient term, where the effect of X1 varies smoothly over the range of X2.
The smoothness prior for f(X2) is a P-spline with first or second order random walk prior.

Predictor: η = · · ·+ f(X2)X1 + · · ·

Syntax:

X1*X2(pspline[, options])

Example:

A varying coefficient term with a second order random walk smoothness prior is defined as
follows:

Y = X1*X2(pspline)

Varying coefficients with spatial covariates as effect modifiers

Description:

Defines a varying coefficients term where the effect of X1 varies smoothly over the range of
the spatial covariate region. A Markov random field is estimated for fspat(region). The
geographical information is assumed to be stored in the map object specified in the option
map.

Predictor: η = · · ·+ fspat(region)X1 + · · ·

Syntax:

X1*region(spatial,map=characterstring[,options])

Example:

The statement

Y = X1*region(spatial,map=germany)

defines a varying coefficient term with the spatial covariate region as the effect modifier
and a Markov random field as spatial smoothness prior. Weighted Markov random fields
can be estimated by including an appropriate weight definition when creating the map object
germany (see section 5.1).
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Varying coefficients with unordered group indicators as effect modifiers (random slopes)

Description:

Defines a varying coefficient term where the effect of X1 varies over the range of the group
indicator grvar. Models of this type are usually referred to as models with random slopes. A
Gaussian i.i.d. random effect with respect to grouping variable grvar is assumed for f(grvar).

Syntax:

X1*grvar(random[, options])

Example:

A random slope is specified as follows:

Y = X1*grvar(random)

Note that BayesX allows the specification of hierarchical or multilevel models that go far
beyond the simple random intercept term described above, see subsubsection 10.1.2.5.

Surface estimators

Two-dimensional kriging term

Description:

Defines a two dimensional Gaussian field (kriging term)

Predictor: η = · · ·+ f(X1, X2) + · · ·

Syntax:

X1*X2(kriging[, further options])

Example:

The model term

Y = X1*X2(kriging)

specifies a two-dimensional Gaussian field.

10.1.2.3 Description of additional options for terms of mcmcreg objects

All arguments described in this section are optional and can therefore be omitted. Generally, all
options are specified by adding the option name to the specification of the model term type in
the parentheses, separated by commas. Boolean options are specified by simply adding the option
name. For example, a random intercept term with a=b=0.001 as parameters for the inverse gamma
prior of the variance parameter is specified as follows:

X1*grvar(random,a_re=0.001,b_re=0.001)

Note that all options may be specified in arbitrary order. Table 10.3 and Table 10.4 provide expla-
nations and the default values of all possible options. All reasonable combinations of model terms
and options can be found in Table 10.5.
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Type Syntax example Description

Offset offs(offset) Variable offs is an offset term.

Linear effect W1 Linear effect of W1.

Ridge effect X1(ridge) Linear effect of X1 with ridge prior.

Lasso effect X1(lasso) Linear effect of X1 with lasso prior.

P-spline X1(pspline) Nonlinear effect of X1.

Markov random
field

region(spatial,map=m) Spatial effect of region where region indicates the
region an observation pertains to. The boundary
information and the neighborhood structure are
stored in the map object m.

Two dimensional
kriging term

region(geospline,map=m) Spatial effect of region. Estimates a two dimen-
sional kriging term based on the centroids of the
regions. The centroids are obtained from the map
object m.

Random intercept grvar(random) I.i.d. Gaussian (random) effect of the group indi-
cator grvar, e.g. grvar may be an individual indi-
cator when analyzing longitudinal data.

Table 10.1: Overview over different model terms for mcmcreg objects.

Type of interaction Syntax example Description

Varying coefficient term X1*X2(pspline) Effect of X1 varies smoothly over the range
of the continuous covariate X2 or time.

Random slope X1*grvar(random) The regression coefficient of X1 varies with
respect to the unit- or cluster-index vari-
able grvar.

Geographically weighted
regression

X1*region(spatial,map=m) Effect of X1 varies geographically. Covari-
ate region indicates the region an obser-
vation pertains to.

Two dimensional
kriging term

X1*X2(kriging) Two dimensional surface for the continu-
ous covariates X1 and X2.

Table 10.2: Possible interaction terms for mcmcreg objects.
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Option Description Default

a, b The options a and b specify the hyperparameters of the inverse Gamma
prior for the variance τ2 of nonlinear effects (e.g. P-splines or Markov
random fields).

a=0.001, b=0.001

a_re, b_re The options a_re and b_re specify the hyperparameters of the inverse
Gamma prior for the variance τ2 of random effects (random or hran-
dom).

a_re=0.001, b_re=0.001

binning uses binning of the covariate according to Lang et al. (2014). binning=-1 (no binning)

centermethod Defines the method for centering nonlinear terms (e.g. P-splines). centermethod=meanfd

centermethods = meanf

Centered sampling such that the sum of the f(x) over all observations
is zero.
centermethods = meanfd

Centered sampling such that the sum of the f(x) over the distinct
observations is zero.
centermethods = meancoeff

Centered sampling such that the sum of the regression coefficients is
zero.
centermethods = meansimple

Center the parameters around zero (after they have been sampled).

constraints Defines monotonicity constraints for P-splines. Specifying
constraints=increasing yields increasing nonlinear functions
and constraints=decreasing yields decreasing functions.

constraints = unrestricted

degree Specifies the degree of B-spline basis functions for P-splines. degree=3

derivative If specified, first order derivatives of the function estimate are com-
puted (for P-splines only).

-

difforder Specifies the difference order (1 or 2) of random walks for P-spline
priors.

2

lambda Provides a starting value for the smoothing parameter λ. NOTE: In
distributional regression models with more than one equation it may
be better to specifiy lambda=100.

lambda=10

lambda_re Provides a starting value for the smoothing parameter λ for random
effects (random or hrandom).

lambda_re=0.1

nocenter Indicates that a nonlinear term should not be centered. -

nu Specifies the parameter nu of the Matern family of covariance functions
(kriging terms only).

nu=1.5

nrknots Specifies the number of inner knots for a P-spline term. nrknots=20

meaneffect Indicates that mean effects (expected values) of the response in de-
pendence of the covariate (with other covariates held fixed at mean
values) should be computed.

-

round Rounds the covariate before estimation, e.g. round=2 rounds to 2 digits
after the decimal point.

round=-1 (no rounding)

Table 10.3: Optional arguments for mcmcreg object terms in alphabetical order (1).

Option Description Default

samplederivative Indicates that samples of the derivatives should be stored. If this is the
case, credible intervals, standard errors etc. for derivatives are com-
puted in addition to mean estimates. This option is only meaningful
in combination with option derivative.

-

samplef Indicates that samples for the nonlinear functions in addition to sam-
ples of regression coefficients should be stored.

-

updatem Specifies the method for updating regression coefficients in the MCMC
sampler. update=direct uses direct updating by sampling from the
full conditionals in case of gaussian responses or by IWLS proposals in
case of non-gaussian responses , update=orthogonal uses orthogonal
bases as described in Lang et al. (2014).

updatem=direct

Table 10.4: Optional arguments for mcmcreg object terms in alphabetical order (2).
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10.1.2.4 Specifying the response distribution

An overview of supported univariate distributions is given in Tables 10.6, 10.7 and 10.8. Supported
multivariate distributions are presented in Table 10.9. mcmcreg objects allow to define for each
parameter of a specific distribution a full STAR predictor. This is done by defining for each
parameter of the distribution a separate model equation. To define the equation type, the user has
to specify the (global) options family and equationtype. In some cases, one or more additional
options associated with the specified response distribution can be specified. In the following, we
give detailed instructions on how to specify the various models for two distributions, the Gaussian
and Gamma distribution. For the other distributions the specification is analogous. Special cases
are the hurdle and beta inflated models which are discussed below.

Gaussian responses

The classical Gaussian regression model is specified with homoscedastic variances, i.e. the responses
yi are Gaussian with expected value µ = ηi depending on covariates and homoscedastic variance
σ2 not depending on covariates. The homoscedastic Gaussian model is specified as

b.hregress depvar = const + term1 + ... , family=normal equationtype=mu using d

where depvar is the response variable, term1 is a specific covariate effect to be specified as outlined
in the previous section and d is the name of the dataset object where the data are stored. The
dots indicate that there might be other covariate terms in the equation. Since we are dealing
with homoscedastic models where only the mean µ depends on covariates the specification of the
equationtype as done above is not necessary.

A Gaussian regression model with heteroscedastic variances σ2i depending on covariates is specified
as:

b.hregress depvar = const + s_term1 + ..., family=normal equationtype=sigma2

using d

b.hregress depvar = const + m_term1 + ..., family=normal equationtype=mu using d

The covariates and the respective terms can be completely different in the variance and mean
equation. It is also possible to model the standard deviation σ rather than the variance σ2 using
the syntax:

b.hregress depvar = const + s_term1 + ..., family=normal2 equationtype=sigma

using d

b.hregress depvar = const + m_term1 + ..., family=normal2 equationtype=mu using d

Note that we have to specify family=normal2 rather than family=normal when using the standard
deviation.

Gamma distributed responses

Gamma distributed responses are specified with the following two equations, one for the parameter
σ and one for the expected value µ:

b.hregress depvar = const + s_term1 + ..., family=gamma equationtype=sigma using d

b.hregress depvar = const + m_term1 + ..., family=gamma equationtype=mu using d

A model with constant parameter σ not depending on covariates is given by:

b.hregress depvar = const , family=gamma equationtype=sigma using d

b.hregress depvar = const + m_term1 + ... , family=gamma equationtype=mu using d
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Hurdle models

For hurdle models additional weights have to be specified and need to be put in the lambda equation
(hurdle Poisson) and the mu, delta equations (hurdle negbin). Note also that the first observation
in the data set needs to be with a response variable greater than zero!

d.generate w=1

d.replace w=0 if depvar=0

b.hregress depvar = const + s_term1 + ..., family=hurdle equationtype=pi using d

b.hregress depvar = const + m_term1 + ... weight w, family=hurdle equationtype=lambda

using d

Analogue the hurdle negbin model is specified.

Beta inflated models

For families betainf, betainf0 and betainf1 additional weights for the mu and sigma2 equation
have to be defined:

d.generate w=1

d.replace w=0 if depvar=0

d.replace w=0 if depvar=1

b.hregress depvar = const + s_term1 + ... weight w, family=betainf equationtype=sigma2

using d

b.hregress depvar = const + m_term1 + ... weight w, family=betainf equationtype=mu

using d

b.hregress depvar = const + m_term1 + ..., family=betainf equationtype=nu using d

b.hregress depvar = const + m_term1 + ..., family=betainf equationtype=tau using d

Analogue the betainf0 and betainf1 models are specified.

10.1.2.5 Hierarchical or multilevel models

Random intercept models

As already mentioned at various places in the manuals, BayesX is able to specify and estimate
hierarchical or multilevel models, see section 8.3 in the methodology manual and in particular the
paper by Lang et al. (2014). Suppose we want to estimate a homoscedastic Gaussian regression
model with response variable y, P-spline effects f1(X1) and f2(X2) for the continuous covariates
X1 and X2, and a random intercept for the cluster variable C. Assume further that X1 is an
individual specific covariate whereas X2 is a cluster specific covariate according to the cluster
variable C. Then the model can be specified as:

b.hregress y = const + X1(pspline) + X2(pspline) + C(random) , family=normal

equationtype=mu using d

As an alternative to this specification, the model could be defined in hierarchical form. To do so
we first need a second dataset dC, say, where the unique observations of the two cluster variables
C and x2 are stored. The first 5 lines of this dataset in ASCII format may look like this:

C X2

1 -2.3
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2 2.2

3 1.4

4 3

5 -1.6

Note that the values of the cluster variable C must be stored in increasing order! Now the model
can be reformulated in hierarchical order as follows:

b.hregress C = X2(pspline) , family=gaussian_re equationtype=mu using dC

b.hregress y = const + X1(pspline) + C(hrandom) , family=normal

equationtype=mu using d

In this form we have defined the random intercept with additional nonlinear covariate effect of
the cluster specific variable X2 using a separate equation. While this specification is formally
equivalent to the first model definition, estimation is now carried out in the hierarchical way as
described in detail in Lang et al. (2014). The hierarchical formulation is usually more favorable
as the computing time for every iteration is reduced and also the mixing of the MCMC sampler
(sometimes dramatically) improves.

Random slope models

It is also possible estimate random slopes hierarchically. Suppose we want to estimate an interaction
effect (random slope) between the individual specific covariate X1 and the cluster variable C. In
non-hierarchical form we obtain:

b.hregress y = const + X1(pspline) + X2(pspline) + C(random) + X1*C(random) ,

family=normal equationtype=mu using d

The same model in hierarchical form is given as:

b.hregress C = X2(pspline) , family=gaussian_re equationtype=mu using dC

dC.generate C2 = C

b.hregress C2 = const , family=gaussian_re equationtype=mu using dC

d.generate C2 = C

b.hregress y = const + X1(pspline) + C(hrandom) + X1*C2(hrandom) ,

family=normal equationtype=mu using d

Note that we have to duplicate the cluster variable C in both datasets in order to distinguish the
random slope equation from the random intercept equation.

Three level models

BayesX is able to estimate hierarchical models with arbitrary number of hierarchy levels. Suppose
there is another cluster variable D which is nested in C. Suppose further that we have an additional
covariate X3 at cluster level D. Then a three level random intercept model is defined hierarchically
as follows:

b.hregress C = X3 , family=gaussian_re equationtype=mu using dD

b.hregress C = X2(pspline) + D(hrandom) , family=gaussian_re

equationtype=mu using dC

b.hregress y = const + X1(pspline) + C(hrandom) , family=normal

equationtype=mu using d
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Here the cluster level dataset for variable D is dD. For the cluster level covariate X3 a linear effect
is assumed.

Random slope models could be defined analogously.

Placing the overall intercept

Placing the overall intercept in hierarchical models is a delicate issue as it can have a strong impact
on the mixing behaviour of the resulting Markov chains. Usually the best option is to place the
overall intercept in the lowest level random intercept equation. In doing so our previous model
becomes

b.hregress C = const + X3 , family=gaussian_re equationtype=mu using dD

b.hregress C = X2(pspline) + D(hrandom) , family=gaussian_re

equationtype=mu using dC

b.hregress y = X1(pspline) + C(hrandom) , family=normal equationtype=mu using d

10.1.3 Options

Options for controlling MCMC simulations

Options for controlling MCMC simulations are listed in alphabetical order.

• burnin = integer
Changes the number of burn-in iterations to integer, where integer must be a positive integer
number or zero (i.e. no burn-in period). The number of burn-in iterations must be smaller
than the number of iterations (see option iterations). Option burnin must be specified in
the first equation of the model, otherwise the option will be ignored.
DEFAULT: burnin=2000

• iterations = integer
Changes the number of MCMC iterations to integer, where integer must be a positive integer
number. The number of iterations must be larger than the number of burn-in iterations.
Option iterations must be specified in the first equation of the model, otherwise the option
will be ignored.
DEFAULT: iterations=52000

• step = integer
Defines the thinning parameter for MCMC simulation. For example, step = 50 means,
that every 50th sampled parameter will be stored and used to compute characteristics of
the posterior distribution as means, standard deviations or quantiles. The aim of thinning
is to reach a considerable reduction of disk storing and autocorrelations between sampled
parameters. Option step must be specified in the first equation of the model, otherwise the
option will be ignored.
DEFAULT: step=50

Options for specifying the response distribution

Options for specifying the response distribution are listed in alphabetical order below.
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• aresp = realvalue
Defines the value of the hyperparameter a for the inverse gamma prior of the overall variance
parameter σ2, if the response distribution is Gaussian with homoscedastic variance. realvalue
must be a positive real valued number.
DEFAULT: aresp=1

• bresp = realvalue
Defines the value of the hyperparameter b for the inverse gamma prior of the overall variance
parameter σ2, if the response distribution is Gaussian with homoscedastic variance. realvalue
must be a positive real valued number.
DEFAULT: bresp=0.005

• equationtype = characterstring
Defines the type of equation in the model, e.g. equationtype=sigma2 and equationtype=mu

for Gaussian responses. The admittable equation types depend on the response distribution
family, see Tables 10.6, 10.7, 10.8 and 10.9.
DEFAULT: equationtype=mu

• family = characterstring
Defines the distribution of the response variable in the model. Supported models can be
found in Tables 10.6, 10.7, 10.8 and 10.9. For some distributions (e.g. multinomial) additional
options may be specified to control MCMC inference. A list of distributions with associated
additional options is given in Table 10.10.
A more detailed description on how to specify the distribution of the response is given in
subsubsection 10.1.2.4.
DEFAULT: family=normal

• reference = realvalue
Option reference is meaningful only if family=multinom_probit is specified as the response
distribution. In this case reference defines the reference category to be chosen. Suppose, for
instance, that the response is three categorical with categories 1, 2 and 3. Then reference=2

defines the value 2 to be the reference category.

value of family response distribution link additional options

family=normal Gaussian identity aresp, bresp

family=multinom_probit unordered multinomial probit reference

Table 10.10: Response distributions with additional options.

Further options

Options are listed in alphabetical order:

• level1 = integer
Besides the posterior means and medians, BayesX provides pointwise posterior credible in-
tervals for every effect in the model. In a Bayesian approach based on MCMC simulation
techniques credible intervals are estimated by computing the respective quantiles of the sam-
pled effects. By default, BayesX computes pointwise as well as simultaneous credible intervals
for nominal levels of 80% and 95%. The option level1 allows to redefine one of the nominal
levels (95%). Adding, for instance,
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level1=99

to the options list computes credible intervals for a nominal level of 99% rather than 95%.
Option level1 must be specified in the first equation of the model, otherwise the option will
be ignored.

• level2 = integer
Besides the posterior means and medians, BayesX provides pointwise posterior credible in-
tervals for every effect in the model. In a Bayesian approach based on MCMC simulation
techniques credible intervals are estimated by computing the respective quantiles of the sam-
pled effects. By default, BayesX computes pointwise as well as simultaneous credible intervals
for nominal levels of 80% and 95 %. The option level2 allows to redefine one of the nominal
levels (80%). Adding, for instance,

level2=70

to the options list computes credible intervals for a nominal level of 70% rather than 80%.
Option level2 must be specified in the first equation of the model, otherwise the option will
be ignored.

• predict

Option predict may be specified to compute predicted values, samples of the deviance D,
the deviance information criterion DIC, etc. The following specifications are possible:

– predict=no

This the default specification, i.e. predicted values are not computed.

– predict=full

This specification computes and reports the model deviance, the DIC, posterior means,
medians, standard deviations and some quantiles of the predictor, the estimated param-
eter and the expected value. The deviance and DIC are reported in the regression output
as well as in a file which ends with “predict DIC.res”. The other results are stored in a
file which ends with “predict.res”.

Regarding the computation of the DIC and related quantities please take a look at page
85.

– predict=fulls

This specification provides the same output as predict=full. If method getsample is
applied after method hregress then predict=fulls provides an additional file (which
ends with “predict sample.raw”) with all samples of the computed quantities. Note that
the size of the output file is huge even for very simple models because the number of sam-
pled quantities is proportional to the number of observations. Usually it is not necessary
to store all samples of the quantities obtained with predict=full or predict=fulls.
Therefore the specification predict=full is favorable compared to predict=fulls.

10.1.4 Estimation output

The way the estimation output is presented depends on the estimated model. Estimation results
of fixed effects are displayed in a tabular form in the output window and/or in a log file (if cre-
ated before). Shown will be the posterior mean, the standard deviation, the 2.5% and the 97.5%
quantiles. Other quantiles may be obtained by specifying the level1 and/or level2 option, see
subsection 10.1.3 for details. Additionally a file is created where estimation results for fixed effects
are replicated. The name of the file is given in the output window and/or in a log file.

Estimation effects of nonlinear effects of continuous and spatial covariates as well as unstructured
random effects are presented in a different way. Results are stored in an external ASCII-file whose
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contents can be read into any general purpose statistics program (e.g. STATA, R) to further analyze
and/or visualize the results. The structure of the files is as follows: There will be one file for every
(nonparametric) effect in the model. The name of the files and the storing directory are displayed
in the output window and/or a log file. The files contain 17 or 18 columns depending on whether the
corresponding model term is an interaction effect. The first column contains an index (starting with
one), the second column (and the third column if the estimated effect is an interaction effect) contain
the values of the covariate(s) whose effect is estimated. In the following columns the estimation
results are given in form of the posterior means, standard deviations and the 2.5%, 10%, 50%, 90%
and 97.5% pointwise credible intervals. Other quantiles may be obtained by specifying the level1
and/or level2 option, see subsection 10.1.3 for details. The next two columns contain posterior
probabilities based on nominal levels of 95% and 80%. A value of 1 corresponds to a strictly
positive 95% or 80% credible interval and a value of -1 to a strictly negative credible interval. A
value of 0 indicates that the corresponding credible interval contains zero. The remaining 6 columns
provide simultaneous credible intervals together with their corresponding posterior probabilities.
The simultaneous credible intervals are computed according to a proposal by Krivobokova et al.
(2010).

The estimated nonlinear effects can be visualized by using either the graphics capabilities of BayesX
or the BayesX R package, see section 11.1 and section 11.2, respectively. Of course, any other
(statistics) software package with plotting facilities may be used as well.

10.1.5 Examples

Here we give only a few examples about the usage of method hregress.

Suppose that we have a data set test with a continuous response variable y, and covariates x1, x2
and x3. Suppose further that we have already created a mcmcreg object b.

10.1.5.1 Single equation and parameter models

We start by specifying Gaussian regression models for the response variable y with homoscedastic
variance σ2, i.e. we define only a predictor for the mean µ of the normal distribution.

Fixed effects

We first specify a model with fixed effects for the covariates x1, x2 and x3. Hence the predictor for
µ is

η = γ0 + γ1x1 + γ2x2 + γ3x3.

This model is estimated by typing:

> b.hregress y = const + x1 + x2 + x3, iterations=12000 burnin=2000

step=10 family=normal using test

Here, step=10 defines the thinning parameter, i.e. every 10th sampled parameter will be stored
and used for estimation. test is the data set that is used for estimation. By specifying option
family=normal, a Gaussian regression model is estimated.

Additive models
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Suppose now that we want to allow for possibly nonlinear effects of x2 and x3. Assuming cubic
P-splines with second order random walk prior as smoothness priors, we obtain

> b.hregress y = const + x1 + x2(pspline) + x3(pspline), iterations=12000

burnin=2000 step=10 family=normal using test

which corresponds to the predictor

η = γ0 + γ1x1 + f1(x2) + f2(x3).

Spatial covariates

Suppose now that we have an additional spatial covariate region, which indicates the geographical
region an observation belongs to. To incorporate a structured spatial effect, we first have to create
a map object and read in the boundary information of the different regions (polygons that form the
regions, neighbors etc.). If you are unfamiliar with map objects please read chapter 5 first.

> map m

> m.infile using c:\maps\map.bnd

In a second step we reorder the regions of the map using the reorder command to obtain minimal
bandwidths of the corresponding adjacency matrix of the map. This usually speeds up MCMC
simulation for spatial effects.

> m.reorder

Since we normally need the map again in further sessions, we store the reordered map in graph file
format, because reading graph files is much faster than reading boundary files.

> m.outfile , graph using c:\maps\mapgraph.gra

We can now extend our predictor with a spatial effect:

> b.hregress y = const + x1 + x2(pspline) + x3(pspline) +

region(spatial,map=m), iterations=12000 burnin=2000

step=10 family=normal using test

In some situations it may be reasonable to incorporate an additional unstructured random effect
into the model in order to split the total spatial effect into a structured and an unstructured
component. This is done by typing

> b.hregress y = const + x1 + x2(psplinerw2) + x3(psplinerw2) +

region(spatial,map=m) + region(random), iterations=12000

burnin=2000 step=10 family=normal using test

10.1.5.2 Multiple equation and parameter models

We now add another equation for the variance of the Gaussian regression model. We assume the
same complex predictor for the mean and variance equation as in the previous section and specify
the two equations by:

> b.hregress y = const + x1 + x2(psplinerw2) + x3(psplinerw2) +

region(spatial,map=m) + region(random), iterations=12000

burnin=2000 step=10 family=normal equationtype=sigma2 using test

> b.hregress y = const + x1 + x2(psplinerw2) + x3(psplinerw2) +

region(spatial,map=m) + region(random),

family=normal equationtype=mu using test

Note that we additionally specify the option equationtype in both equations in order to distinguish
between the variance and mean equation. Note also that MCMC specific details should only be
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specified in the first equation. In fact, a possible specification in the second or following equations
will be ignored.

In both equations we estimate region specific random effects and a smooth spatial effect. It is there-
fore favorable to rewrite the model in multilevel form. This done using the following commands:

> b.hregress region = const + region2(spatial,map=m) , iterations=12000

burnin=2000 step=10 family=gaussian_re equationtype=sigma2 using regiondata

> b.hregress y = x1 + x2(psplinerw2) + x3(psplinerw2) + region(hrandom),

family=normal equationtype=sigma2 using test

> b.hregress region = const + region2(spatial,map=m) ,

family=gaussian_re equationtype=mu using regiondata

> b.hregress y = const + x1 + x2(psplinerw2) + x3(psplinerw2) +

region(hrandom), family=normal equationtype=mu using test

The model contains now two more equations for the random effects. We shifted the overall intercept
into the random effects equations to improve the mixing of MCMC samples, see Lang et al. (2014)
for an explanation. The smooth spatial effect is also contained in the random effects equations to
improve mixing and speed up computations.

10.2 Method autocor

This method is a post estimation command, i.e. its usage is meaningful only if method hregress

has been applied before. Method autocor computes the autocorrelation functions of all sampled
(and stored) parameters.

The usage of method autocor is identical to its corresponding counterpart for bayesreg objects, see
section 7.2 for details.

10.3 Method getsample

This method is a post estimation command, that is only meaningful if method hregress has been
applied before. With method getsample all sampled parameters will be stored in (one or more)
ASCII file(s). Afterwards, sampling paths can be plotted and stored in a postscript file either by
using method plotsample of graph objects or by using the R function plotsample. Of course, any
other program with graphics capacities could be used as well.

The usage of method getsample is identical to its corresponding counterpart for bayesreg objects,
see section 7.3 for details.

10.4 Global options

The purpose of global options is to affect the global behavior of a mcmcreg object. The main
characteristic of global options is, that they are not associated with a certain method.

The syntax for specifying global options is

> objectname.optionname = newvalue
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where newvalue is the new value of the option. The type of the value depends on the respective
option.

The following global options are currently available for mcmcreg objects:

• outfile = filename
By default, the estimation output produced by the hregress procedure will be written to
the default output directory, which is

<INSTALLDIRECTORY>\output.

The default filename is composed of the name of the mcmcreg object and the type of the
file. For example, if you estimated a nonparametric effect for a covariate X, say, then the
estimation output will be written to

<INSTALLDIRECTORY>\output\b_nonpX.res

where b is the name of the mcmcreg object. In most cases, however, it may be necessary to
save estimation results into a different directory and/or under a different filename than the
default. This can be done using the outfile option. With the outfile option you have to
specify the directory where the output should be stored to and in addition a base filename.
The base filename should not be a complete filename. For example specifying

> b.outfile = c:\data\res

would force BayesX to store the estimation result for the nonparametric effect of X in file

c:\data\res_nonpX.res

• iterationsprint = integer

By default, the current iteration number is printed in the output window (or in an additional
log file) after every 100th iteration. This can lead to rather big and complex output files. The
iterationsprint option allows to redefine after how many iterations the current iteration
number is printed. For example iterationsprint=1000 forces BayesX to print the current
iterations number only after every 1000th iteration rather than after every 100th iteration.

10.5 Visualizing estimation results

Visualization of estimation results is described in chapter 11.



Chapter 11

Visualizing estimation results

In this chapter we show, how estimation results produced with one of the regression tools described
in the two previous chapters can be visualized. In general, there are two possibilities to visualize
results: Within BayesX, special functions can be applied to regression objects. Since all three
regression tools provide almost the same possibilities to visualize results, we describe them simul-
taneously in the next section. Tools for the visualization of autocorrelations for MCMC samples
are described in subsection 11.1.3. An alternative way to visualize results is to use the R package
supplementing BayesX. Some further comments on this package are provided in section 11.2.

11.1 BayesX functions

BayesX allows to visualize estimation results immediately after estimation. The output window
and/or the log file describe how to do this for a particular model term. Nonlinear effects of contin-
uous covariates and time scales are plotted with method plotnonp. Spatial effects are visualized
with method drawmap. When using bayesreg objects, autocorrelation functions of sampled param-
eters can be visualized with method plotautocor.

178



11.1. BayesX functions 179

11.1.1 Method plotnonp

Description

Method plotnonp is a post estimation command, i.e. it is meaningful only if method regress

has been applied before. The method allows to plot estimated effects of nonlinear covariate
effects immediately after estimation. T

Syntax

> objectname.plotnonp termnumber [, options]

Plots the estimated effect with term number termnumber. The term number will be printed
in the output window and/or an open log file. Several options are available for labelling axis,
adding a title, etc., see the options list below. Note that method plotnonp can be applied
only if random walks, P-splines or seasonal components are used as priors.

Options

The following options are available for method plotnonp (listed in alphabetical order):

• connect=1|2|3|4|5[specifications for further variables]

Option connect specifies how points in the scatterplot are connected. There are currently 5
different specifications:

1 draw straight lines between the points (default)
2, 3, 4 draw dashed lines (numbers 2-4 indicate different variants)
5 do not connect, i.e. plot points only

If you draw more than one scatterplot in the same graph (i.e. more than one yvar is specified)
you can connect points for every yvar differently by simply specifying the corresponding
number (1,2,3,4,5) for every yvar. Typing for example

connect=15

connects the points corresponding to yvar1 and xvar by straight lines, but does not connect
the points corresponding to yvar2 (if specified) and xvar. Points corresponding to additionally
specified variables yvar3, etc. are connected by straight lines.

An equivalent way of specifying the different variants is available via the symbols l, d, \_, -
and p, which correspond to the numbers 1-5, i.e.

connect=12345 is equivalent to connect=ld_-p

• fontsize = integer

Specifies the font size (in pixels) for labelling axes etc. Note that the title is scaled accordingly.
The default is fontsize=12.

• height = integer

Specifies the height (in pixels) of the graph. The default is height=210.

• levels = all|1|2|none
By default, plotnonp plots the estimated nonlinear covariate effect together with the point-
wise credible intervals based on nominal levels of 80% and 95% (the nominal levels may be
changed using the options level1 and/or level2). Option levels allows to omit completely
pointwise credible intervals in the graphs (levels=none), print only the 95% credible intervals
(levels=1) or to print only the 80% credible intervals (levels=2).
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• linecolor = B|b|c|G|g|o|m|r|y [specifications for further variables]

Option linecolor specifies the color to be used for drawing lines (or points, see option
connect) in the scatterplot. Currently the following specifications are available:

B black (default)
b blue
c cyan
G gray
g green
o orange
m magenta
r red
y yellow

If you draw more than one scatterplot in the same graph (i.e. more than one yvar is specified)
you can use different colors for each yvar by simply specifying the corresponding symbol
(B,b,c,G,g,o,m,r,y) for each yvar. Typing for example

linecolor = Bgr

colors the lines (points) corresponding to yvar1 and xvar in black, whereas the points corre-
sponding to yvar2 and yvar3 (if specified) and xvar are colored in green and red, respectively.

• linewidth = integer

Specifies how thick lines should be drawn. The default is linewidth=5.

• outfile = characterstring

If option outfile is specified the graph will be stored as a postscript file rather than being
printed on the screen. The path and the filename must be specified in characterstring. By
default, an error will be raised if the specified file is already existing or the specified folder
is not existing. To overwrite an already existing file, option replace must be additionally
specified. This prevents you from unintentionally overwriting your files.

• pointsize = integer

Specifies the size of the points (in pixels) if drawing points rather than lines is specified. The
default is pointsize=20.

• replace

The replace option is useful only in combination with option outfile. Specifying replace

as an additional option allows the program to overwrite an already existing file (specified in
outfile), otherwise an error will be raised.

• title = characterstring

Adds a title to the graph. If the title contains more than one word, characterstring must be
enclosed by quotation marks (e.g. title="my first title").

• titlesize = realvalue

Specifies the factor by which the size of the title is scaled relative to the size of the labels of
the axes (compare option fontsize). The default is titlesize=1.5.

• width = integer

Specifies the width (in pixels) of the graph. The default is width=356.
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• xlab = characterstring

Labels the x-axis. If the label contains more than one word, characterstring must be enclosed
by quotation marks (e.g. xlab="x axis").

• xlimbottom = realvalue

Specifies the minimum value at the x-axis to be plotted. The default is the minimum value
in the data set. If xlimbottom is above the minimum value in the data set, only a part of
the graph will be visible.

• xlimtop = realvalue

Specifies the maximum value at the x-axis to be plotted. The default is the maximum value
in the data set. If xlimtop is below the maximum value in the data set, only a part of the
graph will be visible.

• xstart = realvalue

Specifies the value where the first ’tick’ on the x-axis should be drawn. The default is the
minimum value on the x-axis.

• xstep = realvalue

If xstep is specified, ticks are drawn at the x-axis with stepwidth realvalue starting at the
minimum value on the x-axis (or at the value specified in option xstart). By default, five
equally spaced ticks are drawn at the x-axis.

• ylab = characterstring

Labels the y-axis. If the label contains more than one word, characterstring must be enclosed
by quotation marks (e.g. ylab="y axis").

• ylimbottom = realvalue

Specifies the minimum value at the y-axis to be plotted. The default is the minimum value
in the data set. If ylimbottom is above the minimum value in the data set, only a part of
the graph will be visible.

• ylimtop = realvalue

Specifies the maximum value at the y-axis to be plotted. The default is the maximum value
in the data set. If ylimtop is below the maximum value in the data set, only a part of the
graph will be visible.

• ystart = realvalue

Specifies the value where the first ’tick’ on the y-axis should be drawn. The default is the
minimum value on the y-axis.

• ystep = realvalue

If ystep is specified, ticks are drawn at the y-axis with stepwidth realvalue starting at the
minimum value on the y-axis (or at the value specified in option ystart). By default, five
equally spaced ticks are drawn at the y-axis.
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Examples

Suppose we have already created a regression object reg and have estimated a regression
model with Gaussian errors using a command like

> reg.regress Y = X(psplinerw2), family=gaussian using d

where Y is the response variable and X the only explanatory variable. The effect of X is
modelled nonparametrically using Bayesian P-splines. In the output window we obtain the
following estimation output for the effect of X:

f_x

Results are stored in file

c:\results\reg_f_x_pspline.res

Results may be visualized using method plotnonp

Type for example: objectname.plotnonp 0

The term number of the effect of X is 0, i.e. by typing

> reg.plotnonp 0

we obtain the plot shown in Figure 11.1.

Of course, a title, axis labels etc. can be added. For example by typing

> reg.plotnonp 0 , title="my title" xlab="x axis"

we obtain the plot shown in Figure 11.2.

By default, the plots appear in an additional window on the screen. They can be directly
stored in postscript format by adding option outfile. For example by typing

> reg.plotnonp 0 , title="my title" xlab="x axis" outfile="c:\results\result1.ps"

the graph is stored in postscript format in the file c:\results\result1.ps.
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Figure 11.1: Illustration for the usage of method plotnonp
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Figure 11.2: Second illustration for the usage of method plotnonp
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11.1.2 Method drawmap

Description

Method drawmap is a post estimation command, i.e. it is meaningful only if method regress

has been applied before. The method allows to visualize estimated effects of spatial covariates
immediately after estimation.

Syntax

> objectname.drawmap termnumber [, options]

Visualizes the effect of a spatial covariate by coloring the regions of the corresponding ge-
ographical map according to the estimated effect (or other characteristics of the posterior).
The term number termnumber identifies the model term and can be found in the output win-
dow and/or an open log file. Several options are available for adding a title or changing the
color scale etc., see the options list below. Note that method drawmap can be applied only if
Markov random fields, geosplines or geokriging are used as priors.

Options

The following options are available for method drawmap (in alphabetical order):

• color

The color option allows to choose between a grey scale for the colors and a colored scale. If
color is specified a colored scale is used instead of a grey scale.

• drawnames

In some situations it may be useful to print the names of the regions into the graph (although
the result may be confusing in most cases). This can be done by specifying the additional
option drawnames. By default the names of the regions are omitted in the map.

• fontsize = integer

Specifies the font size (in pixels) for labelling the legend and writing the names of the regions
(if specified). Note, that the title is scaled accordingly (see option titlesize). The default
is fontsize=12.

• hcl

Requests that a color palette from the HCL color space should be used instead of an RGB
palette. The HCL colors will be selected diverging from a neutral center (grey) to two
different extreme colors (red and green) in contrast to the RGB colors diverging from yellow
to red and green. HCL colors are particularly useful for electronic presentations since they
are device-independent. The option hcl is only meaningful in combination with the option
color.

• lowerlimit = realvalue

Lower limit of the range to be drawn. If lowerlimit is omitted, the minimum numerical
value in plotvar will be used instead as the lower limit.

• nolegend

By default a legend is drawn into the graph. By specifying the option nolegend the legend
will be omitted.
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• nrcolors = integer

To color the regions according to their numerical characteristics, the data are divided into
a (typically large) number of ordered categories. Afterwards a color is associated with each
category. The nrcolors option can be used to specify the number of categories (and with
it the number of different colors). The maximum number of colors is 256, which is also the
default value.

• outfile = characterstring

If option outfile is specified the graph will be stored as a postscript file rather than being
printed on the screen. The path and the filename must be specified in characterstring. By
default, an error will be raised if the specified file is already existing or the specified folder
is not existing. To overwrite an already existing file, option replace must be additionally
specified. This prevents you from unintentionally overwriting your files.

• pcat

If you want to visualize the values of the columns pcat80 or pcat95 it is convenient to
specify pcat. This forces drawmap to expect a column that consists only of the values -1, 0
and 1. Of course you can achieve the same result by setting nrcolors=3, lowerlimit=-1
and upperlimit=1.

• plotvar = variablename

By default, the regions of the map are colored according to the estimated spatial effect.
Option plotvar allows to color the map according to other characteristics of the posterior
by explicitly specifying the name of the variable to be plotted. Compare the header of the
file containing the estimation results to see all variables available for plotting.

• replace

The replace option is only useful in combination with option outfile. Specifying replace

as an additional option allows the program to overwrite an already existing file (specified in
outfile), otherwise an error will be raised.

• swapcolors

In some situations it may be favorable to swap the order of the colors, i.e. black (red) shades
corresponding to large values and white (green) shades corresponding to small values. This
is achieved by specifying swapcolors. By default, small values are colored in black shades
(red shades) and large values in white shades (green shades).

• title = characterstring

Adds a title to the graph. If the title contains more than one word, characterstring must be
enclosed by quotation marks (e.g. title="my first map").

• titlesize = realvalue

Specifies the factor by which the size of the title is scaled relative to the size of the labels of
the legend (compare option fontsize). The default is titlesize=1.5.

• upperlimit = realvalue

Upper limit of the range to be plotted. If upperlimit is omitted, the maximum numerical
value in plotvar will be used instead as the upper limit.
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Examples

Suppose we have already created a regression object reg and have estimated a regression
model with Gaussian errors using something like

> map m

> m.infile using c:\maps\map1.bnd

> reg.regress Y = region(spatial,map=m), family=gaussian using d

where Y is the response variable and region the only explanatory variable. The effect of the
spatial covariate region is modelled nonparametrically using a Markov random field. In the
output window we obtain the following estimation output for the effect of region:

f_spat_region

Results are stored in file

c:\results\reg_f_region_spatial.res

Results may be visualized using method ’drawmap’

Type for example: objectname.drawmap 0

The term number of the effect of region is 0, i.e. by typing

> reg.drawmap 0

we obtain the map shown in Figure 11.3 where the regions are colored according to the
estimated spatial effect.

By default the regions are colored in grey scale. A color scale is obtained by adding option
color. A title can be added as well. For example by typing

> reg.drawmap 0 , color title="my title"

we obtain the map shown in Figure 11.4.

By default, the maps appear in an additional window on the screen. They can be directly
stored in postscript format by adding option outfile. For example by typing

> reg.drawmap 0 , color title="my title" outfile="c:\results\result1.ps"

the colored map is stored in postscript format in the file c:\results\result1.ps.
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Figure 11.3: Illustration for the usage of method drawmap
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Figure 11.4: Second illustration for the usage of method drawmap
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11.1.3 Method plotautocor

Description

Method plotautocor is a post estimation command, i.e. it is meaningful only if method
regress has been applied before. Method plotautocor computes and visualizes the au-
tocorrelation functions of the parameters in the model. This method is only applicable to
bayesreg objects.

Syntax

> objectname.plotautocor [, options]

Computes and visualizes the autocorrelation functions in the model. Several options are
available for specifying the maximum lag for autocorrelations, storing the graphs in postscript
format etc., see the options list below.

Options

The following options are available for method plotautocor (in alphabetical order):

• maxlag = integer

Option maxlag may be used to specify the maximum lag for autocorrelations. The default is
maxlag=250.

• mean

If option mean is specified, for each lag number and model term only minimum, mean and
maximum autocorrelations are plotted. This can lead to a considerable reduction in comput-
ing time and storing size.

• outfile = characterstring

If option outfile is specified the graph will be stored as a postscript file and not printed on
the screen. The path and the filename must be specified in characterstring. An error will be
raised if the specified file is already existing and the replace option is not specified.

• replace

The replace option is only useful in combination with option outfile. Specifying replace

as an additional option allows the program to overwrite an already existing file (specified in
outfile), otherwise an error will be raised.

Examples

Suppose we have already created a bayesreg object reg and have estimated a regression model
with Gaussian errors using

> reg.regress Y = X(psplinerw2), family=gaussian using d

where Y is the response variable and X the only explanatory variable. The effect of X is mod-
elled nonparametrically using Bayesian P-splines. We can now check the mixing of sampled
parameters by computing and drawing the autocorrelation functions up to a maximum lag
of 150:

> reg.plotautocor , maxlag=150 outfile="c:\results\autocor.ps"
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In this example the autocorrelation functions are not shown on the screen but stored in
postscript format in the file c:\results\autocor.ps. If option outfile is omitted, the
functions are plotted on the screen. The resulting file contains 5 pages. As an example, the
first page of the file is shown in Figure 11.5.
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Figure 11.5: Illustration for the usage of method plotautocor



11.2. R package BayesX 191

11.2 R package BayesX

To provide some convenient graphics facilities for the command line version of BayesX, an R
package has been developed that contains virtually the same functionality as described in the
preceding section. In addition, routines for manipulating geographical information are available.
The R package BayesX is available from CRAN (http://www.r-project.org).



Chapter 12

DAG Objects

Author: Eva–Maria Fronk

Dag objects are needed to estimate dag models using reversible jump MCMC. The considered
variables may be Gaussian or binary, even the mixed case of a conditional Gaussian distribution
is possible. A general introduction into graphical models can be found in Lauritzen (1996). For
a description of the more particular Gaussian dags see for instance Geiger & Heckerman (1994).
We refer to Brooks (1998) or Gilks, Richardson & Spiegelhalter (1996) for an introduction into
MCMC simulation techniques. For the more general reversible jump MCMC have a look at Green
(1995); for reversible jump MCMC in context of graphical models at Giudici & Green (1999). The
following explanations to the statistical background of the program can be found in more detail in
Fronk & Giudici (2004).

12.1 Method estimate

12.1.1 Description

The method estimate estimates the dependency structure of the given variable which is represented
by a dag. Furthermore, the parameters of this model are estimated. This is done within a Bayesian
framework; we assume prior distributions for the unknown parameters and use MCMC techniques
for estimation. In the following we first focus on the Gaussian case and describe the statistical
model which is assumed for the variables. Some factorizations which result from the properties of
dags are also given. To represent the dags we rely on the concept of adjacency matrices which is
briefly explained and necessary to understand the output. We finally give some brief information
about the used algorithm without going into details. Finally, we address the situation of binary
and mixed (i.e. continuous and binary) variables, too, which is reduced to the Gaussian case by
introducing latent variables.

Model Assumptions

A Gaussian dag d can be represented as a regression model for each variable Xi, i = 0, . . . , p − 1,
given the parents of Xi, denoted by Xpa(i),

Xi | xpa(i),βi|pa(i), σ
2
i|pa(i), d ∼ N(βi0 +

∑
xl∈pa(xi)

βilxl, σ
2
i|pa(i)).

192
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The joint distribution of all variables X = (X0, . . . , Xp−1)
′ is then given by

p(x | β,σ2) =

p−1∏
i=0

p(xi | xpa(i),βi|pa(i), σ
2
i|pa(i)),

where βi|pa(i) is the |pa(i)| + 1-dimensional vector of the intercept βi0 and the |pa(i)| regres-
sion coefficients of Xi. Furthermore, σ2i|pa(i) is the partial variance of Xi given its parents

xpa(i). Let β = (β′
0|pa(1), . . . ,β

′
p−1|pa(p))

′ denote the vector of the βi|pa(i)’s and accordingly

σ2 = (σ20|pa(1), . . . , σ
2
p−1|pa(p))

′ the vector of the conditional variances σ2i|pa(i).

The vector βi|pa(i) is assumed to be normally distributed with mean bi|pa(i) and covariance matrix
1
αi
σ2i|pa(i)I, where αi is a known scaling factor. For the sake of simplicity, we shall assume αi = α.

Formally:

βi|pa(i) | σ2i|pa(i), d ∼ N|pa(i)|+1

(
bi|pa(i),

1

α
σ2i|pa(i)I

)
.

This implies that the coefficients of a regression model are assumed to be mutually independent.
For the partial variance σ2i|pa(i) we use an inverse gamma prior with parameters δi|pa(i) and λi|pa(i):

σ2i|pa(i) | d ∼ IG
(
δi|pa(i), λi|pa(i)

)
.

Finally, by supposing that there exist D possible dags, which, in the absence of subject-matter
information, have all the same probability, we get a discrete uniform distribution for d: p(d) = 1/D.
Taking advantage of the well-known factorization property of the joint distribution

p(x | β,σ2, d) =

p−1∏
i=0

p(xi | xpa(i),βi|pa(i), σ
2
i|pa(i))

and the ”global parameter independences”

p(β | σ2, d) =

p−1∏
i=0

p(βi|pa(i) | σ2
i|pa(i)),

and p(σ2 | d) =

p−1∏
i=0

p(σ2i|pa(i))

(for a detailed description see Geiger & Heckerman (1999), we get the joint distribution:

p(x,β,σ2, d)

= p(x | β,σ2, d) p(β | σ2, d) p(σ2 | d) p(d)

=

p−1∏
i=0

p(xi | xpa(i),βi|pa(i), σ
2
i|pa(i))

p−1∏
i=0

p(βi|pa(i) | σ2i|pa(i))

p−1∏
i=0

p(σ2i|pa(i)) p(d)
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Representation of DAGs

To represent dags we rely on the concept of adjacency matrices. For a given graph G = (V,E) with
|V | = p, the adjacency matrix of G is defined as the (p× p)-matrix A, [A]ij = aij , with

aij =

{
1, if (vi, vj) ∈ E
0, if (vi, vj) ̸∈ E.

In general, all three types of graphs (undirected, directed and chain graphs) can be uniquely
represented by the corresponding adjacency matrix. Note that regarding dags, as we do, the
parents of the vertex i are indicated by the i-th column, while its children are given in the i-th row.
We use the representation via adjacency matrices also to check the acyclicity of the graph. For an
illustration of this concept consider the graph in Figure 12.1.
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@
@
@

@@R
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A =


0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0



Figure 12.1: A directed acyclic graph containing and the corresponding adjacency matrix A.

Reversible Jump Algorithm for Continuous Variables

We are not only interested in estimating the parameters for a given dag d but also want to learn
about the structure of d itself. So we need to construct a Markov chain which has π(d,µ,β,σ2 | x)
as its invariant distribution. Changing the dag like adding or deleting a directed edge implies also
a changing in the dimension of the parameter space. To deal with this situation we use a reversible
jump algorithm. Reversible jump MCMC was proposed and described by Green (1995); it can
be regarded as a generalization of the usual MCMC and allows to sample simultaneously from
parameter spaces of different dimensions.

Our algorithm can be briefly summarized by the following moves, which produce a Markov chain
in the state space that is made up by the vector of unknowns (d,β,σ2):

1. Updating the dag d by adding, switching or deleting a directed edge, remaining always in
the class of directed acyclic graphs. When adding or deleting an edge this move involves a
change in dimensionality of the parameter space.

2. Update βi|pa(i), i = 0, . . . , p− 1.

3. Update σ2i|pa(i), i = 0, . . . , p− 1.

For a detailed explanation of the different steps in the continuous case, see Fronk and Giudici
(2000). For a simplification of the oftentimes crucial switch step, see Fronk (2002) and also the
explanations of the option switch in section 12.1.3.
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Reversible Jump Algorithm for Binary Variables

Now we consider the situation of p binary variables of which the joint distribution is assumed to
be multinomial. The influence to a variable Xi from its known parents xpa(i) shall be given by a
probit model, i.e.

pi = E(Xi | xpa(i)) = Φ(x′
pa(i)βi|pa(i), σ

2
i|pa(i)), (12.1)

where i = 1, . . . , p and Φ(µ, σ2) denotes the cdf of the normal distribution. This binary situation
is reduced to the continuous one by sampling a latent variable, a so-called utility, Zi for each
binary variable Xi. The general idea is found in Albert & Chib (1993). Here, we first focus on the
situation that we are only interested in the main effects. I.e. we do not take any interactions into
account although they now of course can occur as we do not longer consider the Gaussian case.
The algorithm, which does not account for interactions, can be briefly summarized as:

1. For Xi, i = 0, . . . , p−1, draw Zi from its full conditional N(x′
pa(i)βi|pa(i), 1), which is truncated

at the left by 0 if xi = 1 and at the right if xi = 0.

2. Add, delete, or switch a directed edge like in the Gaussian case, but take the utility Zi

instead of Xi as response in ith regression model; the covariables xpa(i) of the ith model
remain unchanged.

3. Update βi|pa(i), i = 0, . . . , p− 1.

4. Update σ2i|pa(i), i = 0, . . . , p− 1.

To be able to take interactions into account, inside the algorithm interactions are treated as own
variables. Due to the enormous complexity we restrict ourselves to two way interactions which
seem sufficient for most situations in practice. For details, see Fronk (2002).

Reversible Jump Algorithm for Mixed Case

For the mixed case, we assume the considered continuous and binary variables to follow a conditional
Gaussian (CG) distribution. For a general introduction we refer to Lauritzen (1996). The univariate
conditioned distribution of f(xi | xpa(i)) are then CG regressions and can be represented by a normal
regression resp. a probit model with mixed covariables.

1. For all variables Xi, i = 0, . . . , p− 1,

If Xi is discrete,

For all observations Xki, k = 1, . . . , n,
draw utility Zki from full conditional Zki | xki,xkpa(i)βi|pa(i)

2. Update d, i.e. cancel, add, or switch the directed edge Xj → Xi; thereby distinguish

• Response Xi is continuous:

(a) Take the algorithm for the Gaussian case, where now the covariables pa(Xi) can be
continuous or binary

• Response Xi is discrete

(a) Replace binary response Xi by continuous utility Zi

(b) Consider the new or vanishing interactions among the parents ofXi and possibly Xj ,
that can be pairwise discrete or mixed



196 Chapter 12. DAG Objects

(c) Carry out birth, death or switch step

3. Update βi|pa(i), i = 0, . . . , p− 1.

4. Update σ2i|pa(i), i = 0, . . . , p− 1.

For detailed explanations, see again Fronk (2002).

Remark about Markov-equivalence

Our algorithm does not take care about the so-called Markov equivalence, which describes the fact
that different dags can represent the same statistical model. Equivalent dags can be summarized to
equivalent classes which again can be represented by one single graph, the essential graph. Of course
model selection could be done in a more effective way if only the space of those essential graphs
would be considered. This will be a task of our research in future. For more details concerning
Markov-equivalence we refer to papers of Andersson & Madigan (1997a), Andersson, Madigan &
Perlman (1997b) and Chickering (1995).

12.1.2 Syntax

The creation of objects has been described in general in subsection 2.5.1; in the context of dag
models the corresponding dag object is created by:

dag objectname,

To perform a model selection as described above call:

objectname.estimate variables [if expression], [options] using dataset

Then the method estimate estimates the dag for the variables given in variables which have to be
defined in dataset. The parameters of the via the dag defined regression models are also estimated.
An if-statement may be specified to analyze only a part of the data set, i.e. only those observations
where expression is true. There are several facultative options concerning the (start) parameters of
the algorithm or the kind of output at the end. They are listed in the next paragraphs.

12.1.3 Options

Options for controlling MCMC simulations

The following options correspond to those given on page 171 and are therefore only briefly explained.

• burnin = b
Changes the number of burnin iterations from 2000 to b; it is a positive integer number with
0 < b < 500001.
DEFAULT: burnin = 2000

• iterations = i
Changes the number of MCMC iterations from 52000 to i; it is a positive integer number
with 0 < i < 10000000.
DEFAULT: iterations = 52000
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• step = s
Changes the thinning parameter of MCMC iterations from 50 to s; it is a positive integer
number with 0 < s < 1000.
DEFAULT: step = 50

Options for initial values of algorithm

• Changing hyperparameters of partial variances
As already mentioned we assume σ2i|pa(i) ∼ IG(δi|pa(i), λi|pa(i)) for i = 0, . . . , p − 1. By the
following two commands the values of the two hyperparameters δi|pa(i) and λi|pa(i) can be
freely chosen. If this is not done the default values correspond to a non-informative gamma
distribution.

– delta = c
Specifies the first parameter of the inverse gamma distribution of the partial variances,
δi|pa(i), is set equal to d. Otherwise it is equal to 1. The value c has to be of type
realvalue with 0 < c < 20.
DEFAULT: delta = 1

– lambda = l
Specifies the second parameter of the inverse gamma distribution of the partial variances,
λi|pa(i), is set equal to l. Otherwise it is equal to 0.005. The value d has to be of type
realvalue with 0 < d < 20.
DEFAULT: lambda = 0.005

• Choosing special graph to start from
Usually the algorithm starts from the independent model, that means from a dag without
any edges. This can be changed by the command

type = 0/1/2/3/4
DEFAULT: type = 0

where the different values have the following meanings:

– type=0

Algorithm starts from an independent model with no edges.

– type=1

Algorithm starts from a complete model where all edges are directed from ”lower”
variables to ”higher” ones, i.e. xi → xj , ∀i < j.

– type=2

Algorithm starts from a complete model where all edges are directed from ”higher”
variables to ”lower” ones, i.e. xj → xi, ∀i < j.

– type=3

Algorithm starts from a model where there is an edge from each variable to the next
”higher” one, like a chain, i.e. xi → xj , ∀i = j + 1.

– type=4

Algorithm starts from a model where there is an edge from each variable to the next
”lower” one, like a chain, i.e. xj → xi, ∀i = j + 1.
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Options concerning the way of model selection

• Kind of switch step
There are three ways how the switch step can be carried out in the rj-algorithm. The first
one is similar to the performance of a birth or death step (i.e. adding or deleting an edge):
A proposal is made and then accepted by its corresponding acceptance ratio. As it may
be very complicate to calculate a good proposal, a simplification can be achieved by the
consideration if the switch step leads to an equivalent dag model. If this holds true, the
given and the proposed dag should be statistically indistinguishable. The proposed dag can
therefore be accepted with probability 0.5. The kind of switch step can be chosen by the
command

switch = normal/equi/mix,
DEFAULT: switch = normal

which differ in the following way:

– switch=normal

The switch step is carried out by proposing the new dag and accepting it with the
corresponding acceptance probability. The transformation into equivalent model may
occur very seldom and, consequently, the acceptance ratio very low.

– switch=equi

The switch step is only allowed if it results into an equivalent model. In this case, it is
performed with a probability of 0.5. Transformations into a non-equivalent model can
only occur by a birth or death step.

– switch=mix

This command causes a mixture of both procedures described above: If the proposed
switch step leads to an equivalent model it is accepted with probability 0.5. If it results
into a non-equivalent model a proposal is made and accepted by the corresponding
acceptance ratio.

• Kind of distribution family / interactions
There are three different types of data sets as they can consists of continuous, binary, or mixed
variables which results in the assumption of a Gaussian, a multinomial, or a conditional
Gaussian distribution. Dependent on the kind of data set the rj-algorithm for the model
selection changes as described above.This can be indicated by the optional command

family = continuous/discrete/mixed.

In the case that the model selection for a binary data set shall be carried out accounting for
interactions the command

family = discrete_ia

is needed instead of family = discrete. In this case, a special option concerning the output
is given by the command detail_ia which is explained below.

• Restriction to the search space
It is possible to restrict the search space, i.e. to state an (missing) edge as fix or determinate
the orientation of an edge. This is done by writing the restrictions into a file restrict which
is then read by the command
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fix_file = path of restrict

The restriction is then given by a p× p matrix that lies under the path path of restrict. The
matrix is allowed to have three possible entries, namely 0,1, and 2 which have the following
meaning: An entry of 2 corresponds to no restriction of the corresponding edge, it may occur
or not. An entry of 1 indicates that this edge has to exist in each graph of the Markov chain,
whereas 0 denotes that the corresponding edge must not occur.

Options concerning the output

• Estimated regression coefficients
As already mentioned, the parameters of each regression model are estimated in every itera-
tion. Because of the fact that the qualitative structure of the dag is usually of greater interest
than the quantitative estimations of the regression coefficients, in the standard output these
estimated parameters are omitted. Nevertheless

print_dags

gives the mean, the 10%, 50% and the 90% quantile of every parameter of all regression
models. As the model space for dags is very huge we abandon the possibility to store the
estimated values for each dag. To perform the necessary calculation BayesX creates a tem-
porary file under the device c:\\.... For this purpose, its important to ensure that a device
with this name exists. Otherwise the user has to provide an alternative path for the storage
file by the command

store_file = alternative path

• Estimated coefficients of interactions

• Criteria for the listed models
As model selection for dags is performed in an extremely huge search space one might not
want to get a list of all models which have been visited during MCMC estimation regardless
of the relative frequency of their appearance. The option

print_models = all/prob/limit/normal,
DEFAULT: print_models = normal

allows to focus on special criterions for the models printed in the output.

– print_models = all

All models which have been visited by the Markov chain are printed.

– print_models = prob

The most frequent models of the chain are printed except for those which are the less
frequent ones and have altogether a probability of alpha=0.05. The value of alpha can
be changed as it is explained a few lines below.

– print_models = limit

Here, the first 10 models with the highest frequencies are printed. The number of listed
models can be made different from 10 as it is explained a few lines below.

– print_models = normal

The option normal is a mixture of limit and prob, as it chooses the one which produces
less models. The default parameters are again alpha=0.05 and number=10.
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Number of different dags visited by the algorithm: 16

******** DIFFERENT MODELS sorted by frequencies ********
********************** all models **********************

010 000 000 1 3894 0.3890
000 100 000 1 3814 0.3810
000 100 100 2 806 0.0806

......

Figure 12.2: Example for model listing in the output.

The default setting of print_models is print_models=normal.

• number = n
Changes the number of printed models in the option print_models = limit to n. The
variable number has to be of type realvalue with 0 ≤ n ≤ 10000.
DEFAULT = 10

• alpha = a
Sets alpha in the option print models = prob equal to a. That means when using
print models = prob the most frequent models which unify 1-a of the posterior probability
are printed. The variable alpha has to be of type intvalue with a ∈ [0, 1].
DEFAULT = 0.05

• printit = p
Prints every p-th iteration in the output window instead of every 100-th. The printing of the
iterations can be suppressed by setting p higher than the number of iterations. The variable
printit has to be of type intvalue with 0 < p < 10000001.
DEFAULT = 100

12.1.4 Estimation Output

The output can be written to a file by opening a logfile before using the estimation command. It
has to be closed afterwards. The use of logfiles is described in detail in section 3.2. The output
itself is structured as follows:

• Listing of different dags:
The different models are listed by their adjacency matrices. In order to save space, the
different rows are printed in one line with a blank indicating the beginning of a new one.
The number of edges is given as well as the absolute and relative frequency of the model.
For example the first line of the exemplifying output in Figure 12.2 gives the information

that the most frequent model is represented by the adjacency matrix A =

 0 1 0
0 0 0
0 0 0


and contains 1 edge. It occurred in the thinned out Markov chain for 3894 times which
corresponds to a relative frequency of about 0.389. Notice, that different dags may represent
the same statistical model as they may be Markov-equivalent.

• Listing of essential graphs
Additional to the dags, the essential graphs are printed, too. I.e. those dags, which are
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Number of different equivalent classes visited by the algorithm: 6

******* DIFFERENT EQUIVALENCE CLASSES sorted by frequencies ********
**************************** all models ********************************

Skeleton: 010 000 000
No immoralities.
Number of edges: 1 Abs.freq.: 7708 Rel.freq.: 0.771

Skeleton: 011 000 000
Immoralities: (0;1,2)
Number of edges: 2 Abs.freq.: 806 Rel.freq.: 0.0806

Skeleton: 011 000 000
No immoralities.
Number of edges: 2 Abs.freq.: 523 Rel.freq.: 0.0523

......

Figure 12.3: Example for listing of equivalence classes in the output.

equivalent to each other, are summarized and represented by their essential graph. The
representation of the essential graph, which can contain undirected as well as directed edges,
is as follows. First the underlying graph, the skeleton, is given by the adjacency matrix
as described above. But now, the entries indicate always an undirected edge. (E.g. the
undirected graph a–b of the two variables a and b is given by 01 00.) Then the immoralities
of the essential graph are listed. Remember that within an essential graph an oriented edge
can only occur as a part of an immorality b→ a← c which is here represented by the triple
(a;b,c). The example output of Figure Figure 12.3 shows that the first two dag models of
Figure 12.2 which are equivalent have been summarized to their representing essential graph
X0–X1 X2. The next most frequent statistical model is represented by the essential graph
X0 → X2 ← X1 which is given by our representation as the skeleton matrix 011 000 000 and
the immorality (0;1,2).

• Averaged adjacency matrix:
The (i, j)-th element of the averaged adjacency matrix gives the estimated posterior proba-
bility of the presence of the edge i→ j in the true dag.

• Mean of skeletons:
The skeleton of a dag is defined as the same graph without regarding the directions of the
edges. Equivalent dags have at least the same skeleton. So it may be helpful to have also a
look at the averaged matrix of the skeletons, which is of course symmetric.

• Correlation:
The marginal and the partial correlation matrices of the regarded data set is given, too.

• Ratios:
We give some short information about the acceptance ratios for the birth-, death- and switch-
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steps which denotes the cases where an edge is added, dropped or switched. The first two
cases imply a change in dimension and are therefore sampled by a reversible jump step.

• Estimated parameters:
If the option print dags is used, the estimated regression coefficients βi|−i, i = 0, . . . , p− 1,
are listed at the end. The notation −i denotes all variables except for i. Besides the mean
of the sampled Markov chain for each parameter there is also the 10%, the 50% and the 90%
quantile given. As in equivalent models the direction of edges and, thus, also the regression
models vary, in most cases the estimated regression coefficients do not give a deeper insight
into the model and have to be interpreted in a very careful way.
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