BayesX: Analysing Geoadditive Regression Data

Thomas Kneib Department of Statistics, Ludwig-Maximilians-University Munich

Joint work with Andreas Brezger, Ludwig Fahrmeir & Stefan Lang

17.8.2007

Spatio-Temporal Regression Data

- Regression in a general sense:
 - Linear models and generalised linear models,
 - Multivariate (categorical) generalised linear models,
 - Regression models for duration times (Cox-type models, AFT models).
- Common structure: Model a quantity of interest in terms of categorical and continuous covariates, e.g.

$$\mathbb{E}(y|x) = h(x'\beta) \qquad (\mathsf{GLM})$$

or

$$\lambda(t|x) = \lambda_0(t) \exp(x'\beta)$$
 (Cox model)

• Spatio-temporal data: Temporal and spatial information as additional covariates.

- Spatio-temporal regression models should allow
 - to account for spatial and temporal correlations,
 - for time- and space-varying effects,
 - for non-linear effects of continuous covariates,
 - for flexible interactions,
 - to account for unobserved heterogeneity.
- \Rightarrow Geoadditive regression models.

Example: Forest Health Data

- Aim of the study: Identify factors influencing the health status of trees.
- Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a northern Bavarian forest district.
- 83 observation plots of beeches within a 15 km times 10 km area.
- Response: defoliation degree at plot *i* in year *t*, measured in three ordered categories:

$$y_{it} = 1$$
 no defoliation,
 $y_{it} = 2$ defoliation 25% or less,

 $y_{it} = 3$ defoliation above 25%.

• Covariates:

Continuous:	average age of trees at the observation plot elevation above sea level in meters inclination of slope in percent depth of soil layer in centimeters pH-value in 0-2cm depth density of forest canopy in percent
Categorical	thickness of humus layer in 5 ordered categories level of soil moisture base saturation in 4 ordered categories
Binary	type of stand application of fertilisation

BayesX: Analysing Geoadditive Regression Data

Percentage of time points for which a tree was classified to be damaged.

- We need a regression model that can simultaneously deal with the following issues:
 - A spatially aligned set of time series.

 \Rightarrow Both spatial and temporal correlations have to be considered.

- Decide whether unobserved heterogeneity is spatially structured or not.
- Non-linear effects of continuous covariates (e.g. age).
- A possibly time-varying effect of age (i.e. an interaction between age and calendar time).
- A categorical response variable.

Regression models for ordinal responses

- Defoliation degree is measured in three ordered categories.
- Derive regression models for ordinal responses based on latent variables:

$$D = x'\beta + \varepsilon.$$

- *D* can be considered an unobserved, continuous measure of defoliation.
- Link D to the categorical response Y based on ordered thresholds

$$-\infty = \theta^{(0)} < \theta^{(1)} < \theta^{(2)} < \theta^{(3)} = \infty$$

via

$$Y = r \quad \Leftrightarrow \quad \theta^{(r-1)} < D \le \theta^{(r)}.$$

• Defines cumulative probabilities in terms of the cdf F of the latent error term ε :

$$P(Y \le r) = P(D \le \theta^{(r)}) = P(x'\beta + \varepsilon \le \theta^{(r)}) = F(\theta^{(r)} - x'\beta).$$

• Intuitive interpretation:

• The thresholds slice the density f = F'.

• Suitable model in our application:

$$\begin{array}{lll} D_{it} &=& f_1(age_{it}) & \mbox{nonlinear effects of age,} \\ &+f_2(inc_i) & \mbox{inclination of slope, and} \\ &+f_3(can_{it}) & \mbox{canopy density.} \\ &+f_{dime}(t) & \mbox{nonlinear time trend.} \\ &+f_4(t,age_{it}) & \mbox{interaction between age and calendar time.} \\ &+f_{spat}(s_i) & \mbox{structured and} \\ &+b_i & \mbox{unstructured spatial random effects.} \\ &+x'_{it}\gamma & \mbox{usual parametric effects.} \\ &+\varepsilon_{it} & \mbox{error term.} \end{array}$$

Penalised Splines

- Aim: Model nonparametric trend functions and nonparametric covariate effects.
- Idea: Approximate f(x) (or f(t)) by a weighted sum of B-spline basis functions:

$$f(x) = \sum_{j} \gamma_j B_j(x)$$

- The number of basis functions has significant impact on the function estimate.
- Employ a large number of basis functions to enable flexibility.
- Penalise differences between parameters of adjacent basis functions to ensure smoothness:

$$Pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \sum_{j=2}^p (\gamma_j - \gamma_{j-1})^2 \quad \text{first order differences}$$
$$Pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \sum_{j=3}^p (\gamma_j - 2\gamma_{j-1} + \gamma_{j-2})^2 \quad \text{second order differences}$$

- \Rightarrow Penalised maximum likelihood estimation with smoothing parameter τ^2 .
- A penalty term based on k-th order differences is an approximation to the integrated squared k-th derivative.
- Key question: Automatic selection of the smoothing parameter τ^2 .

- Extension to bivariate penalised splines:
 - Bivariate basis functions based on tensor product B-splines.
 - Extend penalisation to neighbours on a grid.

 \Rightarrow Modelling of interaction surfaces (and spatial effects).

Spatial Modelling

- Markov random fields: Structured spatial effect.
- Bivariate extension of a first order random walk on the real line.
- Define two observation plots as neighbours if their distance is less than 1.2km.

• Assume that the expected value of $\gamma_s = f_{spat}(s)$ is the average of the function evaluations of adjacent sites:

$$\gamma_s | \gamma_r, r \neq s \sim N\left(\frac{1}{N_s} \sum_{r \in \delta_s} \gamma_r, \frac{\tau^2}{N_s}\right)$$

where

$$\delta_s$$
 set of neighbors of plot s
 N_s no. of such neighbors.

Spatial

- Kriging: Structured spatial effect.
- Assume a zero mean stationary Gaussian process for the spatial effect $\gamma_s = f_{spat}(s)$.
- Correlation of two sites is defined by an intrinsic correlation function.
- Can be interpreted as a basis function approach with radial basis functions.

• I.i.d. random effects: Unstructured spatial effect

 γ_s i.i.d. $N(0, \tau^2)$.

- Also accounts for longitudinal structure of the data.
- Requires multiple measurements per observation plot.

Bayesian Inference

• Each term in the geoadditive predictor is associated with a vector of regression coefficients with improper multivariate Gaussian prior:

$$p(\gamma | \tau^2) \propto \exp\left(-\frac{1}{2\tau^2}\gamma' K\gamma\right).$$

- The log-prior can be interpreted as a penalty term.
- The precision matrix K acts as a penalty matrix that ensures smoothness of the corresponding estimates.
- The variance τ^2 can be interpreted as a smoothing parameter and controls the trade-off between smoothness and fidelity to the data:
 - τ^2 small \Rightarrow smooth estimates.
 - τ^2 large \Rightarrow wiggly estimates.

- Fully Bayesian inference:
 - All parameters (including the variance parameters τ^2) are assigned suitable prior distributions.
 - Estimation is based on MCMC simulation techniques.
 - Usual estimates: Posterior expectation, posterior median (easily obtained from the samples).
- Empirical Bayes inference:
 - Differentiate between parameters of primary interest (regression coefficients) and hyperparameters (variances).
 - Assign priors only to the former.
 - Estimate the hyperparameters by maximising their marginal posterior.
 - Plugging these estimates into the joint posterior and maximising with respect to the parameters of primary interest yields posterior mode estimates.

Results

- Summary:
 - Inclusion of any kind of spatial effect leads to a dramatically improved model fit.
 - The unstructured part dominates the structured spatial effect.
 - Temporal effects are present in the data.
 - Nonparametric effects allow for more realistic models and additional insight.
 - Inclusion of the spatial effect also improved interpretability of other effects.

BayesX

• BayesX is a software tool for estimating geoadditive regression models.

- Stand-alone software with Stata-like syntax.
- Developed by Andreas Brezger, Thomas Kneib and Stefan Lang with contributions of seven colleagues.
- Computationally demanding parts are implemented in C++.
- Graphical user interface and visualisation tools are implemented in Java.
- Currently, BayesX only runs under Windows, a Linux version as well as a connection to R are work in progress.
- More information:

```
http://www.stat.uni-muenchen.de/~bayesx
```

- Fully Bayesian inference based on MCMC.
- Empirical Bayes inference based on mixed model methodology.
- Univariate response types:
 - Gaussian,
 - Bernoulli and Binomial,
 - Poisson and zero-inflated Poisson,
 - Gamma,
 - Negative Binomial.

- Categorical responses with ordered categories:
 - Ordinal as well as sequential models,
 - Logit and probit models,
 - Effects can be category-specific or constant over the categories.
- Categorical responses with unordered categories:
 - Multinomial logit and multinomial probit models,
 - Category-specific and globally-defined covariates,
 - Non-availability indicators can be defined to account for varying choice sets.

• Continuous survival times:

- Cox-type hazard regression models,
- Joint estimation of baseline hazard rate and covariate effects,
- Time-varying effects and time-varying covariates,
- Arbitrary combinations of right, left and interval censoring as well as left truncation.
- Multi-state models:
 - Describe the evolution of discrete phenomena in continuous time,
 - Model in terms of transition intensities, similar as in the Cox model.

Conclusions

• Take home message:

BayesX is a user-friendly software that allows for the routine estimation of a broad class of geoadditive regression models.

- Geoadditive models can be estimated for various types of responses.
- Fully automated fit without the need for subjective judgements.
- Realistically complex models for complex data.
- Challenging task: Model choice and variable selection in geoadditive regression.

• More on the application:

Kneib, T. & Fahrmeir, L. (2008): A Space-Time Study on Forest Health. In: Chandler, R. E. & Scott, M. (eds.): Statistical Methods for Trend Detection and Analysis in the Environmental Sciences, Wiley.

• A place called home:

http://www.stat.uni-muenchen.de/~kneib