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Abstract

Fluorescence correlation spectroscopy (FCS) has become an important technique in biophysical research, which is also used for in vivo studies
of molecular mobilities in cells. We theoretically study how confinement or exclusion of the diffusing fluorescent molecules by a spherical region
influences the measured autocorrelation function in an FCS experiment. It is shown that close to the boundary of the spherical region the diffusion
time can be significantly changed due to the geometric restriction of the detection volume. This is important when quantitatively evaluating and
interpreting FCS measurements in cells.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Fluorescence correlation spectroscopy, invented in the 1970s
by Magde et al. (1972), has evolved to a powerful and widely
used tool for studying molecular mobility and interaction in
vitro as well as in vivo (Rigler and Elson, 2001). In FCS,
fluorescence fluctuations detected out of a very small detection
volume (usually on the order of 1 fl or less) are recorded and
then autocorrelated yielding the second order or autocorrelation
function (ACF) of the fluctuating signal. If the average number
of molecules within the detection volume is sufficiently small,
the fluctuations are dominated by the random diffusion of the
fluorescent molecules out of that volume, and the ACF shows a
prominent decay which is characterized by the diffusion
coefficient of the molecules. Thus, FCS can be used to
determine the mobility of molecules within a sample, an issue
of considerable interest in cell studies (Elson, 2001; Dittrich et
al., 2001; Jankevics et al., 2005). However, the cellular
environment is by far not homogeneous, which makes a
quantitative evaluation of FCS data measured in live cells
difficult and prone to misinterpretations (Verkman, 2002).
There are numerous publications reporting e.g. the observation

of anomalous diffusion within cells (see e.g. Bacia and
Schwille, 2003; Wachsmuth et al., 2000). However, as was
pointed out by Egner et al. (1998), even small optical
aberrations introduced by minute refractive index mismatches
may cause a serious problem for correct FCS data evaluation
when working in biological samples. Gennerich and Schild
(2000) demonstrated that FCS in small cytosolic compartments
can lead to gross errors in diffusion coefficients if confinement
effects are not correctly taken into account. They considered
FCS measurements on diffusing molecules confined in two
dimensions. In the present paper, we will extend the work by
Gennerich and Schild by modeling FCS measurements on
fluorescing molecules that diffuse within or around a spherical
compartment. This can be, for example, proteins diffusing
within or around vacuoles or other spherical organelles which
are present in high density and large size variations in any living
cell. We present numerical results which will help to estimate
the potential errors made when using FCS for quantifying
molecular mobilities.

Materials and methods

Modeling FCS in a spherical confinement

In FCS, the detected fluorescence intensity is correlated with a time-shifted
replica of itself at different values of time shift τ. The result is the so-called
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autocorrelation function (second-order correlation function) which is calculated
as

gðsÞ ¼ hIðtÞIðt þ sÞit ð1Þ
where I(t) is the detected fluorescence intensity at time t, and the triangular
brackets denote averaging over all time values t. The calculation of the ACF is
equivalent to determining the probability to detect a photon at time t+τ if there
was a photon detected at time t. In the present paper, we focus on FCS within
and around spherical enclosures and would like to study how the diffusion
governed part of the ACF is changed by the presence of the spherical enclosure.
Thus, we completely neglect any photophysical or conformational processes
that might also affect the ACF. A purely diffusion-generated ACF can be
calculated as follows (see Enderlein et al., 2005 for the details)

gðsÞ ¼ c
Z

dr1
Z

dr0Uðr1ÞGðr1; r0; sÞUðr0Þ þ ½cZ drUðrÞ�2; ð2Þ

where c denotes the concentration of fluorescent molecules, U(r) is the so-
called molecule detection function (MDF) which describes with which
probability a fluorescence photon is excited and detected for a molecule at
position r within the sample, and G(r1, r0, τ) is Green's function of the
diffusion equation for the given boundary conditions. G(r1, r0, τ) is the
probability density that a molecule diffuses from position r0 to position r1
within time τ. Thus, for calculating the ACF one needs to know the MDF, U
(r), and Green's function, G(r1, r0, τ). When neglecting minor effects
connected with fluorescence anisotropy (i.e. slow rotational diffusion leading
to a correlation between the absorption and emission dipole orientation during
excitation and fluorescence emission, respectively) (Enderlein et al., 2004), the
MDF is given by the product of excitation intensity distribution and
fluorescence collection efficiency function. We calculated both functions and
thus the MDF using exact wave-optical modeling as explained in detail in
Enderlein et al. (2005). Green's function, G(r1, r0, τ), is found as a solution of
the three-dimensional diffusion equation,

∂G
∂t

¼ DDG ð3Þ

with appropriate boundary and initial conditions. In the above equation, D
denotes the diffusion coefficient, and Δ the three-dimensional Laplace
operator. When modeling diffusion within or around a confining sphere, one
has vanishing flux across the sphere surface so that the boundary condition
reads

∂G
∂r jr¼a

¼ 0 ð4Þ

where r is the radial coordinate in a spherical coordinate system with its origin
at the center of the sphere, and a is the sphere's radius. The initial condition
demands that the diffusion starts exactly at position r0 at time t=0, i.e.

Gðr1; r0; t ¼ 0Þ ¼ dðr1 � r0Þ: ð5Þ
where δ(r) is the three-dimensional Dirac function. The exact solution for G
(r1, r0, τ) is given by the following infinite series expansion (Morse and
Feshbach, 1953)

Gðr1; r0; sÞ ¼
Xl
n¼0

Xn
m¼�n

Xl
a¼0

cn;awn;m;aðr1; h1;/1Þ
P
wn;m;aðr0; h0;/0Þ

� exp½�Dk2n;as� ð6Þ

where r≡{r, θ, ϕ} are spherical coordinates, a bar denotes complex
conjugation, the eigenfunctions ψn,m,α (r, θ, ϕ) are defined by

wn;m;aðr; h;/Þ ¼ Ynmðh;/Þjnðkn;arÞ ð7Þ

with Ynm (θ,ϕ) denoting spherical harmonic functions (Abramowitz and
Stegun, 1984),

Ynm h;uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1ðl � jmjÞ!
4pðl þ jmjÞ! Pjmj

l coshð Þexp im/ð Þ
s

ð8Þ

with Pl
m being associated Legendre functions (Abramowitz and Stegun, 1984);

jn are spherical Bessel functions of the first kind (Abramowitz and Stegun,
1984); the kn,α are defined by the transcendental equation

∂jnðkn;arÞ
∂r j

r¼a
¼ 0; ð9Þ

with α enumerating the infinite number of solutions of this equations in
ascending order; and the normalizing factors cn,m,α are given by

cn;a ¼ 2
a3

1� nðnþ 1Þ
k2n;aa

2

 !
j2n kn;aa
� �" #�1

ð10Þ

if kn,α>0 and c0,0=3/a
3 (having k0,0=0). Using this solution, the time-

dependent part of the ACF, i.e. the first term on the r.h.s. of Eq. (2), can be
calculated as

gðsÞ � gl ¼
X
n;m;a

cn;aexpð�Dk2n;atÞj
VS

R
drUðrÞwn;m;aðrÞj2; ð11Þ

where g∞ denotes the ACF value at τ→∞, and the integration is performed
over the sphere's volume VS. Thus, the calculation of the ACF reduces to a
summation over squares of integrals, which have to be evaluated numerically.

For making a quantitative comparison of the apparently observed molecular
mobility for different focus positions with respect to the confining sphere, we
determined the diffusion time τ1/2 defined by

g s1=2
� �� gl ¼ 1

2
½g 0ð Þ � gl�; ð12Þ

i.e. τ1/2 is the time where the time-dependent part of the ACF has fallen off to
half of its initial value.

Modeling FCS around a spherical exclusion

Calculating the ACF for diffusion in an infinite volume where a spherical
region is excluded is similar to the previous section. However, now the
eigenfunctions ψn,m,α have the modified form

wn;m;k r; h;/ð Þ ¼ Ynm h;/ð Þ y
V
nðkaÞjnðkrÞ � j ′nðkaÞynðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y ′2n ðkaÞ þ j ′2n ðkaÞ
p ð13Þ

where the yn are spherical Bessel functions of the second kind (Abramowitz and
Stegun, 1984), a prime denotes differentiation, and Green's function is now
represented by a double sum and integral instead of a triple sum,

G r1; r0; sð Þ¼ 2
p

Xl
n¼0

Xn
m¼�n

Z l

0
dkk2wn;m;k r1; h1;/1ð ÞPwn;m;k r0; h0;u0ð Þexp �Dk2s

� �
:

ð14Þ
The final result for the ACF looks similar to the previous section,

g sð Þ � gl ¼ 2
p

X
n;m

Z l

0
dkk2exp �Dk2t

� �j
VO

R
drUðrÞwn;m;kðrÞj2; ð15Þ

where the integration extends over the whole space Vo outside the sphere. This
expression has again to be evaluated numerically.

Results and discussion

The general situation studied is shown in Fig. 1: a focused
laser beam together with confocal detection of the excited
fluorescence generates a small and well defined detection
volume where fluorescence can be efficiently detected. By
monitoring fluorescence fluctuations caused by molecules
diffusing in and out of that volume, and by determining how
fast the autocorrelation of these fluctuations decays, one
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quantifies the mobility of the diffusing molecules. However,
when the detection volume is situated close to a boundary
that restricts the diffusive motion of the molecules, i.e. if
some part of the detection volume is cut off by the boundary,
the temporal decay of the fluorescence autocorrelation is
changed, and thus the apparent mobility of the molecules.
For a spherical boundary, two cases can be considered: the
diffusing molecules are enclosed by the boundary (confine-
ment), or the molecules are excluded from the spherical
region (exclusion). We will quantify, for both cases, the
influence of the boundary on an FCS measurement by
calculating the diffusion time τ1/2, defined by Eq. (12), as a
function of the relative position of the detection volume with
respect to the spherical boundary.

First, we have to specify the MDF which will be used for the
calculations. We computed the MDF using an exact wave-optics
approach as described in Enderlein et al. (2005). The
computations were done for an aberration-free water immersion
objective with 1.2 numerical aperture. Fluorescence imaging
onto the confocal aperture was assumed to be performed with
60× magnification, aperture diameter was set to 20 μm. Laser
beam diameter was set equal to the diameter of the objective's
back aperture, resulting in laser focusing close to the diffraction
limit. The calculations were performed for 635 nm excitation
and 670 nm emission wavelengths. The resulting shape of the
MDF is visualized in Fig. 2.

Knowing the MDF U(r) and using Eqs. (11) and (12), we
calculated the diffusion time τ1/2 as a function of relative
position of the detection volume with respect to a confining
sphere of radius a. The different values of a were studied,
namely a=0.5, 1 and 2 μm. The results for the three radius
values are shown in Figs. 3A–C. In each panel, the left side
shows the fluorescence intensity as a function of focus position
relative to the boundary, and the ride side shows the diffusion
time τ1/2 as a function of this position. A remarkable result is

that, when the detection volume crosses the enclosing boundary,
the diffusion time τ1/2 increases although more and more of the
detection volume is cut off by the boundary. This can be
understood when realizing that τ1/2 is mainly determined by the
largest gradient of the MDF, i.e. how fast the MDF changes
from point to point. If the center of the MDF is cut off by the
boundary, the remaining part has much shallower gradients than
the full distribution leading to an apparently slower decay of the
autocorrelation function. As can be seen from Figs. 3B–C, the
apparent slowdown of molecular mobility can be more than a
factor of 2.5, although it occurs when the fluorescence intensity
has dropped of to only a few percent of its value in free solution.
Thus, the presence of the spherical enclosure induces a shell of
apparently less mobile molecules near its surface. This is, of
course, a purely geometrical effect and has nothing to do with
the actual diffusion speed of the molecules, which is assumed to
be everywhere the same.

An interesting question is whether one can recognize the
position of the focus with respect to the boundary by inspecting
the shape of the ACF. Fig. 3D shows a series of ACFs for
different focus positions when moving the focus across the
interface along the optical axis. What can be seen is that the
shape of the different ACFs is rather similar although the
diffusion time shifts significantly. Thus, the shape of the ACF
cannot give decisive information about the exact focus position
with respect to the boundary, which will make the recognition of
boundary effects in praxis rather difficult.

Next, we calculated, using Eqs. (12) and (15), τ1/2 as a
function of relative position of the focus position with respect
to an excluding sphere of radius a. Again, we considered
three radius values, this time a=0.2, 0.5, and 1 μm. The
computational result is shown in Figs. 4A–C. Remarkably, for
small radius values the impact of the excluded volume on the
apparent mobility is less than one could expect: although the

Fig. 2. Shape of the molecule detection function used for the calculations.
Shown are three iso-surfaces corresponding to fluorescence excitation times
detection probabilities of 1/e, 1/e2, and 1/e3, respectively.

Fig. 1. General geometry of the considered experiment: a confocal detection
volume is positioned close or onto a spherical region that confines or excludes
diffusing fluorescent molecules. The resulting autocorrelation function and
diffusion time are calculated as a function of the position (r,θ,ϕ) of the detection
volume with respect to the sphere's center.
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spatial extension of the detection volume is only ca. 1 μm
along the optical axis and ca. 0.4 μm perpendicular to the
optical axis, the presence of an excluding sphere of 0.4 μm

diameter does not have a significant effect on the apparent
diffusion time. Only for sphere diameters around 1 μm and
larger, the diffusion time is altered significantly, in a similar
way as for the confining sphere but with opposite location. As
in the case of the confining volume, the shape of the ACFs is
similar for most focus positions (not shown), making it again
rather difficult to recognize the presence of a boundary effect
in an FCS measurement based on the shape of the measured
ACF.

Conclusion

We have presented exact theoretical modeling of the
geometric effect of an enclosing or excluding sphere on the
measured diffusion time in an FCS experiment. As was seen, the
presence of the geometric restriction leads most prominently to
an apparent slowdown of molecular mobility close to the
boundary. Taking into account that we considered a very simple
geometric configuration, whereas in real cells lipid boundaries
of organelles and vesicles abound, it can be expected that such
cut-off effects of the detection volume have significant impact
on FCS measurements in cells. Moreover, we have considered
only the effect of geometric restriction of diffusion, whereas in a
cellular environment, organelles or vacuoles may have sig-

Fig. 4. (A) Dependence of relative intensity (left) and diffusion time (right) on
position of the detection volume with respect to an excluding sphere of radius
0.2 μm. The color bars indicate the values of intensity (left) and diffusion time
(right) in units of intensity and diffusion time for an unrestricted volume,
respectively. The circle indicates the boundary of the confining sphere. (B) Same
as in a but for an excluding sphere of radius 0.5 μm. (C) Same as in panel A but
for an excluding sphere of radius 1 μm.

Fig. 3. (A) Dependence of relative intensity (left) and diffusion time (right) on
position of the detection volume (focus position) with respect to a confining
sphere of radius 0.5 μm. The color bars indicate the values of intensity (left) and
diffusion time (right) in units of intensity and diffusion time for an unrestricted
volume, respectively. The circle indicates the boundary of the confining sphere.
(B) Same as in panel A but for a confining sphere of radius 1 μm. (C) Same as in
a but for a confining sphere of radius 2 μm. (D) Shape of the normalized ACFs
when moving the focus along the optical axis across the boundary of a confining
sphere of 1 μm. Shown are curves for focus positions from z=0 μm up to
z=1.5 μm in steps of 0.05 μm. The arrow indicates the shift of the ACFs with
increasing z-position.
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nificantly different refractive index values than that of the
surrounding cytoplasma, introducing additional optical aberra-
tions which will distort the MDF and thus the resulting ACF.
Thus, when interpreting FCS measurements in cells one should
be careful to take into account geometric restriction effects (and
also optical aberrations due to refractive index variations) before
trying to evoke more arcane explanations such as anomalous
diffusion.
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