Modulverzeichnis

Module

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Bio-NF.102</td>
<td>Ringvorlesung Biologie II.</td>
<td>2838</td>
</tr>
<tr>
<td>B.Bio-NF.112</td>
<td>Biochemie</td>
<td>2839</td>
</tr>
<tr>
<td>B.Bio-NF.116</td>
<td>Allgemeine Entwicklungs- und Zellbiologie</td>
<td>2840</td>
</tr>
<tr>
<td>B.Bio-NF.118</td>
<td>Mikrobiologie</td>
<td>2841</td>
</tr>
<tr>
<td>B.Bio-NF.123</td>
<td>Tierphysiologie</td>
<td>2842</td>
</tr>
<tr>
<td>B.Bio-NF.125</td>
<td>Zell- und Molekularbiologie der Pflanze</td>
<td>2843</td>
</tr>
<tr>
<td>B.Bio-NF.126</td>
<td>Tier- und Pflanzenökologie</td>
<td>2844</td>
</tr>
<tr>
<td>B.Bio-NF.127</td>
<td>Evolution und Systematik der Pflanzen</td>
<td>2845</td>
</tr>
<tr>
<td>B.Bio-NF.128</td>
<td>Evolution und Systematik der Tiere</td>
<td>2846</td>
</tr>
<tr>
<td>B.Bio-NF.129</td>
<td>Genetik und mikrobielle Zellbiologie</td>
<td>2847</td>
</tr>
<tr>
<td>B.Bio-NF.130</td>
<td>Kognitionpsychologie</td>
<td>2848</td>
</tr>
<tr>
<td>B.Forst.1101</td>
<td>Grundlagen der Forstbotanik</td>
<td>2849</td>
</tr>
<tr>
<td>B.Forst.1104</td>
<td>Forstzoologie, Wildbiologie und Jagd kunde</td>
<td>2850</td>
</tr>
<tr>
<td>B.Forst.1106</td>
<td>Bioklimatologie</td>
<td>2851</td>
</tr>
<tr>
<td>B.Forst.1108</td>
<td>Bodenkunde</td>
<td>2852</td>
</tr>
<tr>
<td>B.Forst.1110</td>
<td>Waldbau</td>
<td>2853</td>
</tr>
<tr>
<td>B.Forst.1114</td>
<td>Forstgenetik</td>
<td>2854</td>
</tr>
<tr>
<td>B.Forst.1115</td>
<td>Waldbau - Übungen</td>
<td>2855</td>
</tr>
<tr>
<td>B.Forst.1117</td>
<td>Forstliche Betriebswirtschaftslehre</td>
<td>2856</td>
</tr>
<tr>
<td>B.Forst.1118</td>
<td>Waldinventur</td>
<td>2857</td>
</tr>
<tr>
<td>B.Forst.1122</td>
<td>Waldwachstum und Forsteinrichtung</td>
<td>2859</td>
</tr>
<tr>
<td>B.Inf.1701</td>
<td>Vertiefung theoretischer Konzepte der Informatik</td>
<td>2861</td>
</tr>
<tr>
<td>B.Inf.1705</td>
<td>Vertiefung Softwaretechnik</td>
<td>2862</td>
</tr>
<tr>
<td>B.Inf.1706</td>
<td>Vertiefung Datenbanken</td>
<td>2864</td>
</tr>
<tr>
<td>B.Inf.1707</td>
<td>Vertiefung Computernetzwerke</td>
<td>2866</td>
</tr>
<tr>
<td>B.Inf.1708</td>
<td>IT-Sicherheit</td>
<td>2868</td>
</tr>
<tr>
<td>B.Inf.1802</td>
<td>Programmierpraktikum</td>
<td>2869</td>
</tr>
<tr>
<td>B.Mat.0720</td>
<td>Mathematische Anwendersysteme (Grundlagen)</td>
<td>2870</td>
</tr>
<tr>
<td>B.Mat.1100</td>
<td>Analysis auf Mannigfaltigkeiten</td>
<td>2872</td>
</tr>
</tbody>
</table>
B.Mat.1200: Algebra... 2874
B.Mat.1300: Numerische lineare Algebra... 2876
B.Mat.1310: Methoden zur Numerischen Mathematik.. 2878
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie... 2880
B.Mat.2100: Partielle Differenzialgleichungen.. 2882
B.Mat.2110: Funktionalanalysis... 2884
B.Mat.2200: Moderne Geometrie... 2886
B.Mat.2300: Numerische Analysis.. 2888
B.Mat.2310: Optimierung.. 2890
B.Mat.2400: Angewandte Statistik... 2892
B.Mat.3031: Wissenschaftliches Rechnen.. 2894
B.Mat.3111: Introduction to analytic number theory.. 2896
B.Mat.3112: Introduction to analysis of partial differential equations.. 2898
B.Mat.3113: Introduction to differential geometry.. 2900
B.Mat.3114: Introduction to algebraic topology... 2902
B.Mat.3121: Introduction to algebraic geometry... 2904
B.Mat.3122: Introduction to algebraic number theory.. 2906
B.Mat.3123: Introduction to algebraic structures... 2908
B.Mat.3124: Introduction to groups, geometry and dynamical systems... 2910
B.Mat.3131: Introduction to inverse problems... 2912
B.Mat.3132: Introduction to approximation methods.. 2914
B.Mat.3133: Introduction to numerics of partial differential equations.. 2916
B.Mat.3134: Introduction to optimisation... 2918
B.Mat.3138: Introduction to image and geometry processing... 2920
B.Mat.3141: Introduction to applied and mathematical stochastics.. 2922
B.Mat.3142: Introduction to stochastic processes.. 2924
B.Mat.3143: Introduction to stochastic methods of economathematics.. 2926
B.Mat.3144: Introduction to mathematical statistics... 2928
B.Mat.3311: Advances in analytic number theory.. 2930
B.Mat.3312: Advances in analysis of partial differential equations.. 2932
B.Mat.3313: Advances in differential geometry.. 2934
Inhaltsverzeichnis

B.Mat.3314: Advances in algebraic topology ... 2936
B.Mat.3315: Advances in mathematical methods in physics .. 2938
B.Mat.3321: Advances in algebraic geometry .. 2940
B.Mat.3322: Advances in algebraic number theory ... 2942
B.Mat.3323: Advances in algebraic structures ... 2944
B.Mat.3324: Advances in groups, geometry and dynamical systems 2946
B.Mat.3331: Advances in inverse problems ... 2948
B.Mat.3332: Advances in approximation methods .. 2950
B.Mat.3333: Advances in numerics of partial differential equations 2952
B.Mat.3334: Advances in optimisation ... 2954
B.Mat.3338: Advances in image and geometry processing .. 2956
B.Mat.3339: Advances in scientific computing / applied mathematics 2958
B.Mat.3341: Advances in applied and mathematical stochastics 2960
B.Mat.3342: Advances in stochastic processes .. 2962
B.Mat.3343: Advances in stochastic methods of economathematics 2964
B.Mat.3344: Advances in mathematical statistics .. 2966
B.Mat.3413: Seminar im Zyklus "Differentialgeometrie" .. 2968
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie" .. 2970
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie" ... 2972
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie" 2974
B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen" ... 2976
B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme" 2978
B.Mat.3432: Seminar im Zyklus "Approximationsverfahren" 2980
B.Mat.3434: Seminar im Zyklus "Optimierung" ... 2982
B.Ph.1201: Analytische Mechanik .. 2984
B.Ph.1203: Quantenmechanik I .. 2986
B.Ph.1204: Statistische Physik .. 2988
B.Ph.1511: Einführung in die Kern- und Teilchenphysik .. 2990
B.Ph.1521: Einführung in die Festkörperphysik ... 2992
Inhaltsverzeichnis

B.Phy.1531: Einführung in die Materialphysik ... 2993
B.Phy.1541: Einführung in die Geophysik ... 2994
B.Phy.1551: Introduction to Astrophysics ... 2995
B.Phy.1561: Introduction to Physics of Complex Systems .. 2996
B.Phy.1571: Introduction to Biophysics ... 2997
B.Phy.5601: Theoretical and Computational Neuroscience I .. 2998
B.Phy.5602: Theoretical and Computational Neuroscience II .. 2999
B.Phy.5605: Computational Neuroscience: Basics ... 3000
B.Phy.5614: Proseminar Computational Neuroscience .. 3001
B.Phy.5638: Artificial Intelligence Robotics: An Introduction 3002
B.Phy.5651: Advanced Computational Neuroscience I .. 3004
B.Phy.5652: Advanced Computational Neuroscience II .. 3005
M.Bio-NF.141: Allgemeine und Angewandte Mikrobiologie .. 3006
M.Bio-NF.142: Genetik und eukaryotische Mikrobiologie .. 3007
M.Bio-NF.144: Zell- und Molekularbiologie von Pflanzen-Mikroben-Interaktionen 3008
M.Bio-NF.341: Entwicklungsbioökologie von Invertebraten .. 3011
M.Bio-NF.344: Neurobiologie ... 3011
M.Bio.310: Systembiologie ... 3013
M.Bio.359: Development and plasticity of the nervous system (lecture) 3015
M.Bio.360: Development and plasticity of the nervous system (seminar) 3016
M.Forst.1411: Modellierung von Populationsdynamik und Biodiversität 3017
M.Forst.1413: Ökosystemtheorie - Analyse, Simulationstechniken 3018
M.Forst.1421: Prozesse in der Ökologie ... 3019
M.Forst.1422: Fernerkundung und GIS ... 3021
M.Forst.1423: Struktur- und Funktionsmodelle auf ökophysiologischer Basis 3022
M.Forst.1424: Computergestützte Datenanalyse .. 3023
M.Forst.1431: Projekt: Waldökosystemanalyse und Informationsverarbeitung................. 3024
M.Forst.1659: Datenanalyse für Fortgeschrittene ... 3025
M.Forst.1665: Grundlagen der Populationsgenetik ... 3026
M.Forst.1678: Variationsmessung in der Biologie und speziell der Genetik 3027
M.Forst.1685: Ökologische Modellierung .. 3028

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
M.Forst.1689: Ökologische Modellierung mit C++	3030
M.Forst.1692: Modellanalyse und Modellanwendung	3031
M.Geg.02: Ressourcennutzungsprobleme	3033
M.Geg.03: Globaler Umweltwandel / Landnutzungsänderung	3035
M.Geg.04: Globaler soziokultureller und ökonomischer Wandel	3037
M.Geg.05: Geoinformationssysteme und Umweltmonitoring	3039
M.Geg.06: Landschaftsökologie und Landschaftsentwicklung	3040
M.Geg.07: Ressourcenwahrnehmung, -bewertung und -management	3041
M.Geg.12: Projektarbeit: GIS-basierte Ressourcenbewertung und -nutzungsplanung	3043
M.Geg.903: Projektpraktikum Geoinformatik	3044
M.Inf.1101: Modellierungspraktikum	3045
M.Inf.1102: Großes Modellierungspraktikum	3046
M.Inf.1111: Seminar Theoretische Informatik	3047
M.Inf.1112: Effiziente Algorithmen	3048
M.Inf.1113: Vertiefung Theoretische Informatik	3049
M.Inf.1120: Mobilkommunikation	3050
M.Inf.1121: Vertiefung Mobilkommunikation	3052
M.Inf.1122: Seminar Vertiefung Telematik	3054
M.Inf.1123: Weiterführung Computernetzwerke	3055
M.Inf.1124: Seminar Vertiefung Computernetzwerke	3056
M.Inf.1127: Einführung in die IT-Sicherheit	3057
M.Inf.1128: Seminar Erkennung von Angriffen und Schadsoftware	3058
M.Inf.1129: Big Data Methoden in Sozialen Netzwerken	3059
M.Inf.1130: Software-definierte Netzwerke (SDN)	3060
M.Inf.1141: Semistrukturierte Daten und XML	3061
M.Inf.1142: Semantic Web	3062
M.Inf.1150: Ausgewählte Aspekte der Softwaretechnik	3063
M.Inf.1151: Vertiefung Softwaretechnik: Data Science und Big Data Analytics	3065
M.Inf.1152: Vertiefung Softwaretechnik: Qualitätssicherung	3066
M.Inf.1153: Vertiefung Softwaretechnik: Requirements Engineering	3067
M.Inf.1154: Vertiefung Softwaretechnik: Software Evolution	3069
M.Inf.1155: Seminar: Ausgewählte Aspekte der Softwaretechnik	3070
M.Inf.1161: Bildanalyse und Bildverstehen	3072
M.Inf.1171: Service-Oriented Infrastructures	3073
M.Inf.1172: Using Research Infrastructures	3075
M.Inf.1181: Seminar NOSQL Databases	3077
M.Inf.1182: Seminar Knowledge Engineering	3078
M.Inf.1185: Sensor Data Fusion	3079
M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics	3081
M.Inf.1187: Simulation-based Data Fusion and Analysis	3082
M.Inf.1200: Wissenschaftliches Rechnen in einer kleinen forschungsbezogenen Projektarbeit	3084
M.Inf.1201: Systementwicklung in einer forschungsbezogenen Projektarbeit	3085
M.Inf.1202: Bioinformatik in einer forschungsbezogenen Projektarbeit	3086
M.Inf.1203: Neuroinformatik in einer kleinen forschungsbezogenen Projektarbeit	3087
M.Inf.1204: Informatik der Ökosysteme in einer forschungsbezogenen Projektarbeit	3088
M.Inf.1205: Medizinische Informatik in einer kleinen forschungsbezogenen Projektarbeit	3089
M.Inf.1206: Recht der Informatik in einer forschungsbezogenen Projektarbeit	3090
M.Inf.1208: Wissenschaftliches Rechnen in einer forschungsbezogenen Projektarbeit	3091
M.Inf.1209: Neuroinformatik in einer forschungsbezogenen Projektarbeit	3092
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte	3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen	3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung	3095
M.Inf.1215: Fehlerkorrigierende Codes	3096
M.Inf.1216: Datenkompression und Informationstheorie	3098
M.Inf.1217: Kryptographie	3100
M.Inf.1222: Spezialisierung Computernetzwerke	3102
M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke	3103
M.Inf.1226: Sicherheit und Kooperation in Drahtlosen Netzwerken	3104
M.Inf.1227: Maschinelles Lernen in der IT-Sicherheit	3106
M.Inf.1228: Seminar Aktuelle Forschung in der IT-Sicherheit	3107
M.Inf.1229: Seminar Spezialisierung Telematik	3108
M.Inf.1230: Spezialisierung Software-definierte Netzwerke (SDN)	3109
M.Inf.1231: Spezialisierung Verteilte Systeme ... 3110
M.Inf.1232: Parallel Computing .. 3112
M.Inf.1242: Seminar Datenbanken .. 3114
M.Inf.1243: Deduktive Datenbanken ... 3115
M.Inf.1250: Seminar: Software Qualitätssicherung ... 3116
M.Inf.1251: Seminar: Software Evolution .. 3118
M.Inf.1260: Informatik der Ökosysteme in einer kleinen forschungsbezogenen Projektarbeit 3120
M.Inf.1261: Seminar Grafische Datenverarbeitung ... 3121
M.Inf.1267: Quanteninformation und Quantenberechnung 3122
M.Inf.1268: Informationstheorie .. 3123
M.Inf.1269: Komplexitätstheorie .. 3124
M.Inf.1281: NOSQL Databases ... 3125
M.Inf.1301: Marktanalyse ... 3126
M.Inf.1302: Aktuelle Themen der Medizinischen Informatik 3127
M.Inf.1303: Bildgebung und Visualisierung ... 3128
M.Inf.1304: E-Health .. 3129
M.Inf.1305: Journal Club ... 3130
M.Inf.1351: Arbeitsmethoden in der Gesundheitsforschung 3131
M.Inf.1355: IT-Managementtechniken im Gesundheitswesen 3132
M.Inf.1356: Infrastrukturen für die klinische Forschung ... 3134
M.Inf.1403: Neurorehabilitation Technologies: Introduction and Applications 3136
M.Inf.1501: Data Mining in der Bioinformatik .. 3137
M.Inf.1502: Diskrete Algorithmen und Modelle ... 3138
M.Inf.1503: Seminar Bioinformatik ... 3139
M.Inf.1504: Algorithmen der Bioinformatik II .. 3140
M.Inf.1800: Fortgeschrittenen Praktikum Computernetzwerke 3141
M.Inf.1802: Praktikum XML .. 3142
M.Inf.1803: Praktikum Softwaretechnik ... 3143
M.Inf.1804: Praktikum Software-Qualitätssicherung .. 3145
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme 3147
M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme 3148
Inhaltsverzeichnis

M.Inf.1808: Practical Course on Parallel Computing ... 3149
M.Inf.1809: Berufsspezifische Schlüsselkompetenzen in einer forschungsbezogenen Projektarbeit 3151
M.Inf.1810: Erweiterung berufsspezifischer Schlüsselkompetenzen in einer forschungsbezogenen Projekarbeit ... 3152
M.Inf.1820: Practical Course on Wireless Sensor Networks .. 3153
M.Inf.1821: Praktikum IT-Sicherheit .. 3154
M.Inf.1822: Practical Course in Data Fusion .. 3155
M.Inf.1901: Einführung in die Digital Humanities .. 3156
M.Inf.1902: Werkzeuge und Methoden der Digital Humanities ... 3157
M.Inf.1903: Theorien der Digital Humanities ... 3158
M.Inf.1904: From written manuscripts to big humanities data .. 3159
M.Inf.1909: Digital Humanities in einer forschungsbezogenen Projektarbeit 3161
M.Inf.1911: Klassische Archäologie (für Informatiker) - Einführung ... 3162
M.Inf.1912: Klassische Archäologie (für Informatiker) - Vertiefung .. 3164
M.Inf.1921: Historische und systematische Aspekte von Sprache und Literatur 3166
M.Inf.1922: Theorie und Methodologie der Textwissenschaften I .. 3167
M.Inf.1923: Theorie und Methodologie der Textwissenschaften II ... 3168
M.Mat.3130: Operations research ... 3169
M.Mat.4639: Aspects of scientific computing / applied mathematics .. 3171
M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik .. 3173
M.WIWI-BWL.0001: Finanzwirtschaft ... 3174
M.WIWI-BWL.0004: Financial Risk Management .. 3176
M.WIWI-BWL.0018: Analysis of IFRS Financial Statements .. 3178
M.WIWI-BWL.0023: Management Accounting ... 3180
M.WIWI-BWL.0024: Unternehmensplanung ... 3181
M.WIWI-BWL.0034: Logistik- und Supply Chain Management .. 3183
M.WIWI-BWL.0036: Produktionsplanung und -steuerung ... 3185
M.WIWI-BWL.0055: Distribution ... 3186
M.WIWI-BWL.0059: Projektstudium .. 3187
M.WIWI-BWL.0106: Topics in Quantitative Marketing and Economics ... 3189
M.WIWI-BWL.0109: International Human Resource Management .. 3191
Inhaltsverzeichnis

M.WIWI-BWL.0112: Corporate Development ... 3192
M.WIWI-BWL.0116: Asian Business and Management .. 3194
M.WIWI-BWL.0130: Doing Business in Asia .. 3195
M.WIWI-BWL.0134: Panel Data Analysis in Marketing .. 3196
M.WIWI-BWL.0135: Digital Innovations and Design Thinking ... 3197
M.WIWI-BWL.0136: Digital Transformation .. 3199
M.WIWI-BWL.0137: Electronic Commerce Systems .. 3201
M.WIWI-QMW.0001: Generalized Linear Models ... 3203
M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes) ... 3205
M.WIWI-QMW.0007: Selected topics in Statistics and Econometrics ... 3207
M.WIWI-QMW.0009: Introduction to Time Series Analysis .. 3208
M.WIWI-QMW.0010: Multivariate Statistics ... 3209
M.WIWI-QMW.0011: Statistical Programming with R ... 3210
M.WIWI-WIN.0001: Modeling and System Development ... 3211
M.WIWI-WIN.0002: Integrierte Anwendungssysteme ... 3213
M.WIWI-WIN.0003: Informationsmanagement .. 3215
M.WIWI-WIN.0004: Crucial Topics in Information Management ... 3217
M.WIWI-WIN.0005: Seminar zur Wirtschaftsinformatik .. 3218
M.WIWI-WIN.0008: Change & Run IT .. 3220
M.WIWI-WIN.0009: Internet Economics .. 3222
M.WIWI-WIN.0011: Entrepreneurship 1 - Theoretische Grundlagen .. 3224
M.WIWI-WIN.0019: Business Intelligence and Decision Support Systems ... 3226
S.RW.0113K: Grundkurs II im Bürgerlichen Recht .. 3227
S.RW.0115K: Grundkurs III im Bürgerlichen Recht .. 3229
S.RW.0212K: Staatsrecht II .. 3231
S.RW.0311K: Strafrecht I .. 3233
S.RW.1130: Handelsrecht ... 3235
S.RW.1131a: Grundzüge des Gesellschaftsrechts (Personengesellschaftsrecht) 3237
S.RW.1131b: Grundzüge des Kapitalgesellschaftsrechts ... 3239
S.RW.1132: Wettbewerbsrecht (UWG) .. 3240
S.RW.1136: Wirtschaftsrecht der Medien .. 3241

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 2794
S.RW.1137: Immaterialgüterrecht II (Gewerbliche Schutzrechte) .. 3243
S.RW.1138: Presserecht... 3245
S.RW.1139: Immaterialgüterrecht I (Urheberrecht) ... 3247
S.RW.1140: Jugendmedienschutzrecht .. 3249
S.RW.1223K: Verwaltungsrecht I .. 3251
S.RW.1229: Internationales und europäisches Wirtschaftsrecht ... 3253
S.RW.1230: Cases and Developments in International Economic Law ... 3254
S.RW.1231: Datenschutzrecht ... 3255
S.RW.1232: Rundfunkrecht (mit Bezügen zum Recht der Neuen Medien) .. 3257
S.RW.1233: Telekommunikationsrecht .. 3259
S.RW.1317: Kriminologie I .. 3261
S.RW.1318: Angewandte Kriminologie ... 3263
S.RW.1320: Jugendstrafrecht ... 3264
S.RW.2220: Seminare Wettbewerbsrecht und Immaterialgüterrecht ... 3265
S.RW.2410: Seminare E-Commerce-Recht und Regulierung ... 3267
SK.Bio-NF.7001: Neurobiology ... 3269
SK.Bio.305: Grundlagen der Biostatistik mit R ... 3270
SK.Bio.355: Biologische Psychologie I ... 3271
SK.Bio.356: Biologische Psychologie II ... 3272
SK.Bio.357: Biologische Psychologie III .. 3273
Übersicht nach Modulgruppen

I. Master-Studiengang "Angewandte Informatik"
Es müssen Leistungen im Umfang von 120 C erfolgreich absolviert werden.

1. Fachstudium
Es müssen Module im Umfang von wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

a. Gruppe 1
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:

- M.Inf.1111: Seminar Theoretische Informatik (5 C, 2 SWS) ..3047
- M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS) .. 3048
- M.Inf.1113: Vertiefung Theoretische Informatik (5 C, 3 SWS) ... 3049
- M.Inf.1120: Mobilkommunikation (5 C, 3 SWS) ... 3050
- M.Inf.1121: Vertiefung Mobilkommunikation (5 C, 3 SWS) ... 3052
- M.Inf.1122: Seminar Vertiefung Telematik (5 C, 2 SWS) .. 3054
- M.Inf.1123: Weiterführung Computernetzwerke (5 C, 2 SWS) .. 3055
- M.Inf.1124: Seminar Vertiefung Computernetzwerke (5 C, 2 SWS) .. 3056
- M.Inf.1127: Einführung in die IT-Sicherheit (5 C, 4 SWS) ... 3057
- M.Inf.1128: Seminar Erkennung von Angriffen und Schadsoftware (5 C, 2 SWS) 3058
- M.Inf.1129: Big Data Methoden in Sozialen Netzwerken (5 C, 2 SWS) .. 3059
- M.Inf.1130: Software-definierte Netzwerke (SDN) (5 C, 2 SWS) ... 3060
- M.Inf.1141: Semistrukturierte Daten und XML (6 C, 4 SWS) ... 3061
- M.Inf.1142: Semantic Web (6 C, 4 SWS) .. 3062
- M.Inf.1150: Ausgewählte Aspekte der Softwaretechnik (5 C, 3 SWS) .. 3063
- M.Inf.1151: Vertiefung Softwaretechnik: Data Science und Big Data Analytics (5 C, 3 SWS)..... 3065
- M.Inf.1152: Vertiefung Softwaretechnik: Qualitätssicherung (5 C, 3 SWS) 3066
- M.Inf.1153: Vertiefung Softwaretechnik: Requirements Engineering (5 C, 3 SWS) 3067
- M.Inf.1154: Vertiefung Softwaretechnik: Software Evolution (5 C, 3 SWS) 3069
- M.Inf.1155: Seminar: Ausgewählte Aspekte der Softwaretechnik (5 C, 2 SWS) 3070
- M.Inf.1161: Bildanalyse und Bildverstehen (6 C, 4 SWS) .. 3072
b. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 5 C erfolgreich absolviert werden:

M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS) 3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
M.Inf.1215: Fehlerkorrigierende Codes (6 C, 4 SWS) ... 3096
M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS) 3098
M.Inf.1217: Kryptographie (6 C, 4 SWS) ... 3100
M.Inf.1222: Spezialisierung Computernetzwerke (5 C, 2 SWS) .. 3102
M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke (5 C, 2 SWS) 3103
M.Inf.1226: Sicherheit und Kooperation in Drahtlosen Netzwerken (6 C, 4 SWS) 3104
M.Inf.1227: Maschinelles Lernen in der IT-Sicherheit (6 C, 4 SWS) 3106
M.Inf.1228: Seminar Aktuelle Forschung in der IT-Sicherheit (5 C, 2 SWS) 3107
M.Inf.1229: Seminar Spezialisierung Telematik (5 C, 2 SWS) .. 3108
M.Inf.1230: Spezialisierung Software-definierte Netzwerke (SDN) (5 C, 2 SWS) 3109
M.Inf.1231: Spezialisierung Verteilte Systeme (6 C, 4 SWS) .. 3110
M.Inf.1232: Parallel Computing (6 C, 4 SWS) ... 3112
M.Inf.1242: Seminar Datenbanken (5 C, 2 SWS) ... 3114
M.Inf.1243: Deduktive Datenbanken (6 C, 4 SWS) ... 3115
M.Inf.1250: Seminar: Software Qualitätssicherung (5 C, 2 SWS) .. 3116
M.Inf.1251: Seminar: Software Evolution (5 C, 2 SWS) .. 3118
M.Inf.1261: Seminar Grafische Datenverarbeitung (5 C, 2 SWS) 3121
M.Inf.1267: Quanteninformation und Quantenberechnung (6 C, 4 SWS) 3122
c. Gruppe 3

Ferner können folgende Module gewählt werden; es kann nur eines der Module M.Inf.1101 und M.Inf.1102 absolviert werden:

M.Inf.1101: Modellierungspraktikum (5 C, 0,5 SWS) ... 3045
M.Inf.1102: Großes Modellierungspraktikum (9 C, 1 SWS) ... 3046
M.Inf.1800: Fortgeschrittenen Praktikum Computernetzwerke (6 C, 4 SWS) 3141
M.Inf.1802: Praktikum XML (6 C, 4 SWS) ... 3142
M.Inf.1803: Praktikum Softwaretechnik (6 C, 4 SWS) .. 3143
M.Inf.1804: Praktikum Software-Qualitätssicherung (6 C, 4 SWS) .. 3145
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme (6 C, 2 SWS) 3147
M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme (12 C, 4 SWS) 3148
M.Inf.1808: Practical Course on Parallel Computing (6 C, 4 SWS) ... 3149
M.Inf.1820: Practical Course on Wireless Sensor Networks (6 C, 4 SWS) 3153
M.Inf.1821: Praktikum IT-Sicherheit (6 C, 3 SWS) .. 3154
M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS) ... 3155

2. Professionalisierungsbereich

Es müssen Module im Umfang von insgesamt mindestens 60 C nach Maßgabe der nachfolgenden Bestimmungen absolviert werden.

a. Studienschwerpunkt

Es muss einer der nachfolgend genannten Studienschwerpunkte im Umfang von insgesamt mindestens 48 C nach Maßgabe der in II. bis XI. genannten Bestimmungen erfolgreich absolviert werden.

• Anwendungsorientierte Systementwicklung evtl. mit einer Vertiefung in einer der angewandten Informatiken
• Bioinformatik
• Geoinformatik
• Informatik der Ökosysteme (Ecological Informatics)
• Medizinische Informatik
• Recht der Informatik
• Wirtschaftsinformatik
• Wissenschaftliches Rechnen
• Neuroinformatik (Computational Neuroscience)
• Digital Humanities
b. Schlüsselkompetenzen
Es müssen Module im Umfang von insgesamt mindestens 12 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Berufsspezifische Schlüsselkompetenzen (Wahlpflichtbereich)
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt mindestens 6 C erfolgreich absolviert werden:

- M.Inf.1800: Fortgeschrittenen Praktikum Computernetzwerke (6 C, 4 SWS) .. 3141
- M.Inf.1802: Praktikum XML (6 C, 4 SWS) ... 3142
- M.Inf.1803: Praktikum Softwaretechnik (6 C, 4 SWS) ... 3143
- M.Inf.1804: Praktikum Software-Qualitätssicherung (6 C, 4 SWS) .. 3145
- M.Inf.1806: Projektseminar Datenbanken und Informationssysteme (6 C, 2 SWS) 3147
- M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme (12 C, 4 SWS) 3148
- M.Inf.1808: Practical Course on Parallel Computing (6 C, 4 SWS) .. 3149
- M.Inf.1809: Berufsspezifische Schlüsselkompetenzen in einer forschungsbezogenen Projektarbeit (6 C, 0,5 SWS) .. 3151
- M.Inf.1810: Erweiterung berufsspezifischer Schlüsselkompetenzen in einer forschungsbezogenen Projektarbeit (6 C, 0,5 SWS) .. 3152
- M.Inf.1820: Practical Course on Wireless Sensor Networks (6 C, 4 SWS) .. 3153
- M.Inf.1821: Praktikum IT-Sicherheit (6 C, 3 SWS) .. 3154
- M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS) ... 3155

bb. Fächerübergreifende Schlüsselkompetenzen (Wahlmodule)
Es können Module aus dem universitätsweiten Modulverzeichnis Schlüsselkompetenzen oder der Prüfungsordnung für Studienangebote der zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS) oder von der Prüfungskommission als gleichwertig anerkannte Module belegt werden, sofern diese mit den Studienzielen im Einklang stehen. Darüber entscheidet die Prüfungskommission.

3. Masterarbeit
Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

II. Studienschwerpunkt "Bioinformatik"

1. Zugangsvoraussetzungen
2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Bioinformatik" (wenigstens 24 C)

aa. Gruppe 1

Es muss das folgende Modul im Umfang von 12 C erfolgreich absolviert werden:

M.Inf.1202: Bioinformatik in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS)............. 3086

bb. Gruppe 2

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

M.Bio.310: Systembiologie (12 C, 14 SWS)... 3013
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS).... 3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS)................. 3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS)............................ 3095
M.Inf.1501: Data Mining in der Bioinformatik (6 C, 4 SWS)... 3137
M.Inf.1502: Diskrete Algorithmen und Modelle (6 C, 4 SWS)... 3138
M.Inf.1503: Seminar Bioinformatik (5 C, 2 SWS)... 3139
M.Inf.1504: Algorithmen der Bioinformatik II (6 C, 4 SWS).. 3140

cc. Gruppe 3

Ferner können gewählt werden:

M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS).... 3093
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS)............................ 3095
SK.Bio.305: Grundlagen der Biostatistik mit R (3 C, 2 SWS)... 3270

b. Themengebiet "Biologie" (wenigstens 18 C)

aa. Gruppe 1

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

B.Bio-NF.112: Biochemie (6 C, 4 SWS)... 2839
bb. Gruppe 2
Es können daneben nachfolgende Wahlmodule in diesem Themengebiet absolviert werden:

B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie (6 C, 4 SWS) .. 2840
B.Bio-NF.123: Tierphysiologie (6 C, 4 SWS) ... 2842
B.Bio-NF.125: Zell- und Molekularbiologie der Pflanze (6 C, 4 SWS) ... 2843
B.Bio-NF.126: Tier- und Pflanzenökologie (6 C, 3 SWS) ... 2844
B.Bio-NF.127: Evolution und Systematik der Pflanzen (6 C, 4 SWS) ... 2845
B.Bio-NF.128: Evolution und Systematik der Tiere (6 C, 5 SWS) ... 2846
B.Bio-NF.129: Genetik und mikrobielle Zellbiologie (6 C, 4 SWS) .. 2847

M.Bio-NF.141: Allgemeine und Angewandte Mikrobiologie (3 C, 3 SWS) .. 3006
M.Bio-NF.142: Genetik und eukaryotische Mikrobiologie (3 C, 3 SWS) .. 3007
M.Bio-NF.144: Zell- und Molekularbiologie von Pflanzen-Mikroben-Interaktionen (3 C, 3 SWS) 3008
M.Bio-NF.341: Entwicklungsbiologie von Invertebraten (3 C, 2 SWS) ... 3009
M.Bio-NF.344: Neurobiologie (3 C, 3 SWS) .. 3011

III. Studienschwerpunkt "Digital Humanities"

1. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C in den Themengebieten Archäologie und/oder Textwissenschaften.

2. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Digital Humanities" (30 C)
Es müssen wenigstens vier der folgenden Module im Umfang von insgesamt wenigstens 30 C erfolgreich absolviert werden:
M.Inf.1901: Einführung in die Digital Humanities (6 C, 4 SWS) .. 3156
M.Inf.1902: Werkzeuge und Methoden der Digital Humanities (6 C, 4 SWS) 3157
M.Inf.1903: Theorien der Digital Humanities (6 C, 4 SWS) ... 3158
M.Inf.1904: From written manuscripts to big humanities data (6 C, 4 SWS) 3159
M.Inf.1909: Digital Humanities in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS)......3161

b. Themengebiet "Humanities and Social Sciences" (wenigstens 18 C)
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden:

M.Inf.1911: Klassische Archäologie (für Informatiker) - Einführung (9 C, 6 SWS).......................3162
M.Inf.1912: Klassische Archäologie (für Informatiker) - Vertiefung (9 C, 6 SWS).....................3164
M.Inf.1921: Historische und systematische Aspekte von Sprache und Literatur (6 C, 4 SWS)...3166
M.Inf.1922: Theorie und Methodologie der Textwissenschaften I (6 C, 4 SWS)...........................3167
M.Inf.1923: Theorie und Methodologie der Textwissenschaften II (6 C, 4 SWS).........................3168

IV. Studienschwerpunkt "Informatik der Ökosysteme"

1. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Ökoinformatik und mindestens 15 C im Themengebiet Forstwissenschaften/Waldökologie.

2. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Ökoinformatik" (wenigstens 18 C)

aa. Gruppe 1
Es muss eins der folgenden Module im Umfang von 6 C erfolgreich absolviert werden:

M.Inf.1204: Informatik der Ökosysteme in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS)..3088
M.Inf.1260: Informatik der Ökosysteme in einer kleinen forschungsbezogenen Projektarbeit (6 C, 0,5 SWS)..3120

bb. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

M.Forst.1413: Ökosystemtheorie - Analyse, Simulationstechniken (6 C, 4 SWS).........................3018
M.Forst.1423: Struktur- und Funktionsmodelle auf ökophysiologischer Basis (6 C, 4 SWS)..3022

cc. Gruppe 3
Ferner können gewählt werden:
Inhaltsverzeichnis

M.Forst.1421: Prozesse in der Ökologie (6 C, 4 SWS) .. 3019
M.Forst.1422: Fernerkundung und GIS (6 C, 4 SWS) .. 3021
M.Forst.1431: Projekt: Waldökosystemanalyse und Informationsverarbeitung (12 C,
2 SWS) .. 3024
M.Forst.1659: Datenanalyse für Fortgeschrittene (6 C, 4 SWS) .. 3025
M.Forst.1685: Ökologische Modellierung (6 C, 4 SWS) ... 3028
M.Forst.1689: Ökologische Modellierung mit C++ (6 C, 4 SWS) ... 3030
M.Forst.1692: Modellanalyse und Modellanwendung (6 C, 4 SWS) 3031

b. Themengebiet "Forstwissenschaften/Waldökologie" (wenigstens 12 C)

aa. Gruppe 1
Es muss das folgende Modul im Umfang von 9 C erfolgreich absolviert werden:

B.Forst.1110: Waldbau (9 C, 6 SWS) ... 2853

bb. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 3 C
erfolgreich absolviert werden:

B.Forst.1104: Forstzoologie, Wildbiologie und Jagdkunde (6 C, 5 SWS)2850
B.Forst.1106: Bioklimatologie (6 C, 4 SWS) ... 2851
B.Forst.1115: Waldbau - Übungen (3 C, 4 SWS) ... 2855
B.Forst.1117: Forstliche Betriebswirtschaftslehre (6 C, 5 SWS) .. 2856
B.Forst.1118: Waldinventur (6 C, 5 SWS) .. 2857
B.Forst.1122: Waldwachstum und Forsteinrichtung (6 C, 4 SWS) ... 2859
M.Forst.1411: Modellierung von Populationsdynamik und Biodiversität (6 C, 4 SWS) 3017
M.Forst.1665: Grundlagen der Populationsgenetik (6 C, 4 SWS) .. 3026
M.Forst.1678: Variationsmessung in der Biologie und speziell der Genetik (6 C, 4 SWS)..... 3027

V. Studienschwerpunkt "Medizinische Informatik"

1. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im
Themengebiet Medizinische Informatik und mindestens 15 C im Themengebiet Gesundheitssystem.

2. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Medizinische Informatik" (wenigstens 24 C)

aa. Gruppe 1
Es müssen die folgenden Module im Umfang von insgesamt 18 C absolviert werden:

M.Inf.1301: Marktanalyse (8 C, 2 SWS) ... 3126
M.Inf.1302: Aktuelle Themen der Medizinischen Informatik (5 C, 3 SWS) 3127
M.Inf.1305: Journal Club (5 C, 3 SWS) ... 3130

bb. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

M.Inf.1205: Medizinische Informatik in einer kleinen forschungsbezogenen Projektarbeit (6 C, 0,5 SWS) ... 3089
M.Inf.1303: Bildgebung und Visualisierung (6 C, 4 SWS) .. 3128
M.Inf.1304: E-Health (6 C, 4 SWS) ... 3129

b. Themengebiet "Gesundheitssystem" (wenigstens 24 C)
Es müssen folgende Module im Umfang von insgesamt 24 C erfolgreich absolviert werden:

M.Inf.1351: Arbeitsmethoden in der Gesundheitsforschung (5 C, 3 SWS) 3131
M.Inf.1355: IT-Managementtechniken im Gesundheitswesen (10 C, 8 SWS) 3132
M.Inf.1356: Infrastrukturen für die klinische Forschung (9 C, 8 SWS) 3134

VI. Studienschwerpunkt "Neuroinformatik (Computational Neuroscience)"

1. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Neuroinformatik und mindestens 15 C im Themengebiet Mathematik/Naturwissenschaften.

2. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Neuroinformatik" (wenigstens 18 C)
aa. Gruppe 1

Es müssen die folgenden Module im Umfang von insgesamt 7 C erfolgreich absolviert werden:

- B.Phy.5651: Advanced Computational Neuroscience I (3 C, 2 SWS) .. 3004
- M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik (4 C, 2 SWS) 3173

bb. Gruppe 2

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 11 C erfolgreich absolviert werden; es kann nur eines der Module M.Inf.1203 und M.Inf.1209 absolviert werden:

- B.Phy.5652: Advanced Computational Neuroscience II (3 C, 2 SWS) 3005
- M.Bio.310: Systembiologie (12 C, 14 SWS) .. 3013
- M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS) .. 3048
- M.Inf.1185: Sensor Data Fusion (5 C, 3 SWS) ... 3079
- M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics (5 C, 2 SWS) 3081
- M.Inf.1187: Simulation-based Data Fusion and Analysis (5 C, 3 SWS) 3082
- M.Inf.1203: Neuroinformatik in einer kleinen forschungsbezogenen Projektarbeit (6 C, 0,5 SWS) ... 3087
- M.Inf.1209: Neuroinformatik in einer forschungsbezogenen Projektarbeit (10 C, 1 SWS) 3092
- M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS) 3093
- M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
- M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
- M.Inf.1403: Neurorehabilitation Technologies: Introduction and Applications (5 C, 3 SWS) ... 3136
- M.Inf.1501: Data Mining in der Bioinformatik (6 C, 4 SWS) .. 3137
- M.Inf.1502: Diskrete Algorithmen und Modelle (6 C, 4 SWS) .. 3138
- M.Inf.1503: Seminar Bioinformatik (5 C, 2 SWS) .. 3139
- M.Inf.1504: Algorithmen der Bioinformatik II (6 C, 4 SWS) .. 3140
- M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS) .. 3155
- SK.Bio.305: Grundlagen der Biostatistik mit R (3 C, 2 SWS) ... 3270

b. Themengebiet "Mathematik/Naturwissenschaften" (wenigstens 18 C)

aa. Gruppe 1

Es müssen wenigstens 2 der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:
B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS) 2916
B.Mat.3333: Advances in numerics of partial differential equations (9 C, 6 SWS) 2952
B.Phy.5601: Theoretical and Computational Neuroscience I (3 C, 2 SWS) 2998
B.Phy.5602: Theoretical and Computational Neuroscience II (3 C, 2 SWS) 2999
B.Phy.5638: Artificial Intelligence Robotics: An Introduction (3 C, 2 SWS) 3002

bb. Gruppe 2

Ferner können gewählt werden:

B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS) .. 2882
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS) .. 2884
B.Mat.2200: Moderne Geometrie (9 C, 6 SWS) ... 2886
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS) 2896
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS) 2898
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS) ... 2900
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS) .. 2902
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS) .. 2904
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS) 2906
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS) .. 2908
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS) 2910
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS) 2930
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS) 2932
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS) .. 2934
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS) .. 2936
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS) .. 2940
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS) 2942
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS) .. 2944
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS) 2946
B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie" (3 C, 2 SWS) 2968
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie" (3 C, 2 SWS) 2970
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie" (3 C, 2 SWS) 2972
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie" (3 C, 2 SWS) 2974
VII. Studienschwerpunkt "Recht der Informatik"

1. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Recht der Informatik und mindestens 15 C im Themengebiet Rechtswissenschaftliche Grundlagen.

2. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

 a. Themengebiet "Recht der Informatik" (wenigstens 18 C)

 aa. Gruppe 1
Es muss wenigstens eins der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

 S.RW.1132: Wettbewerbsrecht (UWG) (6 C, 2 SWS)...3240
 S.RW.1137: Immaterialgüterrecht II (Gewerbliche Schutzrechte) (6 C, 2 SWS)................3243
 S.RW.1231: Datenschutzrecht (6 C, 2 SWS)...3255
bb. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

M.Inf.1206: Recht der Informatik in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS) .. 3090
S.RW.2220: Seminare Wettbewerbsrecht und Immaterialgüterrecht (12 C, 3 SWS) .. 3265
S.RW.2410: Seminare E-Commerce-Recht und Regulierung (12 C, 3 SWS) .. 3267

c. Gruppe 3
Ferner können gewählt werden:

S.RW.1136: Wirtschaftsrecht der Medien (6 C, 2 SWS) .. 3241
S.RW.1138: Presserecht (6 C, 2 SWS) .. 3245
S.RW.1139: Immaterialgüterrecht I (Urheberrecht) (6 C, 2 SWS) .. 3247
S.RW.1140: Jugendmedienschutzrecht (6 C, 2 SWS) ... 3249

b. Themengebiet "Rechtswissenschaftliche Grundlagen" (wenigstens 16 C)

aa. Gruppe 1
Es müssen wenigstens eins der folgenden Module im Umfang von insgesamt wenigstens 4 C erfolgreich absolviert werden:

S.RW.0113K: Grundkurs II im Bürgerlichen Recht (9 C, 8 SWS) .. 3227
S.RW.0115K: Grundkurs III im Bürgerlichen Recht (4 C, 2 SWS) ... 3229

bb. Gruppe 2
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

S.RW.0212K: Staatsrecht II (7 C, 6 SWS) ... 3231
S.RW.0311K: Strafrecht I (8 C, 7 SWS) ... 3233
S.RW.1131a: Grundzüge des Gesellschaftsrechts (Personengesellschaftsrecht) (6 C, 2 SWS) .. 3237
S.RW.1131b: Grundzüge des Kapitalgesellschaftsrechts (6 C, 2 SWS) 3239
S.RW.1223K: Verwaltungsrecht I (7 C, 6 SWS) ... 3251
S.RW.1229: Internationales und europäisches Wirtschaftsrecht (6 C, 2 SWS) 3253
VIII. Studienschwerpunkt "Wirtschaftsinformatik"

1. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Wirtschaftsinformatik und mindestens 15 C im Themengebiet Betriebswirtschaftslehre.

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Wirtschaftsinformatik" (wenigstens 24 C)

aa. Gruppe 1

Es muss das folgende Modul im Umfang von 12 C erfolgreich absolviert werden:

M.WIWI-WIN.0005: Seminar zur Wirtschaftsinformatik (12 C, 2 SWS) ... 3218

bb. Gruppe 2

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

M.WIWI-WIN.0001: Modeling and System Development (6 C, 2 SWS) ... 3211
M.WIWI-WIN.0002: Integrierte Anwendungssysteme (6 C, 2 SWS) .. 3213
M.WIWI-WIN.0003: Informationsmanagement (6 C, 4 SWS) ... 3215

b. Themengebiet "Betriebswirtschaftslehre" (wenigstens 24 C)

aa. Gruppe 1

Es muss das folgende Module im Umfang von 18 C erfolgreich absolviert werden:

M.WIWI-BWL.0059: Projektstudium (18 C, 4 SWS) ... 3187

bb. Gruppe 2

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

M.WIWI-BWL.0001: Finanzwirtschaft (6 C, 4 SWS) ... 3174
IX. Studienschwerpunkt "Wissenschaftliches Rechnen"

1. Zugangsvoraussetzungen

2. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die beiden nachfolgenden Themengebiete erfolgreich absolviert werden.

a. Themengebiet "Wissenschaftliches Rechnen" (wenigstens 21 C)

Es sind wenigstens zwei der folgenden Module im Umfang von insgesamt mindestens 21 C erfolgreich zu absolvieren; es kann nur eines der Module M.Inf.1200 und M.Inf.1208 absolviert werden:

B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS) .. 2870
B.Mat.2300: Numerische Analysis (9 C, 6 SWS) ... 2888
B.Mat.2310: Optimierung (9 C, 6 SWS) .. 2890
B.Mat.2400: Angewandte Statistik (9 C, 6 SWS) ... 2892
B.Mat.3031: Wissenschaftliches Rechnen (6 C, 4 SWS) ... 2894
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS) .. 2900
B.Mat.3131: Introduction to inverse problems (9 C, 6 SWS) .. 2912
B.Mat.3132: Introduction to approximation methods (9 C, 6 SWS) .. 2914
B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS) 2916
B.Mat.3134: Introduction to optimisation (9 C, 6 SWS) ... 2918
B.Mat.3138: Introduction to image and geometry processing (9 C, 6 SWS) 2920
B.Mat.3141: Introduction to applied and mathematical stochastics (9 C, 6 SWS) 2922
B.Mat.3142: Introduction to stochastic processes (9 C, 6 SWS) .. 2924
B.Mat.3143: Introduction to stochastic methods of economathematics (9 C, 6 SWS) 2926
b. Themengebiet "Mathematik/Naturwissenschaften" (wenigstens 21 C)

Es müssen wenigstens drei der folgenden Module im Umfang von insgesamt mindestens 21 C erfolgreich absolviert werden:

B.Mat.2100: Partielle Differentialgleichungen (9 C, 6 SWS)............................ 2882
Inhaltsverzeichnis

B.Mat.2110: Funktionalanalysis (9 C, 6 SWS) ... 2884
B.Mat.2200: Moderne Geometrie (9 C, 6 SWS) ... 2886
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS) 2896
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS) 2898
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS) 2900
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS) 2902
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS) .. 2904
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS) 2906
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS) 2908
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS) 2910
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS) 2930
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS) 2932
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS) 2934
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS) ... 2936
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS) ... 2940
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS) 2942
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS) .. 2944
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS) 2946
B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie" (3 C, 2 SWS) 2968
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie" (3 C, 2 SWS) 2970
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie" (3 C, 2 SWS) 2972
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie" (3 C, 2 SWS) 2974
B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen" (3 C, 2 SWS) 2976
B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme" (3 C, 2 SWS) ... 2978
B.Ph.1201: Analytische Mechanik (8 C, 6 SWS) .. 2988
B.Ph.1203: Quantenmechanik I (8 C, 6 SWS) ... 2989
B.Ph.1204: Statistische Physik (8 C, 6 SWS) ... 2990
B.Ph.1511: Einführung in die Kern- und Teilchenphysik (8 C, 6 SWS) 2991
B.Ph.1521: Einführung in die Festkörperphysik (8 C, 6 SWS) .. 2992
B.Ph.1531: Einführung in die Materialphysik (6 C, 5 SWS) ... 2993
X. Studienschwerpunkt "Anwendungsorientierte Systementwicklung mit Vertiefung"

Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Vertiefungsrichtungen

Es muss eine Vertiefungsrichtung im Umfang von insgesamt wenigstens 30 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden:

a. Bioinformatik

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Bioinformatik und mindestens 13 C im Themengebiet Biologie, darunter mindestens 10 C in der Molekularbiologie.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Bioinformatik" (wenigstens 18 C)

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden:

M.Bio.310: Systembiologie (12 C, 14 SWS) ... 3013
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS) ...3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
ii. Themengebiet "Biologie" (wenigstens 12 C)

Es müssen insgesamt wenigstens 12 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden:

A. Gruppe 1

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

B. Bio-NF.112: Biochemie (6 C, 4 SWS) .. 2839
B. Bio-NF.118: Mikrobiologie (6 C, 4 SWS) ... 2841

B. Gruppe 2

Ferner können folgende Module absolviert werden:

B. Bio-NF.112: Biochemie (6 C, 4 SWS) .. 2839
B. Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie (6 C, 4 SWS) 2840
B. Bio-NF.118: Mikrobiologie (6 C, 4 SWS) ... 2841
B. Bio-NF.123: Tierphysiologie (6 C, 4 SWS) ... 2842
B. Bio-NF.125: Zell- und Molekularbiologie der Pflanze (6 C, 4 SWS) 2843
B. Bio-NF.126: Tier- und Pflanzenökologie (6 C, 3 SWS) 2844
B. Bio-NF.127: Evolution und Systematik der Pflanzen (6 C, 4 SWS)...... 2845
B. Bio-NF.128: Evolution und Systematik der Tiere (6 C, 5 SWS) 2846
B. Bio-NF.129: Genetik und mikrobielle Zellbiologie (6 C, 4 SWS) 2847
M. Bio-NF.141: Allgemeine und Angewandte Mikrobiologie (3 C, 3 SWS) 3006
M. Bio-NF.142: Genetik und eukaryotische Mikrobiologie (3 C, 3 SWS) 3007
M. Bio-NF.144: Zell- und Molekularbiologie von Pflanzen-Mikroben-Interaktionen (3 C, 3 SWS) 3008
M. Bio-NF.341: Entwicklungsbiologie von Invertebraten (3 C, 2 SWS) 3009
M. Bio-NF.344: Neurobiologie (3 C, 3 SWS) ... 3011

b. Digital Humanities
aa. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C in den Themengebieten Archäologie und/oder Textwissenschaften.

bb. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Digital Humanities" (wenigstens 18 C)
Es müssen wenigstens drei der folgenden Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden:

M.Inf.1901: Einführung in die Digital Humanities (6 C, 4 SWS).. 3156
M.Inf.1902: Werkzeuge und Methoden der Digital Humanities (6 C, 4 SWS)................... 3157
M.Inf.1903: Theorien der Digital Humanities (6 C, 4 SWS)... 3158
M.Inf.1904: From written manuscripts to big humanities data (6 C, 4 SWS)..................... 3159

ii. Themengebiet "Humanities and Social Sciences (wenigstens 12 C)
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

M.Inf.1911: Klassische Archäologie (für Informatiker) - Einführung (9 C, 6 SWS).............3162
M.Inf.1912: Klassische Archäologie (für Informatiker) - Vertiefung (9 C, 6 SWS)..............3164
M.Inf.1921: Historische und systematische Aspekte von Sprache und Literatur (6 C, 4 SWS)... 3166
M.Inf.1922: Theorie und Methodologie der Textwissenschaften I (6 C, 4 SWS).............. 3167
M.Inf.1923: Theorie und Methodologie der Textwissenschaften II (6 C, 4 SWS)............. 3168

c. Geoinformatik

aa. Zugangsvoraussetzungen

bb. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Geoinformatik" (wenigstens 19 C)
Inhaltsverzeichnis

Es müssen die folgenden Module im Umfang von insgesamt 19 C erfolgreich absolviert werden:

M.Geg.05: Geoinformationssysteme und Umweltmonitoring (5 C, 3 SWS) 3039
M.Geg.12: Projektarbeit: GIS-basierte Ressourcenbewertung und -nutzungsplanung (6 C, 2 SWS) ... 3043
M.Geg.903: Projektpraktikum Geoinformatik (8 C) ... 3044

ii. Themengebiet "Geographie" (wenigstens 11 C)

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt mindestens 11 C erfolgreich absolviert werden:

M.Geg.02: Ressourcennutzungsprobleme (6 C, 4 SWS) ... 3033
M.Geg.03: Globaler Umweltwandel / Landnutzungsänderung (6 C, 4 SWS) 3035
M.Geg.04: Globaler soziokultureller und ökonomischer Wandel (6 C, 4 SWS) 3037
M.Geg.06: Landschaftsökologie und Landschaftsentwicklung (5 C, 3 SWS) 3040
M.Geg.07: Ressourcenwahrnehmung, -bewertung und -management (5 C, 3 SWS) 3041

d. Informatik der Ökosysteme

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Informatik der Ökosysteme und mindestens 15 C im Themengebiet Forstwissenschaften/Waldökologie.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Informatik der Ökosysteme" (wenigstens 18 C)

Es müssen Module im Umfang von insgesamt wenigstens 18 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1

Es muss eines der folgenden Module im Umfang von 6 C erfolgreich absolviert werden:

M.Forst.1413: Ökosystemtheorie - Analyse, Simulationstechniken (6 C, 4 SWS) 3018
M.Forst.1423: Struktur- und Funktionsmodelle auf ökophysiologischer Basis (6 C, 4 SWS) ... 3022

B. Gruppe 2
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

<table>
<thead>
<tr>
<th>Module</th>
<th>Kurzbeschreibung</th>
<th>ECTS</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Forst.1413</td>
<td>Ökosystemtheorie - Analyse, Simulationstechniken</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1421</td>
<td>Prozesse in der Ökologie</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1422</td>
<td>Fernerkundung und GIS</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1423</td>
<td>Struktur- und Funktionsmodelle auf ökophysiologischer Basis</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1431</td>
<td>Projekt: Waldökosystemanalyse und Informationsverarbeitung</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>M.Forst.1659</td>
<td>Datenanalyse für Fortgeschrittene</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1685</td>
<td>Ökologische Modellierung</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1689</td>
<td>Ökologische Modellierung mit C++</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1692</td>
<td>Modellanalyse und Modellanwendung</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

ii. Themengebiet "Forstwissenschaften/Waldökologie" (wenigstens 12 C)

Es müssen Module im Umfang von insgesamt wenigstens 12 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1

Es muss folgendes Modul im Umfang von 9 C erfolgreich absolviert werden:

<table>
<thead>
<tr>
<th>Module</th>
<th>Kurzbeschreibung</th>
<th>ECTS</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Forst.1110</td>
<td>Waldbau</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

B. Gruppe 2

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 3 C erfolgreich absolviert werden:

<table>
<thead>
<tr>
<th>Module</th>
<th>Kurzbeschreibung</th>
<th>ECTS</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Forst.1104</td>
<td>Forstzoologie, Wildbiologie und Jagdkunde</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>B.Forst.1106</td>
<td>Bioklimatologie</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>B.Forst.1115</td>
<td>Waldbau - Übungen</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>B.Forst.1117</td>
<td>Forstliche Betriebswirtschaftslehre</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>B.Forst.1118</td>
<td>Waldinventur</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>B.Forst.1122</td>
<td>Waldwachstum und Forsteinrichtung</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1411</td>
<td>Modellierung von Populationsdynamik und Biodiversität</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1665</td>
<td>Grundlagen der Populationsgenetik</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M.Forst.1678</td>
<td>Variationsmessung in der Biologie und speziell der Genetik</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
e. Medizinische Informatik

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Medizinische Informatik und mindestens 15 C im Themengebiet Gesundheitssystem.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Medizinische Informatik" (wenigstens 18 C)

Es müssen wenigstens drei der folgenden Module im Umfang von insgesamt mindestens 18 C erfolgreich absolviert werden:

- M.Inf.1301: Marktanalyse (8 C, 2 SWS) ... 3126
- M.Inf.1302: Aktuelle Themen der Medizinischen Informatik (5 C, 3 SWS) 3127
- M.Inf.1303: Bildgebung und Visualisierung (6 C, 4 SWS) 3128
- M.Inf.1304: E-Health (6 C, 4 SWS) ... 3129
- M.Inf.1305: Journal Club (5 C, 3 SWS) ... 3130

ii. Themengebiet "Gesundheitssystem" (wenigstens 9 C)

Es muss wenigstens eins der folgenden Module im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:

- M.Inf.1351: Arbeitsmethoden in der Gesundheitsforschung (5 C, 3 SWS) 3131
- M.Inf.1355: IT-Managementtechniken im Gesundheitswesen (10 C, 8 SWS) 3132
- M.Inf.1356: Infrastrukturen für die klinische Forschung (9 C, 8 SWS) 3134

f. Neuroinformatik

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Neuroinformatik und mindestens 15 C im Themengebiet Mathematik/Naturwissenschaften.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.
i. Themengebiet "Neuroinformatik" (wenigstens 11 C)
Es müssen Module im Umfang von insgesamt wenigstens 11 C nach Maßgabe der
nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1
Es müssen die folgenden Module im Umfang von insgesamt 7 C erfolgreich absolviert
werden:

B.Phy.5651: Advanced Computational Neuroscience I (3 C, 2 SWS).......................... 3004
M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik (4 C, 2 SWS).... 3173

B. Gruppe 2
Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 4
C erfolgreich absolviert werden:

B.Phy.5652: Advanced Computational Neuroscience II (3 C, 2 SWS)......................... 3005
M.Bio.310: Systembiologie (12 C, 14 SWS) ... 3013
M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS)... 3048
M.Inf.1185: Sensor Data Fusion (5 C, 3 SWS).. 3079
M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics (5 C, 2 SWS)............. 3081
M.Inf.1187: Simulation-based Data Fusion and Analysis (5 C, 3 SWS)................. 3082
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C,
2 SWS).. 3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS)..... 3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS).............. 3095
M.Inf.1403: Neurorehabilitation Technologies: Introduction and Applications (5 C,
3 SWS).. 3136
M.Inf.1501: Data Mining in der Bioinformatik (6 C, 4 SWS).. 3137
M.Inf.1502: Diskrete Algorithmen und Modelle (6 C, 4 SWS)................................. 3138
M.Inf.1503: Seminar Bioinformatik (5 C, 2 SWS)... 3139
M.Inf.1504: Algorithmen der Bioinformatik II (6 C, 4 SWS)...................................... 3140
M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS)... 3155
SK.Bio.305: Grundlagen der Biostatistik mit R (3 C, 2 SWS)................................. 3270

ii. Themengebiet "Mathematik und Naturwissenschaften" (wenigstens 9
C)
Es müssen Module im Umfang von insgesamt wenigstens 9 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1

Es müssen wenigstens zwei der folgenden Module im Umfang von wenigstens mindestens 6 C erfolgreich absolviert werden:

B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS) 2916
B.Mat.3333: Advances in numerics of partial differential equations (9 C, 6 SWS) 2952
B.Phy.5601: Theoretical and Computational Neuroscience I (3 C, 2 SWS)............... 2998
B.Phy.5602: Theoretical and Computational Neuroscience II (3 C, 2 SWS) 2999
B.Phy.5638: Artificial Intelligence Robotics: An Introduction (3 C, 2 SWS) 3002

B. Gruppe 2

Ferner können absolviert werden:

B.Mat.2100: Partielle Differentialgleichungen (9 C, 6 SWS) .. 2882
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS) ... 2884
B.Mat.2200: Moderne Geometrie (9 C, 6 SWS) ... 2886
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS).............................. 2896
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS) 2898
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS)............................... 2900
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS) 2902
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS) 2904
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS) 2906
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS) 2908
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS)... 2910
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS) 2930
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS) 2932
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS) 2934
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS) ... 2936
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS) .. 2940
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS) 2942
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS) 2944
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS) 2946
g. Recht der Informatik

aa. Zugangsvoraussetzungen
Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Recht der Informatik und mindestens 15 C im Themengebiet Rechtswissenschaftliche Grundlagen.

bb. Wahlpflichtmodule
Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Recht der Informatik" (wenigstens 12 C)
Es müssen Module im Umfang von insgesamt wenigstens 12 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.
A. Gruppe 1
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

S.RW.1132: Wettbewerbsrecht (UWG) (6 C, 2 SWS).. 3240
S.RW.1137: Immaterialgüterrecht II (Gewerbliche Schutzrechte) (6 C, 2 SWS)........ 3243
S.RW.1231: Datenschutzrecht (6 C, 2 SWS)... 3255
S.RW.1233: Telekommunikationsrecht (6 C, 2 SWS).. 3259

B. Gruppe 2
Ferner können gewählt werden:

S.RW.1136: Wirtschaftsrecht der Medien (6 C, 2 SWS).. 3241
S.RW.1138: Presserecht (6 C, 2 SWS).. 3245
S.RW.1139: Immaterialgüterrecht I (Urheberrecht) (6 C, 2 SWS)............................. 3247
S.RW.1140: Jugendmedienschutzrecht (6 C, 2 SWS)... 3249
S.RW.2220: Seminare Wettbewerbsrecht und Immaterialgüterrecht (12 C, 3 SWS) ... 3265
S.RW.2410: Seminare E-Commerce-Recht und Regulierung (12 C, 3 SWS) 3267

ii. Themengebiet "Rechtswissenschaftliche Grundlagen" (wenigstens 10 C)
Es müssen Module im Umfang von insgesamt wenigstens 10 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1
Es muss wenigstens eins der folgenden Module im Umfang von insgesamt wenigstens 4 C erfolgreich absolviert werden:

S.RW.0113K: Grundkurs II im Bürgerlichen Recht (9 C, 8 SWS)................................ 3227
S.RW.0115K: Grundkurs III im Bürgerlichen Recht (4 C, 2 SWS)............................... 3229

B. Gruppe 2
Es muss wenigstens eins der folgenden Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden:

S.RW.0212K: Staatsrecht II (7 C, 6 SWS)... 3231
S.RW.0311K: Strafrecht I (8 C, 7 SWS)... 3233
S.RW.1130: Handelsrecht (6 C, 2 SWS).. 3235
h. Wirtschaftsinformatik

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 30 C, davon mindestens 15 C im Themengebiet Wirtschaftsinformatik und mindestens 15 C im Themengebiet Betriebswirtschaftslehre.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Wirtschaftsinformatik" (wenigstens 18 C)

Es müssen Module im Umfang von insgesamt wenigstens 18 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

A. Gruppe 1

Es muss das folgende Modul im Umfang von 12 C erfolgreich absolviert werden:

M.WIWI-WIN.0005: Seminar zur Wirtschaftsinformatik (12 C, 2 SWS).................................3218

B. Gruppe 2

Es muss eines der folgenden Module im Umfang von 6 C erfolgreich absolviert werden:

M.WIWI-WIN.0001: Modeling and System Development (6 C, 2 SWS)..............................3211
M.WIWI-WIN.0002: Integrierte Anwendungssysteme (6 C, 2 SWS).................................3213
M.WIWI-WIN.0003: Informationsmanagement (6 C, 4 SWS)..3215

ii. Themengebiet "Betriebswirtschaftslehre" (wenigstens 12 C)

Es müssen zwei der folgenden Module im Umfang von insgesamt 12 C erfolgreich absolviert werden:
i. Wissenschaftliches Rechnen

aa. Zugangsvoraussetzungen

Einschlägige Vorkenntnisse im Umfang von mindestens 24 C, davon mindestens 12 C im Themengebiet Wissenschaftliches Rechnen und mindestens 12 C im Themengebiet Mathematik/Naturwissenschaften.

bb. Wahlpflichtmodule

Es müssen Module im Umfang von insgesamt mindestens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden. Es müssen die zwei nachfolgenden Themengebiete erfolgreich absolviert werden.

i. Themengebiet "Wissenschaftliches Rechnen" (wenigstens 15 C)

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 15 C erfolgreich absolviert werden:

B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)....................... 2870
B.Mat.2300: Numerische Analysis (9 C, 6 SWS)... 2888
B.Mat.2310: Optimierung (9 C, 6 SWS)... 2890
B.Mat.2400: Angewandte Statistik (9 C, 6 SWS).. 2892
B.Mat.3031: Wissenschaftliches Rechnen (6 C, 4 SWS)... 2894
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS)................................. 2900
B.Mat.3131: Introduction to inverse problems (9 C, 6 SWS)... 2912
B.Mat.3132: Introduction to approximation methods (9 C, 6 SWS)............................. 2914
B.Mat.3133: Introduction to numerics of partial differential equations (9 C, 6 SWS).... 2916
B.Mat.3134: Introduction to optimisation (9 C, 6 SWS)... 2918
B.Mat.3138: Introduction to image and geometry processing (9 C, 6 SWS).................... 2920
B.Mat.3141: Introduction to applied and mathematical stochastics (9 C, 6 SWS)......... 2922
B.Mat.3142: Introduction to stochastic processes (9 C, 6 SWS)..................................... 2924
B.Mat.3143: Introduction to stochastic methods of economathematics (9 C, 6 SWS).... 2926
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Mat.3144</td>
<td>Introduction to mathematical statistics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3313</td>
<td>Advances in differential geometry (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3315</td>
<td>Advances in mathematical methods in physics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3331</td>
<td>Advances in inverse problems (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3332</td>
<td>Advances in approximation methods (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3333</td>
<td>Advances in numerics of partial differential equations (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3334</td>
<td>Advances in optimisation (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3338</td>
<td>Advances in image and geometry processing (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3339</td>
<td>Advances in scientific computing / applied mathematics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3341</td>
<td>Advances in applied and mathematical stochastics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3342</td>
<td>Advances in stochastic processes (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3343</td>
<td>Advances in stochastic methods of economathematics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3344</td>
<td>Advances in mathematical statistics (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3413</td>
<td>Seminar im Zyklus "Differenzialgeometrie" (3 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3432</td>
<td>Seminar im Zyklus "Approximationsverfahren" (3 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3443</td>
<td>Seminar im Zyklus "Optimierung" (3 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3441</td>
<td>Seminar im Zyklus "Angewandte und Mathematische Stochastik" (3 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3443</td>
<td>Seminar im Zyklus "Stochastische Methoden der Wirtschaftsmathematik" (3 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Inf.1210</td>
<td>Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Inf.1211</td>
<td>Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Inf.1213</td>
<td>Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Mat.3130</td>
<td>Operations research (9 C, 6 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Mat.4639</td>
<td>Aspects of scientific computing / applied mathematics (6 C, 4 SWS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ii. Themengebiet "Mathematik und Naturwissenschaften" (wenigstens 15 C)

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 15 erfolgreich absolviert werden:

- B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)
- B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)
- B.Mat.2200: Moderne Geometrie (9 C, 6 SWS)
B.Mat.3111: Introduction to analytic number theory (9 C, 6 SWS) .. 2896
B.Mat.3112: Introduction to analysis of partial differential equations (9 C, 6 SWS) 2898
B.Mat.3113: Introduction to differential geometry (9 C, 6 SWS) 2900
B.Mat.3114: Introduction to algebraic topology (9 C, 6 SWS) ... 2902
B.Mat.3121: Introduction to algebraic geometry (9 C, 6 SWS) .. 2904
B.Mat.3122: Introduction to algebraic number theory (9 C, 6 SWS) 2906
B.Mat.3123: Introduction to algebraic structures (9 C, 6 SWS) ... 2908
B.Mat.3124: Introduction to groups, geometry and dynamical systems (9 C, 6 SWS) 2910
B.Mat.3311: Advances in analytic number theory (9 C, 6 SWS) 2930
B.Mat.3312: Advances in analysis of partial differential equations (9 C, 6 SWS) 2932
B.Mat.3313: Advances in differential geometry (9 C, 6 SWS) ... 2934
B.Mat.3314: Advances in algebraic topology (9 C, 6 SWS) .. 2936
B.Mat.3321: Advances in algebraic geometry (9 C, 6 SWS) ... 2940
B.Mat.3322: Advances in algebraic number theory (9 C, 6 SWS) 2942
B.Mat.3323: Advances in algebraic structures (9 C, 6 SWS) .. 2944
B.Mat.3324: Advances in groups, geometry and dynamical systems (9 C, 6 SWS) 2946
B.Mat.3413: Seminar im Zyklus "Differentialgeometrie" (3 C, 2 SWS) 2968
B.Mat.3414: Seminar im Zyklus "Algebraische Topologie" (3 C, 2 SWS) 2970
B.Mat.3421: Seminar im Zyklus "Algebraische Geometrie" (3 C, 2 SWS) 2972
B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie" (3 C, 2 SWS) 2974
B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen" (3 C, 2 SWS) 2976
B.Mat.3424: Seminar im Zyklus "Gruppen, Geometrie und Dynamische Systeme" (3 C, 2 SWS) .. 2978
B.Phy.1201: Analytische Mechanik (8 C, 6 SWS) ... 2988
B.Phy.1203: Quantenmechanik I (8 C, 6 SWS) ... 2989
B.Phy.1204: Statistische Physik (8 C, 6 SWS) ... 2990
B.Phy.1511: Einführung in die Kern- und Teilchenphysik (8 C, 6 SWS) 2991
B.Phy.1521: Einführung in die Festkörperphysik (8 C, 6 SWS) .. 2992
B.Phy.1531: Einführung in die Materialphysik (6 C, 5 SWS) ... 2993
B.Phy.1541: Einführung in die Geophysik (4 C, 3 SWS) ... 2994
B.Phy.1551: Introduction to Astrophysics (8 C, 6 SWS) ... 2995
Inhaltsverzeichnis

- B.Phy.1561: Introduction to Physics of Complex Systems (8 C, 6 SWS) ... 2996
- B.Phy.1571: Introduction to Biophysics (8 C, 6 SWS) .. 2997
- M.Inf.1215: Fehlerkorrigierende Codes (6 C, 4 SWS) ... 3096
- M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS) ... 3098
- M.Inf.1217: Kryptographie (6 C, 4 SWS) .. 3100
- M.Inf.1268: Informationstheorie (6 C, 4 SWS) .. 3123

2. Themengebiet "Systemorientierte Informatik"

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt mindestens 18 C erfolgreich absolviert werden:

- M.Inf.1201: Systementwicklung in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS) 3085
- M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS) 3093
- M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
- M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
- M.Inf.1215: Fehlerkorrigierende Codes (6 C, 4 SWS) ... 3096
- M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS) 3098
- M.Inf.1217: Kryptographie (6 C, 4 SWS) .. 3100
- M.Inf.1222: Spezialisierung Computernetzwerke (5 C, 2 SWS) .. 3102
- M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke (5 C, 2 SWS) 3103
- M.Inf.1226: Sicherheit und Kooperation in Drahtlosen Netzwerken (6 C, 4 SWS) 3104
- M.Inf.1227: Maschinelles Lernen in der IT-Sicherheit (6 C, 4 SWS) ... 3106
- M.Inf.1228: Seminar Aktuelle Forschung in der IT-Sicherheit (5 C, 2 SWS) 3107
- M.Inf.1229: Seminar Spezialisierung Telematik (5 C, 2 SWS) ... 3108
- M.Inf.1231: Spezialisierung Verteilte Systeme (6 C, 4 SWS) ... 3110
- M.Inf.1232: Parallel Computing (6 C, 4 SWS) ... 3112
- M.Inf.1242: Seminar Datenbanken (5 C, 2 SWS) ... 3114
- M.Inf.1243: Deduktive Datenbanken (6 C, 4 SWS) .. 3115
- M.Inf.1250: Seminar: Software Qualitätssicherung (5 C, 2 SWS) ... 3116
- M.Inf.1251: Seminar: Software Evolution (5 C, 2 SWS) .. 3118
- M.Inf.1261: Seminar Grafische Datenverarbeitung (5 C, 2 SWS) .. 3121
- M.Inf.1267: Quanteninformation und Quantenberechnung (6 C, 4 SWS) 3122
- M.Inf.1268: Informationstheorie (6 C, 4 SWS) .. 3123
Inhaltsverzeichnis

M.Inf.1269: Komplexitätstheorie (6 C, 4 SWS) ... 3124
M.Inf.1281: NOSQL Databases (6 C, 4 SWS) .. 3125
M.Inf.1502: Diskrete Algorithmen und Modelle (6 C, 4 SWS) .. 3138
M.Inf.1800: Fortgeschrittenen Praktikum Computernetzwerke (6 C, 4 SWS) 3141
M.Inf.1802: Praktikum XML (6 C, 4 SWS) .. 3142
M.Inf.1803: Praktikum Softwaretechnik (6 C, 4 SWS) .. 3143
M.Inf.1804: Praktikum Software-Qualitätssicherung (6 C, 4 SWS) .. 3145
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme (6 C, 2 SWS) 3147
M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme (12 C, 4 SWS) 3148
M.Inf.1808: Practical Course on Parallel Computing (6 C, 4 SWS) .. 3149
M.Inf.1820: Practical Course on Wireless Sensor Networks (6 C, 4 SWS) 3153
M.Inf.1821: Praktikum IT-Sicherheit (6 C, 3 SWS) ... 3154
M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS) .. 3155

XI. Studienschwerpunkt "Anwendungsorientierte Systementwicklung"

Es müssen Module im Umfang von insgesamt mindestens 48 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Modulpakete

Es ist eines der folgenden fünf Modulpakete im Umfang von wenigstens 30 C erfolgreich zu absolvieren. Für das Modulpaket "Grundlagen der Informatik der Ökosysteme" sind folgende Zugangsvoraussetzungen zu erfüllen: Leistungen im Bereich Naturschutz und Raumbezogene Informationssysteme im Umfang von wenigstens 6 C.

a. Modulpaket "Grundlagen der Bioinformatik" (wenigstens 30 C)

Es müssen Module im Umfang von insgesamt wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Gruppe 1

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 16 C erfolgreich absolviert werden:

- M.Bio.310: Systembiologie (12 C, 14 SWS) ... 3013
- M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS).... 3093
- M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS).............. 3094
- M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
- M.Inf.1501: Data Mining in der Bioinformatik (6 C, 4 SWS) ... 3137
Inhaltsverzeichnis

M.Inf.1502: Diskrete Algorithmen und Modelle (6 C, 4 SWS) .. 3138
M.Inf.1503: Seminar Bioinformatik (5 C, 2 SWS) ... 3139
M.Inf.1504: Algorithmen der Bioinformatik II (6 C, 4 SWS) .. 3140
SK.Bio.305: Grundlagen der Biostatistik mit R (3 C, 2 SWS).. 3270

bb. Gruppe 2
Es müssen folgende Module im Umfang von insgesamt 12 C erfolgreich absolviert werden:
B.Bio-NF.126: Tier- und Pflanzenökologie (6 C, 3 SWS) ... 2844
B.Bio-NF.129: Genetik und mikrobielle Zellbiologie (6 C, 4 SWS) ... 2847

cc. Gruppe 3
Ferner kann gewählt werden:
B.Bio-NF.102: Ringvorlesung Biologie II (8 C, 6 SWS).. 2838

b. Modulpaket "Grundlagen der Wirtschaftsinformatik in englischer Sprache" (wenigstens 30 C)
Es müssen Module im Umfang von insgesamt wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Gruppe 1
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:
M.WIWI-BWL.0134: Panel Data Analysis in Marketing (6 C, 2 SWS) 3196
M.WIWI-BWL.0135: Digital Innovations and Design Thinking (6 C, 2 SWS) 3197
M.WIWI-BWL.0136: Digital Transformation (6 C, 2 SWS) .. 3199
M.WIWI-BWL.0137: Electronic Commerce Systems (6 C, 2 SWS) .. 3201
M.WIWI-WIN.0001: Modeling and System Development (6 C, 2 SWS) 3211
M.WIWI-WIN.0004: Crucial Topics in Information Management (12 C, 2 SWS) 3217
M.WIWI-WIN.0008: Change & Run IT (6 C, 4 SWS) ... 3220
M.WIWI-WIN.0009: Internet Economics (4 C, 2 SWS).. 3222
M.WIWI-WIN.0011: Entrepreneurship 1 - Theoretische Grundlagen (6 C, 2 SWS) 3224
M.WIWI-WIN.0019: Business Intelligence and Decision Support Systems (6 C, 3 SWS) 3226

bb. Gruppe 2
Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:
c. Modulpaket "Grundlagen der Neuroinformatik" (wenigstens 30 C)

Es müssen Module im Umfang von insgesamt wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Gruppe 1

Es müssen die folgenden Module im Umfang von insgesamt 10 C erfolgreich absolviert werden:

B.Phy.5605: Computational Neuroscience: Basics (3 C, 2 SWS) ... 3000
B.Phy.5614: Proseminar Computational Neuroscience (4 C, 2 SWS) 3001
B.Phy.5651: Advanced Computational Neuroscience I (3 C, 2 SWS) 3004

bb. Gruppe 2

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt mindestens 6 C erfolgreich absolviert werden:

B.Phy.5638: Artificial Intelligence Robotics: An Introduction (3 C, 2 SWS) 3002
M.Bio.310: Systembiologie (12 C, 14 SWS) ... 3013
M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS) ... 3048
M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS).... 3093
M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
cc. Gruppe 3
Es müssen folgende Module im Umfang von insgesamt 6 C erfolgreich absolviert werden:
SK.Bio-NF.7001: Neurobiology (3 C, 2 SWS) ... 3269
SK.Bio.356: Biologische Psychologie II (3 C, 2 SWS) .. 3272

dd. Gruppe 4
Ferner können gewählt werden:
B.Bio-NF.130: Kognitionspychologie (3 C, 2 SWS) ... 2848
B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik (5 C, 3 SWS) 2861
B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS) ... 2872
B.Mat.1200: Algebra (9 C, 6 SWS) .. 2874
B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS) .. 2876
B.Mat.1310: Methoden zur Numerischen Mathematik (4 C, 2 SWS) 2878
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS) 2880
B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS) .. 2882
B.Mat.2110: Funktionalanalysis (9 C, 6 SWS) .. 2884
B.Mat.2300: Numerische Analysis (9 C, 6 SWS) ... 2888
B.Mat.2310: Optimierung (9 C, 6 SWS) ... 2890
B.Mat.2400: Angewandte Statistik (9 C, 6 SWS) ... 2892
M.Inf.1215: Fehlerkorrigierende Codes (6 C, 4 SWS) ... 3096
M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS) 3098
M.Inf.1217: Kryptographie (6 C, 4 SWS) ... 3100
M.Inf.1268: Informationstheorie (6 C, 4 SWS) ... 3123
SK.Bio.355: Biologische Psychologie I (3 C, 2 SWS) .. 3271
d. Modulpaket "Grundlagen der Informatik der Ökosysteme" (wenigstens 30 C)

Es müssen Module im Umfang von insgesamt wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Gruppe 1

Es muss das folgende Module im Umfang von 6 C erfolgreich absolviert werden:

B.Forst.1101: Grundlagen der Forstbotanik (6 C, 4 SWS).......................... 2849

bb. Gruppe 2

Es müssen mindestens drei der folgenden Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden:

M.Forst.1422: Fernerkundung und GIS (6 C, 4 SWS).......................... 3021
M.Forst.1424: Computergestützte Datenanalyse (6 C, 4 SWS).................. 3023
M.Forst.1685: Ökologische Modellierung (6 C, 4 SWS).......................... 3028
M.Forst.1689: Ökologische Modellierung mit C++ (6 C, 4 SWS)............... 3030
M.Forst.1692: Modellanalyse und Modellanwendung (6 C, 4 SWS)........... 3031

cc. Gruppe 3

Ferner können gewählt werden:

B.Forst.1108: Bodenkunde (6 C, 4 SWS).. 2852
B.Forst.1114: Forstgenetik (6 C, 4 SWS).. 2854

e. Modulpaket "Spezielle Anwendungsbereiche der Informatik in englischer Sprache" (wenigstens 30 C)

Es müssen Module im Umfang von insgesamt wenigstens 30 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa. Gruppe 1

Es muss wenigstens eines der folgenden Module im Umfang von wenigstens 5 C erfolgreich absolviert werden:

M.Inf.1112: Effiziente Algorithmen (5 C, 3 SWS)................................. 3048
M.Inf.1113: Vertiefung Theoretische Informatik (5 C, 3 SWS)................. 3049
M.Inf.1120: Mobilkommunikation (5 C, 3 SWS)................................ 3050
M.Inf.1121: Vertiefung Mobilkommunikation (5 C, 3 SWS)................... 3052
M.Inf.1123: Weiterführung Computernetzwerke (5 C, 2 SWS).................. 3055
M.Inf.1127: Einführung in die IT-Sicherheit (5 C, 4 SWS) .. 3057
M.Inf.1129: Big Data Methoden in Sozialen Netzwerken (5 C, 2 SWS) 3059
M.Inf.1130: Software-definierte Netzwerke (SDN) (5 C, 2 SWS) ... 3060
M.Inf.1141: Semistrukturierte Daten und XML (6 C, 4 SWS) ... 3061
M.Inf.1142: Semantic Web (6 C, 4 SWS) ... 3062
M.Inf.1150: Ausgewählte Aspekte der Softwaretechnik (5 C, 3 SWS) 3063
M.Inf.1151: Vertiefung Softwaretechnik: Data Science und Big Data Analytics (5 C,
3 SWS) ... 3065
M.Inf.1152: Vertiefung Softwaretechnik: Qualitätssicherung (5 C, 3 SWS) 3066
M.Inf.1153: Vertiefung Softwaretechnik: Requirements Engineering (5 C, 3 SWS) 3067
M.Inf.1154: Vertiefung Softwaretechnik: Software Evolution (5 C, 3 SWS) 3069
M.Inf.1161: Bildanalyse und Bildverstehen (6 C, 4 SWS) .. 3072
M.Inf.1171: Service-Oriented Infrastructures (5 C, 3 SWS) .. 3073
M.Inf.1172: Using Research Infrastructures (5 C, 3 SWS) ... 3075
M.Inf.1185: Sensor Data Fusion (5 C, 3 SWS) .. 3079
M.Inf.1187: Simulation-based Data Fusion and Analysis (5 C, 3 SWS) 3082

bb. Gruppe 2
Es muss mindestens eines der folgenden Module im Umfang von wenigstens 5 C erfolgreich
absolviert werden:
M.Inf.1111: Seminar Theoretische Informatik (5 C, 2 SWS) ... 3047
M.Inf.1122: Seminar Vertiefung Telematik (5 C, 2 SWS) ... 3054
M.Inf.1124: Seminar Vertiefung Computernetzwerke (5 C, 2 SWS) 3056
M.Inf.1128: Seminar Erkennung von Angriffen und Schadsoftware (5 C, 2 SWS) 3058
M.Inf.1155: Seminar: Ausgewählte Aspekte der Softwaretechnik (5 C, 2 SWS) 3070
M.Inf.1181: Seminar NOSQL Databases (5 C, 2 SWS) ... 3077
M.Inf.1182: Seminar Knowledge Engineering (5 C, 2 SWS) .. 3078
M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics (5 C, 2 SWS) 3081
M.Inf.1806: Projektseminar Datenbanken und Informationssysteme (6 C, 2 SWS) 3147
M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme (12 C, 4 SWS) 3148

cc. Gruppe 3
Es muss mindestens eines der folgenden Module im Umfang von wenigstens 5 C erfolgreich
absolviert werden. Es kann nur eines der Module M.Inf.1101 und M.Inf.1102 absolviert werden:
Inhaltsverzeichnis

- M.Inf.1101: Modellierungspraktikum (5 C, 0,5 SWS) .. 3045
- M.Inf.1102: Großes Modellierungspraktikum (9 C, 1 SWS) .. 3046
- M.Inf.1800: Fortgeschrittenen Praktikum Computernetzwerke (6 C, 4 SWS) 3141
- M.Inf.1802: Praktikum XML (6 C, 4 SWS) .. 3142
- M.Inf.1803: Praktikum Softwaretechnik (6 C, 4 SWS) ... 3143
- M.Inf.1804: Praktikum Software-Qualitätssicherung (6 C, 4 SWS) ... 3145
- M.Inf.1808: Practical Course on Parallel Computing (6 C, 4 SWS) 3149
- M.Inf.1820: Practical Course on Wireless Sensor Networks (6 C, 4 SWS) 3153
- M.Inf.1821: Praktikum IT-Sicherheit (6 C, 3 SWS) ... 3154
- M.Inf.1822: Practical Course in Data Fusion (6 C, 4 SWS) .. 3155

2. Systemorientierte Informatik (wenigstens 18 C)

Es müssen wenigstens zwei der folgenden Module im Umfang von insgesamt mindestens 18 C erfolgreich absolviert werden:

- M.Inf.1201: Systementwicklung in einer forschungsbezogenen Projektarbeit (12 C, 1 SWS) 3085
- M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte (5 C, 2 SWS) 3093
- M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen (6 C, 4 SWS) 3094
- M.Inf.1213: Algorithmisches Lernen und Mustererkennung (6 C, 4 SWS) 3095
- M.Inf.1215: Fehlerkorrigierende Codes (6 C, 4 SWS) .. 3096
- M.Inf.1216: Datenkompression und Informationstheorie (6 C, 4 SWS) 3098
- M.Inf.1217: Kryptographie (6 C, 4 SWS) .. 3100
- M.Inf.1222: Spezialisierung Computernetzwerke (5 C, 2 SWS) .. 3102
- M.Inf.1223: Spezielle forgeschrittene Aspekte der Computernetzwerke (5 C, 2 SWS) 3103
- M.Inf.1226: Sicherheit und Kooperation in Drahtlosen Netzwerken (6 C, 4 SWS) 3104
- M.Inf.1227: Maschinelles Lernen in der IT-Sicherheit (6 C, 4 SWS) ... 3106
- M.Inf.1228: Seminar Aktuelle Forschung in der IT-Sicherheit (5 C, 2 SWS) 3107
- M.Inf.1229: Seminar Spezialisierung Telematik (5 C, 2 SWS) .. 3108
- M.Inf.1231: Spezialisierung Verteilte Systeme (6 C, 4 SWS) .. 3110
- M.Inf.1232: Parallel Computing (6 C, 4 SWS) ... 3112
- M.Inf.1242: Seminar Datenbanken (5 C, 2 SWS) ... 3114
- M.Inf.1243: Deduktive Datenbanken (6 C, 4 SWS) ... 3115
- M.Inf.1250: Seminar: Software Qualitätssicherung (5 C, 2 SWS) .. 3116
1. Zugangsvoraussetzungen

Für die Modulpakete „Informatik“ im Umfang von 36 C bzw. 18 C gelten folgende gemeinsame Zugangsvoraussetzungen:

Nachweis von Leistungen aus Grundlagenten der Informatik im Umfang von insgesamt wenigstens 30 C.
Nachweis von Leistungen aus Grundlagenten der Mathematik im Umfang von insgesamt wenigstens 18 C.
Nachweis von Programmierkenntnissen im Umfang von insgesamt wenigstens 5 C.
Nachweis von weiterführenden Leistungen aus der Informatik im Umfang von insgesamt wenigstens 10 C.

2. Modulpaket "Informatik" im Umfang von 36 C

a. Studienziele

Grundlegendes Ziel ist die Fähigkeit zum selbständigen wissenschaftlichen Arbeiten im Bereich der systemorientierte Informatik zu entwickeln. Weiterhin sollen die Kenntnisse auf einem der Gebiete theoretische Informatik, Softwaretechnik, Datenbanken oder Computernetzwerke vertieft, sowie Kompetenzen im Umgang mit aktueller wissenschaftlicher Literatur dieses Gebiets erworben werden.
b. Modulübersicht

Es müssen aus dem nachfolgenden Angebot Module im Umfang von insgesamt wenigstens 36 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule A

Empfohlen werden folgende Module:

- B.Inf.1802: Programmierpraktikum (5 C, 4 SWS) ... 2869
- B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik (5 C, 3 SWS) 2861
- B.Inf.1705: Vertiefung Softwaretechnik (5 C, 3 SWS) ... 2862
- B.Inf.1706: Vertiefung Datenbanken (6 C, 4 SWS) ... 2864
- B.Inf.1707: Vertiefung Computernetzwerke (5 C, 3 SWS) ... 2866
- B.Inf.1708: IT-Sicherheit (5 C, 4 SWS) ... 2868

bb. Wahlpflichtmodule B

Es können ferner alle Module gemäß Ziffer I Nummer 1 („Fachstudium“) des Master-Studiengangs „Angewandte Informatik“ gewählt werden.

3. **Modulpaket "Informatik" im Umfang von 18 C**

a. Studienziele

Grundlegendes Ziel ist die Fähigkeit zum selbständigen wissenschaftlichen Arbeiten im Bereich der systemorientierte Informatik zu entwickeln. Dazu sollen fortgeschrittene Kompetenzen in der systemorientierten Informatik, z.B. der Umgang mit aktueller wissenschaftlicher Literatur, erworben werden.

b. Modulübersicht

Es müssen aus dem nachfolgenden Angebot Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden.

aa. Wahlpflichtmodule A

Empfohlen werden folgende Module:

- B.Inf.1802: Programmierpraktikum (5 C, 4 SWS) ... 2869
- B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik (5 C, 3 SWS) 2861
- B.Inf.1705: Vertiefung Softwaretechnik (5 C, 3 SWS) ... 2862
- B.Inf.1706: Vertiefung Datenbanken (6 C, 4 SWS) ... 2864
- B.Inf.1707: Vertiefung Computernetzwerke (5 C, 3 SWS) ... 2866
- B.Inf.1708: IT-Sicherheit (5 C, 4 SWS) ... 2868
bb. Wahlpflichtmodule B

Es können ferner alle Module gemäß Anlage Ziffer I Nummer 1 („Fachstudium“) des Master-Studiengangs „Angewandte Informatik“ gewählt werden.

XIII. Prüfungsformen

Soweit in diesem Modulverzeichnis Modulbeschreibungen in englischer Sprache veröffentlicht werden, gilt für die verwendeten Prüfungsformen nachfolgende Zuordnung:

- Oral exam = mündliche Prüfung [§ 15 Abs. 8 APO]
- Written exam = Klausur [§ 15 Abs. 9 APO]
- Term paper = Hausarbeit [§ 15 Abs. 11 APO]
- Presentation = Präsentation [§ 15 Abs. 12 APO]
- Presentation with written elaboration/report = Präsentation mit schriftlicher Ausarbeitung [§ 15 Abs. 12 APO]
- Practical examination = praktische Prüfung [§ 15 Abs. 13 APO]

APO = Allgemeinen Prüfungsordnung für Bachelor- und Master-Studiengänge sowie sonstige Studienangebote an der Universität Göttingen
Lernziele/Kompetenzen:
Die Studierenden erhalten eine Orientierung über die verschiedenen biologischen Disziplinen. Es wird eine gemeinsame Grundlage für weiterführende Module gelegt. Die Studierenden erwerben Grundlagenkenntnisse in den Bereichen Biochemie, Bioinformatik, Entwicklungsbiologie, Genetik, Mikrobiologie und Pflanzenphysiologie.

Arbeitsaufwand:
- Präsenzzeit: 84 Stunden
- Selbststudium: 156 Stunden

Lehrveranstaltung: Biologische Ringvorlesung

Inhalte:

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Stefanie Pöggeler

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
10
Lernziele/Kompetenzen:

Arbeitsaufwand:
| Präsenzzeit: | 56 Stunden |
| Selbststudium: | 124 Stunden |

Lehrveranstaltung: Grundlagen der Biochemie (Vorlesung)
Prüfung: Klausur (90 Minuten)

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
Biologische Grundkenntnisse

Sprache:
Deutsch

Modulverantwortliche[r]:
Dr. Ellen Hornung

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
3 - 5

Maximale Studierendenzahl:
20
Georg-August-Universität Göttingen
Modul B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie

English title: General developmental and cell biology

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden lernen entwicklungsbiologisch relevante Aspekte der Zellbiologie, zentrale Themen der tierischen und pflanzlichen Entwicklungsbiologie, klassische und molekularbiologische Methoden der Entwicklungsbiologie und Modellorganismen kennen.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Allgemeine Entwicklungs- und Zellbiologie (Vorlesung)</th>
<th>4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Minuten)</td>
<td>6 C</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Biologische Grundkenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Sprachformulierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Modulverantwortliche[r]: Prof. Dr. Ernst A. Wimmer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>3 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Arbeitsaufwand:

Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltung: Allgemeine Mikrobiologie (Vorlesung)

4 SWS

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

In der Prüfung werden die Grundlagen der Mikrobiologie bezüglich der systematischen Einordnung, verschiedener Stoffwechselwege, Zellbiologie, der Bedeutung von Mikroorganismen für Industrie, Umwelt und Medizin sowie ihre praktische Umsetzung adressiert. Die Studierenden sollen tagesaktuelle Ereignisse mit Bezug zur Mikrobiologie einordnen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Biologische Grundkenntnisse

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Jörg Stülke

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Empfohlenes Fachsemester:

4 - 6

Maximale Studierendenzahl:

15
Lernziele/Kompetenzen:

Die Studierenden sollen ein Verständnis entwickeln für Gestalt und Funktion von Nervenzellen, Gliazellen und Sinneszellen sowie Sinnesorganen; ebenso Verständnis für Prinzipien zentraler Verarbeitung von Sinnesmeldungen. Sie sollen einen Einblick in die Funktion von Hormonsystemen und verschiedene vegetative Funktionen wie Atmung, Energiehaushalt, Verdauung und Exkretion erhalten. Sie sollen Einsicht gewinnen in die komplexen Wechselwirkungen physiologischer Leistungen des nervösen, sensorischen und vegetativen Systems und so nach Abschluss des Moduls physiologische Reaktionen eines Tieres besser beurteilen können. Sie sollen die Bedeutung einzelner physiologischer Leistungen für den gesamten Organismus beurteilen können und seine Anpassungsfähigkeit an die gegebenen Umweltbedingungen besser verstehen.

Lehrveranstaltung: Tierphysiologie (Vorlesung)

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Die Studierenden sollen Aussagen zu tierphysiologischen Fakten und Zusammenhängen aus den Bereichen Neuro-, Sinnes- und vegetativer Physiologie auf ihren Wahrheitsgehalt überprüfen können; sie sollen stichpunktartig Fragen nach Funktionen von Sinneszellen, Nervenzellen und Organen unter physiologischen Aspekten beantworten können; sie sollen Abläufe physiologischer Prozesse und ihre Grundlagen korrekt darstellen und miteinander vergleichen können.

Zugangsvoraussetzungen:

Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen

Sprache:

Deutsch

Modulverantwortliche[r]:

apl. Prof. Dr. Andreas Stumpner
Prof. Dr. Andre Fiala

Angebotshäufigkeit:

jedes Wintersemester

Wiederholbarkeit:

zweimalig

Maximale Studierendenzahl:

25
Georg-August-Universität Göttingen

Modul B.Bio-NF.125: Zell- und Molekularbiologie der Pflanze

English title: Cell and molecular biology of plants

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 124 Stunden |

Lehrveranstaltung: Zell- und Molekularbiologie der Pflanze

Prüfung: Klausur (75 Minuten)

Prüfungsanforderungen:

Arabidopsis thaliana als Modellsystem zur Erforschung zell- und molekularbiologischer Prozesse, Methoden zur Erforschung zell- und molekularbiologischer Prozesse, Mechanismen des Transport von Proteinen in unterschiedliche Zellorganellen und in die Zellwand, Mechanismen pflanzlicher Signaltransduktion, Mechanismen pflanzlicher Immunität

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Biologische Grundkenntnisse

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Christiane Gatz

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

die folgenden Semester

Empfohlenes Fachsemester:

3 - 5

Maximale Studierendenzahl:

15
Modul B.Bio-NF.126: Tier- und Pflanzenökologie
English title: Ecology of animals and plants

Lernziele/Kompetenzen:

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Ökologie (Vorlesung)

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Abiotische Umweltbedingungen; Biotische Interaktionen, Koevolution; die Bedeutung des Faktors “Ressource”; Ökologische Nische; Populationsmodelle; Regulation von Populationen, Wechselwirkungen von Populationen; Konkurrenz, Prädation, Herbivorie; Mutualismus, Symbiose; Ökosysteme, Sukzession; Diversität und Störung; Nahrungsnetze; Definition eines individuums, Genet-Ramet-Konzept; r-K-Konzept; Fallstudie "Global Change"</td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen

Empfohlene Vorkenntnisse:
Biologische Grundkenntnisse

Sprache:
Deutsch

Sprachverantwortliche[r]:
Prof. Dr. Stefan Scheu

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
3 - 5

Maximale Studierendenzahl:
15
Georg-August-Universität Göttingen

Modul B.Bio-NF.127: Evolution und Systematik der Pflanzen

English title: Evolution and systematics of plants

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erwerben grundlegende Kenntnisse zur Evolution, Systematik und Ökologie der Landpflanzen (Lebermossen, Laubmossen, Hornmossen, Bärlappgewächse, Farne, Gymnospermen, Angiospermen). Sie lernen das Methodenspektrum zur Rekonstruktion der Landpflanzen-Avolution in Zeit und Raum kennen sowie die Methoden zur systematischen Gliederung und Benennung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Evolution und Systematik der Pflanzen (Vorlesung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (60 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen: Im Rahmen einer Klausur sollen die Studierenden Aussagen zur Evolution und Systematik der Landpflanzen sowie zum Methodenspektrum der Evolutionsrekonstruktion auf ihren Wahrheitsgehalt überprüfen können und Fragen zu diesen Themenbereichen beantworten. In ähnlichem Umfang werden Grundkenntnisse zu Taxonomie und Nomenklatur abgefragt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Elvira Hörandl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul B.Bio-NF.128: Evolution und Systematik der Tiere
English title: Evolution and systematics of animals

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 110 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Phylogenetisches System und Evolution der Tiere (Vorlesung)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (60 Minuten)</td>
<td></td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
<td></td>
</tr>
<tr>
<td>Phylogenie und Evolution der Tiere; Grundlagen der biologischen Systematik (morphologische und molekulare Methoden); Struktureichtum und phylogenetische Beziehungen ausgewählter Gruppen der Tiere; Kenntnissen der Systematik und Biologie der Tierarten; Fertigkeiten in der systematischen Bestimmung von Tieren insbesondere heimischer Lebensgemeinschaften</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen</td>
<td>Biologische Grundkenntnisse (insbesondere der Tiersystematik)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Rainer Willmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen

Empfohlene Vorkenntnisse:
Biologische Grundkenntnisse (insbesondere der Tiersystematik)

Modulverantwortliche[r]:
Prof. Dr. Rainer Willmann

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
4 - 6

Maximale Studierendenzahl:
15
Lernziele/Kompetenzen:

Arbeitsaufwand:
- **Präsenzzeit:** 56 Stunden
- **Selbststudium:** 124 Stunden

Lehrveranstaltung: Genetik und mikrobielle Zellbiologie (Vorlesung)

<table>
<thead>
<tr>
<th>Modul B.Bio-NF.129: Genetik und mikrobielle Zellbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>English title: Genetics and microbial cell biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erwerben Grundlagenwissen über</td>
</tr>
<tr>
<td>klassische und molekulare Genetik und Zellbiologie und</td>
</tr>
<tr>
<td>einen Überblick über genetische, molekularbiologische</td>
</tr>
<tr>
<td>und zellbiologische Methoden sowie Modellorganismen.</td>
</tr>
<tr>
<td>Sie sollen die Einsichten in die Vererbung von genetischer</td>
</tr>
<tr>
<td>Information und die komplexe Regulation der Genexpression</td>
</tr>
<tr>
<td>gewinnen. Nach Abschluss des Moduls sollen sie in der</td>
</tr>
<tr>
<td>Lage sein zu verstehen, wie Entwicklung und Morphologie</td>
</tr>
<tr>
<td>von Ein- und Mehrzellern durch Gene gesteuert wird und</td>
</tr>
<tr>
<td>wie Gene die Gestalt und Funktion von Zellen beeinflussen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

Prüfung: Klausur (90 Minuten)

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sollen stichpunktartig Fragen aus den</td>
</tr>
<tr>
<td>Bereichen der Genetik und Zellbiologie beantworten und</td>
</tr>
<tr>
<td>Aussagen zu genetischen und zellbiologischen Fakten und</td>
</tr>
<tr>
<td>Zusammenhänge auf ihren Wahrheitsgehalt überprüfen können.</td>
</tr>
<tr>
<td>Als Grundlage dienen erworbbene Kenntnisse der Lerninhalte</td>
</tr>
<tr>
<td>der Lehrveranstaltung, die Bearbeitung von vorlesungsbe</td>
</tr>
<tr>
<td>gleitenden Fragen in Tutorien, für den Teil Genetik das</td>
</tr>
<tr>
<td>Gene (Pearson) und für den Teil Zellbiologie: Ausgewählte</td>
</tr>
<tr>
<td>Kapitel aus dem Lehrbuch Alberts et al., 5th Edition,</td>
</tr>
<tr>
<td>Molecular Biology of the Cell (Garland Science)</td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
- keine

Empfohlene Vorkenntnisse:
- Biologische Grundkenntnisse werden empfohlen

Sprache:
- Deutsch

Modulverantwortliche[r]:
- Prof. Dr. Gerhard Braus

Angebotshäufigkeit:
- jedes Sommersemester

Dauer:
- 1 Semester

Wiederholbarkeit:
- zweimalig

Empfohlenes Fachsemester:
- 4 - 6

Maximale Studierendenzahl:
- 15
Lernziele/Kompetenzen:

Arbeitsaufwand:
- Präsenzzeit: 28 Stunden
- Selbststudium: 62 Stunden

Lehrveranstaltung: Kognitionspsychologie (Vorlesung) 2 SWS

Prüfung: Klausur (45 Minuten) 3 C

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Annekathrin Schacht

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
ab 3

Maximale Studierendenzahl:
25
Georg-August-Universität Göttingen

Modul B.Forst.1101: Grundlagen der Forstbotanik

English title: Elements of forest botany

| 6 C
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

In den Übungen wird der Inhalt der Vorlesungen anhand von Beispielen mittels mikroskopischer und histochemischer Techniken veranschaulicht. Die Studenten erlernen ihre Beobachtungen objektiv zu beschreiben (Protokollführung).

In dem Modul werden Kenntnisse über die Biologie einzelner Zellen bis hin zum ganzen Organismus an Hand von Bäumen und deren Besonderheiten vermittelt.

Arbeitsaufwand:

| Präsenzzeit: | 56 Stunden |
| Selbststudium: | 124 Stunden |

Lehrveranstaltungen:

1. **Grundlagen der Forstbotanik** (Vorlesung) 2 SWS
2. **Übungen zur Forstbotanik** (Übung) 2 SWS

Prüfung: Klausur (120 Minuten) 6 C

Prüfungsanforderungen:

Die Studenten erbringen den Nachweis, dass sie Kenntnisse über die funktionelle Anatomie des Pflanzenkörpers und wichtige biologische Prozesse in Bäumen erworben haben und dieses Wissen wiedergeben können.

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Andrea Polle

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

1

Maximale Studierendenzahl:

nicht begrenzt
Georg-August-Universität Göttingen

Modul B.Forst.1104: Forstzoologie, Wildbiologie und Jagdkunde
English title: Forest zoology, wildlife biology and hunting science

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studenten erwerben grundlegende Kenntnisse über Systematik, Physiologie, Ökologie und Verhalten von Insekten im Kontext mit dem Ökosystem Wald.</td>
<td>Präsenzzeit: 70 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>6 C 5 SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Forstzoologie (Vorlesung, Übung)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Wildbiologie und Jagdkunde (Vorlesung)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>3. Jagdrecht (Vorlesung)</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

| Prüfung: Klausur (90 Minuten) | 6 C |

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Stefan Schütz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:
Verständnis der grundlegenden atmosphärischen Faktoren wie Wind, Strahlung, Lufttemperatur und -feuchte und ihres Einflusses auf den Wald, des Kohlenstoff- und Wasserkreislaufes auf lokaler bis globaler Skala sowie des Klimawandels.

Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden

Lehrveranstaltung: Bioklimatologie (Vorlesung)
4 SWS

Prüfung: Klausur (90 Minuten)
6 C

Prüfungsanforderungen:
Nachweis, die wichtigsten Prozesse in der Atmosphäre und ihrer Wechselwirkung mit Vegetation verstanden zu haben; quantitative Analysen mit Hilfe von grundlegenden Gleichungen; Erstellen und Interpretation von Grafiken, die funktionale Zusammenhänge abbilden.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Alexander Knohl

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
2

Maximale Studierendenzahl:
nicht begrenzt
Lernziele/Kompetenzen:

Einführung in die Bodenbildung und -entwicklung:

- Kenntnisse der Bodenbildungsprozesse, Bodenentwicklung auf unterschiedlichen Ausgangssubstraten, Boden- und Standortseigenschaften, ökologische Bewertung von Böden.

Grundlagen der Bodenbiogeochemie:

Lehrveranstaltungen:

1. **Einführung in die Bodenbildung und -entwicklung** (Vorlesung, Exkursion, Übung) 2 SWS
2. **Grundlagen der Bodenbiogeochemie** (Vorlesung, Exkursion, Übung) 2 SWS

Prüfung: Klausur (120 Minuten) 6 C

Prüfungsanforderungen:

Qualitative und quantitative Zusammenhänge der Bodenbildungsprozesse und Bodenbiogeochemie.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Naturwissenschaftliche Grundlagen (B.Forst.1103)

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Yakov Kuzyakov

Angebotshäufigkeit:

jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
2

Maximale Studierendenzahl:

nicht begrenzt
Georg-August-Universität Göttingen
Modul B.Forst.1110: Waldbau
English title: Silviculture

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 186 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Waldbau (Vorlesung)</th>
<th>6 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (120 Minuten)</td>
<td>9 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse waldökologischer Zusammenhänge und waldbaulicher Verfahren der Waldverjüngung und Bestandespflege, Nachweis von Kompetenzen der Beurteilung ökologischer Auswirkungen waldbaulicher Maßnahmen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Christian Ammer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td>3</td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	

nicht begrenzt	
Georg-August-Universität Göttingen

Modul B.Forst.1114: Forstgenetik

English title: Forest genetics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

Lehrveranstaltung: Forstgenetik (Vorlesung, Übung)

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>6 C</td>
</tr>
</tbody>
</table>

Prüfungsanforderungen:

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Reiner Finkeldey

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

3

Maximale Studierendenzahl:

nicht begrenzt
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>3 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul B.Forst.1115: Waldbau - Übungen</td>
<td>4 SWS</td>
</tr>
<tr>
<td>English title: Silviculture practice</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 34 Stunden

Lehrveranstaltung: Waldbau - Übungen (Übung)

4 SWS

Prüfung: Klausur (120 Minuten)

3 C

Prüfungsanforderungen:
Nachweis der angestrebten Kompetenzen in Bezug auf die Bewertung der Standortsverhältnisse für die Baumartenwahl, die Bestandesbeschreibung und die Planung von waldbaulichen Maßnahmen für einen konkreten Waldbestand.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Christian Ammer

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
4

Maximale Studierendenzahl:
nicht begrenzt
Georg-August-Universität Göttingen
Modul B.Forst.1117: Forstliche Betriebswirtschaftslehre
English title: Forest business administration

Lernziele/Kompetenzen:
Neben der Vermittlung des erforderlichen fachbezogenen Basiswissens (Grundlagen der forstlichen Kosten u. Leistungsrechnung, Betriebsstatistik, Planungs- u. Investitionsrechnung) sollen die Studierenden mit den Instrumenten der entscheidungsorientierten forstlichen Betriebswirtschaftslehre vertraut gemacht werden; das betrifft insbesondere die Methoden der Waldbewertung und Entscheidungsfindung zu verschiedenen forstbetrieblichen Funktionsbereichen (wie Beschaffung, Produktion, Absatz, Finanzierung, forstlicher Steuerlehre). Dabei soll durch praktische Übungen die Fähigkeiten zum problembezogenen Denken und zur eigenständigen Problemlösung gestärkt werden.

Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden

Lehrveranstaltung: Forstliche Betriebswirtschaftslehre *(Vorlesung, Übung)*
5 SWS

Prüfung: Mündlich (ca. 15 Minuten)
6 C

Prüfungsanforderungen:
Die Studierenden weisen in der Modulprüfung nach, dass sie
- das fachbezogene Basiswissen der Vorlesung vollständig wiedergeben können,
- die kennengelernten Ansätze auf vergleichbare Problemstellungen übertragen und diese lösen können,
- Konzepte und Instrumente der entscheidungsorientierten forstlichen Betriebswirtschaftslehre erklären und anwenden können,
- die eigenen Lösungen kritisch reflektieren und Alternativen aufzeigen können.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Bernhard Möhring

Angebotshäufigkeit:
jedes Sommersemester
Dauer: 1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung
Empfohlenes Fachsemester: 4

Maximale Studierendenzahl:
nicht begrenzt
Lernziele/Kompetenzen:

Die Studierenden sollen die wissenschaftlichen Grundlagen der Waldmesskunde beherrschen lernen (Prinzipien und Techniken der Erfassung von Einzelbaum- und Wald-bezogenen Attributen), um forstliche, waldökologische oder landschaftsökologische Forschungsprojekte hinsichtlich der Datenerfassung effizient planen, durchführen und auswerten zu können. Grundlage hierfür ist auch das Beherrschen der Messgeräte und der Auswertungsalgorithmen.

Lehrveranstaltungen:
1. **Waldinventur und Fernerkundung** (Vorlesung, Übung) 2 SWS
2. **Waldmesslehre** (Vorlesung, Übung) 2 SWS
3. **Vermessung** (Vorlesung, Übung) 1 SWS

Prüfung:
- **Klausur** (90 Minuten, Gewichtung: 75%) und praktische Prüfung (ca. 30 Minuten, Gewichtung: 25%) 6 C

Prüfungsanforderungen:
Die Studierenden sollen nachweisen, dass sie Kenntnisse und Fertigkeiten bezüglich grundlegender Methoden der Messung und Schätzung von Attributen von Bäumen und Waldbeständen besitzen.

Die Studierenden sollen Kenntnisse der wissenschaftlichen Grundlagen der Waldinventurmethoden nachweisen und auch grundlegende Aufgaben zu Planung, Implementation und Auswertung von Waldinventurdaten lösen können.

Im praktischen Teil der Prüfung soll die Sicherheit im korrekten Umgang mit waldmesskundlichen Geräten nachgewiesen werden.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Christoph Kleinn
<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>
Modul B.Forst.1122: Waldwachstum und Forsteinrichtung

English title: Tree growth and forest management

Lernziele/Kompetenzen:

- Vermittlung von Grundkenntnissen und Methoden der Forstplanung (Forsteinrichtung).

Lehrveranstaltungen:

1. **Waldwachstum** (Vorlesung, Exkursion, Übung)
 2 SWS
2. **Forsteinrichtung** (Vorlesung, Exkursion, Übung)
 2 SWS

Prüfung: Klausur (120 Minuten)

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Prüfung: Klausur (120 Minuten)</th>
<th>6 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>56 Stunden</td>
<td></td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>124 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsanforderungen:

Zugangsvoraussetzungen:

- keine

Sprache:

- Deutsch

Modulverantwortliche[r]:

- Dr. Kai Staupendahl

Angebotshäufigkeit:

- jedes Wintersemester

Dauer:

- 1 Semester

Wiederholbarkeit:

- gemäß Prüfungs- und Studienordnung

Empfohlene Fachsemester:

- 5

Empfohlene Vorkenntnisse:

- Waldinventur, Waldbau, Standortskunde
| Maximale Studierendenzahl: | nicht begrenzt |
Modul B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik

Lernziele/Kompetenzen:

Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 108 Stunden

Lehrveranstaltung: Vorlesungen zur Codierungstheorie, Informationstheorie oder Komplexitätstheorie (Vorlesung, Übung)

Inhalte:
Vertiefung in einem der folgenden Gebiete: Komplexitätstheorie (Erkundung der Grenzen effizienter Algorithmen), Datenstrukturen für boolesche Funktionen, Kryptographie, Informationstheorie, Codierungstheorie, Signalverarbeitung.

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)

Prüfungsanforderungen:

Zugangsvoraussetzungen:
- keine

Empfohlene Vorkenntnisse:
- B.Inf.1201, B.Inf.1202

Sprache:
- Deutsch, Englisch

Modulverantwortliche[r]:
- Prof. Dr. Stephan Waack
- (Prof. Dr. Carsten Damm)

Angebotshäufigkeit:
- unregelmäßig

Dauer:
- 1 Semester

Wiederholbarkeit:
- zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
- 30
Georg-August-Universität Göttingen
Modul B.Inf.1705: Vertiefung Softwaretechnik
English title: Advanced Software Engineering

Lernziele/Kompetenzen:
Die Studierenden haben vertiefte Kenntnisse und Kompetenzen aus einem Gebiet der Softwaretechnik erworben. Beispiele für Gebiete der Softwaretechnik in denen vertiefte Kenntnisse und Kompetenzen erworben werden können sind Requirements Engineering, Qualitätssicherung oder Softwareevolution.

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Lehrveranstaltung: Software Testing (Vorlesung, Übung)
Inhalte:
The students
• can define the term software quality and acquire knowledge on the principles of software quality assurance.
• become acquainted with the general test process and know how the general test process can be embedded into the overall software development process.
• gain knowledge about manual static analysis and about methods for applying manual static analysis.
• gain knowledge about computer-based static analysis and about methods for applying computer-based static analysis.
• gain knowledge about black-box testing and about the most important methods for deriving test cases for black-box testing.
• gain knowledge about glass-box testing and about the most important methods for deriving test cases for glass-box testing.
• acquire knowledge about the specialities of testing of object oriented software.
• acquire knowledge about tools that support software testing.
• gain knowledge about the principles of test management.

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)
Prüfungsvorleistungen:
Develop and present the solution of at least one exercise (presentation and report) and active participation in the exercises.

Prüfungsanforderungen:
Software quality, principles of software quality assurance, general test process, static analysis, dynamic analysis, black-box testing, glass-box testing, testing of object-oriented systems, testing tools, test management

Zugangsvoraussetzungen: keine
Sprache: Englisch
Angebotshäufigkeit: unregelmäßig
Wiederholbarkeit: Empfohlenes Fachsemester:

Empfohlene Vorkenntnisse:
B.Inf.1101, B.Inf.1209

Modulverantwortliche[r]:
Prof. Dr. Jens Grabowski

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 2862
<table>
<thead>
<tr>
<th>zweimalig</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Vertiefung Datenbanken

Lernziele/Kompetenzen:

Arbeitsaufwand:
- **Präsenzzeit:** 56 Stunden
- **Selbststudium:** 124 Stunden

Lehrveranstaltungen:
1. **Semistrukturierte Daten und XML** (Vorlesung, Übung) 4 SWS
2. **Semantic Web** (Vorlesung, Übung) 4 SWS
3. **Deduktive Datenbanken** (Vorlesung, Übung) 4 SWS

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 25 Min.)

Prüfungsanforderungen:

Semistrukturierte Daten und XML
- Konzepte semistrukturierter Datenmodelle und die Parallelen sowie Unterschiede zum "klassischen" strukturierten, relationalen Datenmodell; Fähigkeit zur Beurteilung, welche Technologien in einer konkreten Anwendung zu wählen und zu kombinieren sind; praktische Grundkenntnisse in den üblichen Sprachen dieses Bereiches; Überblick über die historische Entwicklung von Modellen und Sprachen im Datenbankbereich; Fähigkeit zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.

Semantic Web
- Kenntnisse der theoretischen Grundlagen und technischen Konzepte des Semantic Web; Fähigkeit zum Abschätzen des Nutzens und der Grenzen der verwendeten Technologien; Fähigkeit zur Abwägung realer Szenarien; Fähigkeit zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.

Deduktive Datenbanken
- Vertiefte Kenntnisse der im Datenbankbereich zugrundeliegenden Theorie. Praktische Anwendung logikbasierter Programmiersprachen.

Zugangsvoraussetzungen:
B.Inf.1202, B.Inf.1206

Sprache:
Deutsch, Englisch

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Maximale Studierendenzahl:

Zugangsvoraussetzungen:
B.Inf.1202, B.Inf.1206

Sprache:
Deutsch, Englisch

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Maximale Studierendenzahl:
Georg-August-Universität Göttingen
Module B.Inf.1707: Advanced Computernetworks

Learning outcome, core skills:

Workload:
Attendance time: 42 h
Self-study time: 108 h

Course: Mobile Communication (Lecture, Exercise)

Contents:
On completion of the module students should be able to:

• explain the fundamentals of mobile communication including the use of frequencies, modulation, antennas and how mobility is managed
• distinguish different multiple access schemes such as SDMA (Space Division Multiple Access), FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), CDMA (Code Division Multiple Access) and their variations as used in cellular networks
• describe the history of cellular network generations from the first generation (1G) up to now (4G), recall their different ways of functioning and compare them to complementary systems such as TETRA
• explain the fundamental idea and functioning of satellite systems
• classify different types of wireless networks including WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX and recall their functioning
• explain the challenges of routing in mobile ad hoc and wireless sensor networks
• compare the transport layer of static systems to the transport layer in mobile systems and explain the approaches to improve the mobile transport layer performance
• differentiate between the security concepts used in GSM and 802.11 security as well as describe the way tunnelling works

Examination: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)

Examination prerequisites:
Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe (Präsentation und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den Übungen.

Examination requirements:
Fundamentals of mobile communication (frequencies, modulation, antennas, mobility management); multiple access schemes (SDMA, FDMA, TDMA, CDMA) and their variations; history of cellular network generations (first (1G) up to current generation (4G) and outlook to future generations); complementary systems (e.g. TETRA); fundamentals of satellite systems; wireless networks (WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX); routing in MANETs and WSNs; transport layer for mobile systems; security challenges in mobile networks such as GSM and 802.11 and tunneling
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Inf.1101, B.Inf.1204</td>
</tr>
<tr>
<td>Language:</td>
<td>Person responsible for module:</td>
</tr>
<tr>
<td>English</td>
<td>Prof. Dr. Dieter Hogrefe</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>Duration:</td>
</tr>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module B.Inf.1708: Computer Security

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>After successful completion of the modul students are able to</td>
<td></td>
</tr>
<tr>
<td>• describe and apply symmetric-key cryptosystems</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>• describe and apply public-key cryptosystems</td>
<td>56 h</td>
</tr>
<tr>
<td>• apply and compare mechanisms for authentication and access control</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>• explain attacks on different networks layers</td>
<td>94 h</td>
</tr>
<tr>
<td>• apply and compare defenses against network attacks</td>
<td></td>
</tr>
<tr>
<td>• identify vulnerabilities in software and use countermeasures</td>
<td></td>
</tr>
<tr>
<td>• describe types and mechanisms of malware</td>
<td></td>
</tr>
<tr>
<td>• apply and compare methods for intrusion and malware detection</td>
<td></td>
</tr>
<tr>
<td>• describe and use honeypot and sandbox systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Introduction to Computer Security (Lecture, Exercise)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course frequency: unregelmäßig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>Successful completion of 50 % of the exercises</td>
<td></td>
</tr>
<tr>
<td>Examination requirements:</td>
<td></td>
</tr>
<tr>
<td>Symmetric-key and public-key cryptosystems; mechanisms for authentication and access control; network attacks and defenses; software vulnerabilities and countermeasures; detection of intrusions and malicious software</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Inf.1101, B.Inf.1802</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Konrad Rieck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

5 C
4 WLH
Lernziele/Kompetenzen:

Die Studierenden erlernen eine objektorientierte Programmiersprache, sie

- kennen die gängigen Programmierwerkzeuge (Compiler, Build-Management-Tools) und können diese benutzen.
- kennen die Grundsätze und Techniken des objektorientierten Programmentwurfs (z.B. Klassen, Objekte, Kapselung, Vererbung, Polymorphismus) und können diese anwenden.
- kennen eine Auswahl der zur Verfügung stehenden Application Programming Interfaces (APIs) (z.B. Collections-, Grafik-, Thread-API)
- können Dokumentationskommentare benutzen und kennen die Werkzeuge zur Generierung von API-Dokumentation.
- kennen Techniken und Werkzeuge zur Versionskontrolle und können diese anwenden.
- können Programme erstellen, die konkrete Anforderungen erfüllen, und deren Korrektheit durch geeignete Testläufe überprüfen.
- kennen die Prinzipien und Methoden der projektbasierten Teamarbeit und können diese umsetzen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden
Selbststudium: 94 Stunden

Lehrveranstaltung: Programmierpraktikum (Praktikum, Vorlesung)

Prüfung: Mündlich (ca. 20 Minuten)

Prüfungsanforderungen:

- Lösung von 50% der Programmieraufgaben und die erfolgreiche Teilnahme an einer großen Gruppenaufgabe.
- Klassen, Objekte, Schnittstellen, Vererbung, Packete, Exceptions, Collections, Typisierung, Grafik, Threads, Thread-Synchronisation, Prozess-Kommunikation, Dokumentation, Archive, Versionskontrolle

Zugangsvoraussetzungen:

- B.Inf.1101

Empfohlene Vorkenntnisse:

- B.Inf.1801

Sprache:

- Deutsch

Modulverantwortliche[r]:

- Dr. Henrik Brosenne

Angebotshäufigkeit:

- jedes Sommersemester

Dauer:

- 1 Semester

Wiederholbarkeit:

- zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

- 80
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden
- die Befähigung zum sicheren Umgang mit mathematischen Anwendersystemen erworben;
- die Grundprinzipien der Programmierung erfasst;
- Erfahrungen mit elementaren Algorithmen und deren Anwendungen gesammelt.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kenntnisse über mathematische Anwendersysteme erworben. Sie
- haben die Fähigkeit erworben, Algorithmen in mathematischen Anwendersystemen umzusetzen;
- sind mit dem Einsatz von mathematischen Anwendersystemen bei Präsentationen vertraut.

Arbeitsaufwand:
Präsenzzeit:
28 Stunden
Selbststudium:
62 Stunden

Lehrveranstaltung: Blockkurs
Inhalte:
Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Einführung in ein Mathematisches Anwendersystem"

Prüfung: Klausur (90 Minuten)
Prüfungsvorleistungen:
B.Mat.0720.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen

Prüfungsanforderungen:
Grundkenntnisse in einem mathematischen Anwendersystem (z.B. MuPAD, MATLAB oder Sage)

Zugangsvoraussetzungen: keine

Empfohlene Vorkenntnisse:
B.Mat.0011, B.Mat.0012

Sprache: Deutsch

Modulverantwortliche[r]:
Studiendekan/in Mathematik

Angebotshäufigkeit: jedes Wintersemester

Dauer: 1 Semester

Wiederholbarkeit: zweimalig

Empfohlenes Fachsemester:
Bachelor: 1 - 6; Master: 1 - 4

Maximale Studierendenzahl: nicht begrenzt

Georg-August-Universität Göttingen
Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen)
English title: Mathematical application software
Bemerkungen:
Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Methoden der Analysis auf Mannigfaltigkeiten vertraut. Sie

- kennen wichtige Beispiele von Mannigfaltigkeiten;
- sind mit zusätzlichen Strukturen auf Mannigfaltigkeiten vertraut;
- wenden grundlegende Sätze des Gebiets an;
- sind mit Tensoren und Differentialformen und weiterführenden Konzepten vertraut;
- kennen den Zusammenhang zu topologischen Fragestellungen.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Umgang mit Analysis auf Mannigfaltigkeiten und globalen Fragen der Analysis erworben, und sind auf weiterführende Veranstaltungen vorbereitet. Sie sind in der Lage,

- geometrische Fragestellungen in der Sprache der Analysis zu formulieren;
- Probleme anhand von Ergebnissen der Analysis auf Mannigfaltigkeiten zu lösen;
- sowohl in lokalen Koordinaten als auch koordinatenfrei zu argumentieren;
- mit den Fragestellungen und Anwendungen der Analysis auf Mannigfaltigkeiten umzugehen.

Lehrveranstaltungen:
1. *Differenzial- und Integralrechnung III* (Vorlesung) 4 SWS
2. *Differenzial- und Integralrechnung III - Übung* (Übung) 2 SWS

Prüfung: Klausur (120 Minuten)
Prüfungsleistungen:
B.Mat.1100.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:
Nachweis der Grundkenntnisse der höheren Analysis

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>B.Mat.0021, B.Mat.0022</td>
</tr>
</tbody>
</table>

Sprache:
Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>zweimalig</th>
<th>3 - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td></td>
</tr>
<tr>
<td>• Dozent/in: Lehrpersonen des Mathematischen Instituts</td>
<td></td>
</tr>
<tr>
<td>• Die Vorlesung "Differenzial- und Integralrechnung III" mit Übungen kann durch eine der beiden Vorlesungen mit Übungen über "Funktionentheorie" oder "Funktionalanalysis" ersetzt werden.</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul B.Mat.1200: Algebra

English title: Algebra

| 9 C | 6 SWS |

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren dieses Moduls sind die Studierenden mit grundlegenden Begriffen und Ergebnissen aus der Algebra vertraut. Sie

- kennen wichtige Begriffe und Ergebnisse über Gruppen, Ringe, Körper und Polynome;
- sind mit der Galoistheorie vertraut;
- kennen grundlegende algebraische Strukturen.

Kompetenzen:

Nach erfolgreichem Absolvieren dieses Moduls haben die Studierenden grundlegende Kompetenzen in der Algebra erworben und sind auf weiterführende Veranstaltungen vorbereitet. Sie sind in der Lage,

- mathematische Sachverhalte aus dem Bereich Algebra korrekt zu formulieren;
- Probleme anhand von Ergebnissen der Algebra zu lösen;
- Probleme in anderen Gebieten, etwa der Geometrie, im Rahmen der Algebra zu formulieren und zu bearbeiten;
- Fragestellungen und Anwendungen der Algebra zu bearbeiten.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden
Selbststudium: 186 Stunden

Lehrveranstaltungen:

1. **Algebra** (Vorlesung) 4 SWS
2. **Algebra - Übung** (Übung) 2 SWS

Prüfung: Klausur (120 Minuten)

Prüfungsvorleistungen:

B.Mat.1200.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:

Nachweis der Grundkenntnisse in Algebra

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Studiengangsbeauftragte/r

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Empfohlenes Fachsemester:

3 - 5

Maximale Studierendenzahl:
<table>
<thead>
<tr>
<th>nicht begrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemerkungen:</td>
</tr>
<tr>
<td>Dozent/in: Lehrpersonen des Mathematischen Instituts</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden im Schwerpunkt “Numerische und Angewandte Mathematik” vertraut. Sie

- gehen sicher mit Matrix- und Vektornormen um;
- formulieren für verschiedenartige Fixpunktgleichungen einen geeigneten Rahmen, der die Anwendung des Banachschen Fixpunktsatzes erlaubt;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraumverfahren, und analysieren die Konvergenz iterativer Verfahren;
- lösen nichtlineare Gleichungssysteme mit dem Newtonverfahren und analysieren dessen Konvergenz;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen numerisch Eigenwerte und -vektoren von Matrizen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage,

- grundlegende Verfahren zur numerischen Lösung von mathematischen Problemen anzuwenden;
- numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem zu implementieren;
- Grundprinzipien der Konvergenzanalyse numerischer Algorithmen zu nutzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden

Selbststudium: 186 Stunden

Lehrveranstaltungen:

1. **Numerische Mathematik I** (Vorlesung) 4 SWS
2. **Numerische Mathematik I - Übung** (Übung) 2 SWS

Prüfung:

Klausur (120 Minuten)

Prüfungsvoraussetzungen:

B.Mat.1300.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:

Nachweis der Grundkenntnisse der numerischen und angewandten Mathematik

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

B.Mat.0021, B.Mat.0022
<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>3 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik</td>
</tr>
<tr>
<td>• Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden numerischen Methoden zum Modul "Grundlagen der Numerischen Mathematik" vertraut. Je nach aktuellem Lehrangebot unterschiedlich geordnet und gewichtet werden folgende inhaltbezogenen Kompetenzen angestrebt. Die Studierenden

- gehen sicher mit numerischen Algorithmen zu linearen und nichtlinearen Gleichungssystemen um;
- formulieren für verschiedenartige Probleme aus der angewandten Mathematik Darstellungen und Modelle, die mit Hilfe eines numerischen Verfahrens aus dem Modul "Grundlagen der Numerischen Mathematik" gelöst werden können;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraum-Verfahren;
- analysieren und bewerten fortgeschrittene Newton-artige Verfahren hinsichtlich Konvergenzgeschwindigkeit und Komplexität und wenden sie auf nichtlineare Gleichungssysteme aus der Praxis an;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen Eigenwerte und -vektoren von Matrizen mit forgeschrittener Verfahren wie effizienten Implementationen des QR-Verfahrens oder Krylovraum-Verfahren.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden vertiefte Erfahrungen in der praktischen Umsetzung numerischer Algorithmen erworben. Sie

- haben Erfahrungen mit grundlegenden Verfahren zur numerischen Lösung von mathematischen Problemen;
- implementieren numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem;
- sind mit Grundprinzipien der Konvergenzanalyse numerischer Algorithmen vertraut und unterscheiden die Stärken der verschiedenen Verfahren.

Lehrveranstaltung: Vorlesung "Methoden zur Numerischen Mathematik" mit Übungen

Blockveranstaltung, alternativ parallel zur Vorlesung "Numerische Mathematik I" (B.Mat.1300)

Prüfung: Klausur (45 Minuten) oder mündliche Prüfung (ca. 15 Minuten)

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

Georg-August-Universität Göttingen

Modul B.Mat.1310: Methoden zur Numerischen Mathematik

English title: Methods for numerical mathematics

Arbeitsaufwand:

Präsenzzeit: 28 Stunden
Selbststudium: 92 Stunden
<table>
<thead>
<tr>
<th>unbeantwortet</th>
<th>B.Mat.0021, B.Mat.0022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche[r]:</td>
<td>Studiengangsbeauftragter</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>jährlich nach Bedarf WiSe oder SoSe</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>zweimalig</td>
</tr>
<tr>
<td>Empfohlenes Fachsemester:</td>
<td>2 - 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td>Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und Methoden der Maßtheorie sowie auch der Wahrscheinlichkeitstheorie vertraut, die die Grundlage des Schwerpunkts "Mathematische Stochastik" bilden. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen;
- verstehen grundlegende Eigenschaften sowie Existenz und Eindeutigkeitsaussagen von Maßen;
- gehen sicher mit allgemeinen Maß-Integralen um, insbesondere mit dem Lebesgue-Integral;
- kennen sich mit Lp-Räumen und Produkträumen aus;
- formulieren wahrscheinlichkeitstheoretische Aussagen mit Wahrscheinlichkeitsräumen, Wahrscheinlichkeitsmaßen und Zufallsvariablen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- beschreiben Wahrscheinlichkeitsmaße mit Hilfe von Verteilungsfunktionen bzw. Dichten;
- verstehen und nutzen das Konzept der Unabhängigkeit;
- berechnen Erwartungswerte von Funktionen von Zufallsvariablen;
- verstehen die verschiedenen stochastischen Konvergenzbegriffe und ihre Beziehungen;
- kennen charakteristische Funktionen und deren Anwendungen;
- besitzen Grundkenntnisse über bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte;
- verwenden das schwache Gesetz der großen Zahlen und den zentralen Grenzwertsatz;
- kennen einfache stochastische Prozesse wie z.B. Markov-Ketten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Mathematische Stochastik" erworben. Sie sind in der Lage,

- Maßräume und Maß-Integrale anzuwenden;
- stochastische Denkweisen einzusetzen und einfache stochastische Modelle zu formulieren;
- stochastische Modelle mathematisch zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen.
durchzuführen;
- grundlegende Grenzwertsätze der Wahrscheinlichkeitstheorie zu verwenden.

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maß- und Wahrscheinlichkeitstheorie (Vorlesung)</td>
</tr>
<tr>
<td>2. Maß- und Wahrscheinlichkeitstheorie - Übung (Übung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>B.Mat.1400.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachweis von Grundkenntnissen in diskreter Stochastik sowie Maß- und Wahrscheinlichkeitstheorie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>B.Mat.0021, B.Mat.0022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengangsbeauftragte/r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit grundlegenden Typen von Differenzialgleichungen und Eigenschaften ihrer Lösungen vertraut. Sie

- sind mit grundlegenden Eigenschaften von Fourier-Transformation und Sobolev-Räumen auf beschränkten und unbeschränkten Gebieten vertraut;
- analysieren die Löschbarkeit von Randwertproblemen für elliptische Differenzialgleichungen mit variablen Koeffizienten;
- analysieren die Regularität von Lösungen elliptischer Randwertprobleme im Inneren und am Rand.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- den Typ einer partiellen Differenzialgleichung zu erkennen und auf qualitative Eigenschaften ihrer Lösungen zu schließen;
- mathematisch relevante Fragestellungen zu partiellen Differenzialgleichungen zu erkennen;
- den Einfluss von Randbedingungen und Funktionenräumen auf Existenz, Eindeutigkeit und Stabilität von Lösungen zu beurteilen.

Lehrveranstaltungen:

1. Partielle Differenzialgleichungen (Vorlesung)
 4 SWS
2. Partielle Differenzialgleichungen - Übung (Übung)
 2 SWS

Prüfung:

- Klausur (120 Minuten)
 Prüfungsvorleistungen:
 B.Mat.2100.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:

Nachweis der Grundkenntnisse über partielle Differenzialgleichungen

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Empfohlene Vorkenntnisse:

B.Mat.0021, B.Mat.0022

Modulverantwortliche[r]:

Studiengangsbeauftragte/r

Sprache:

Deutsch

Angebotshäufigkeit:

zweijährig jeweils im Wintersemester

Dauer:

1 Semester
<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td>Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit funktionalanalytischer Denkweise und den zentralen Resultaten aus diesem Gebiet vertraut. Sie

- gehen sicher mit den gängigsten Beispielen von Funktionen- und Folgenräumen wie L^p, l^p und Räumen stetiger Funktionen um und analysieren deren funktionalanalytische Eigenschaften;
- wenden die grundlegenden Sätze über lineare Operatoren in Banach-Räumen an, insbesondere die Sätze von Banach-Steinhaus, Hahn-Banach und den Satz über die offene Abbildung;
- argumentieren mit schwachen Konvergenzbegriffen und den grundlegenden Eigenschaften von Dual- und Bidualräumen;
- erkennen Kompaktheit von Operatoren und analysieren die Lösbarkeit linearer Operatorgleichungen mit Hilfe der Riesz-Fredholm-Theorie;
- sind mit grundlegenden Begriffen der Spektraltheorie und dem Spektralsatz für beschränkte, selbstadjungierte Operatoren vertraut.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- in unendlich-dimensionalen Räumen geometrisch zu argumentieren;
- Aufgabenstellungen in funktionalanalytischer Sprache zu formulieren und zu analysieren;
- die Relevanz funktionalanalytischer Eigenschaften wie der Wahl eines passenden Funktionenraums, Vollständigkeit, Beschränktheit oder Kompaktheit zu erkennen und zu beschreiben.

Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Funktionalanalysis (Vorlesung)</td>
<td>4</td>
</tr>
<tr>
<td>2. Funktionalanalysis - Übung (Übung)</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfung:

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungsvorleistungen</th>
<th>Prüfungsanforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (120 Minuten)</td>
<td>B.Mat.2110.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen</td>
<td>Nachweis der Grundkenntnisse über Funktionalanalysis</td>
</tr>
</tbody>
</table>

Zugangsbedingungen:

- keine

Empfohlene Vorkenntnisse:
- B.Mat.0021, B.Mat.0022
<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>Dauer:</td>
</tr>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

Bemerkungen:
Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen
Modul B.Mat.2200: Moderne Geometrie
English title: Modern geometry

Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Methoden und Konzepten der modernen Geometrie vertraut. Abhängig vom weiterführenden Angebot stehen Methoden der elementaren Differentialgeometrie oder grundlegende Konzepte der algebraischen Geometrie im Mittelpunkt. Die Studierenden

- kennen die Grundlagen der Differentialgeometrie von Kurven und Flächen;
- sind mit den inneren Eigenschaften von Flächen vertraut;
- lernen einfache globale Ergebnisse kennen;

oder sie

- kennen grundlegende Konzepte der algebraischen Geometrie in wichtigen Beispielen;
- sind mit der Formulierung geometrischer Fragen in der Sprache der Algebra vertraut;
- arbeiten mit zentralen Begriffen und Ergebnissen der kommutativen Algebra.

Kompetenzen:
Nach erfolgreichem Absolvieren dieses Moduls verfügen die Studierenden über grundlegende Kompetenzen in der modernen Geometrie und sind auf weiterführende Veranstaltungen in der Differentialgeometrie oder in der algebraischen Geometrie vorbereitet. Sie sind in der Lage,

- geometrische Fragestellungen mit Konzepten der Differentialgeometrie oder der algebraischen Geometrie zu präzisieren;
- Probleme anhand von Ergebnissen der Differentialgeometrie oder der algebraischen Geometrie zu lösen;
- mit Fragestellungen und Anwendungen des jeweiligen Gebiets umzugehen.

Lehrveranstaltungen:
1. Vorlesung (Vorlesung)
 4 SWS
2. Übung
 Angebotshäufigkeit: jedes Wintersemester
 2 SWS

Prüfung: Klausur (120 Minuten)
Prüfungsvorleistungen:
B.Mat.2200.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:
Nachweis der Grundkenntnisse über Geometrie

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:
<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Studiengangsbeauftragte[r]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	
nicht begrenzt	

Bemerkungen:
Dozent/in: Lehrpersonen des Mathematischen Instituts
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weiterführenden Begriffen und Methoden im Schwerpunkt "Numerische und angewandte Mathematik" vertraut. Sie</td>
<td>84 Stunden</td>
</tr>
<tr>
<td>• interpolieren vorgegebene Stützpunkte mit Hilfe von Polynomen, trigonometrischen Polynomen und Splines;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• integrieren Funktionen numerisch mit Hilfe von Newton-Cotes Formeln, Gauß-Quadratur und Romberg-Quadratur;</td>
<td>186 Stunden</td>
</tr>
<tr>
<td>• modellieren Evolutionsprobleme mit Anfangswertaufgaben für Systeme von gewöhnlichen Differentialgleichungen, lösen diese numerisch mit Runge-Kutta-Verfahren und analysieren deren Konvergenz;</td>
<td></td>
</tr>
<tr>
<td>• erkennen die Steifheit von gewöhnlichen Differentialgleichungen und lösen entsprechende Anfangswertprobleme mit impliziten Runge-Kutta-Verfahren;</td>
<td></td>
</tr>
<tr>
<td>• lösen je nach Ausrichtung der Veranstaltung Randwertprobleme oder sind mit Computer Aided Graphic Design (CAGD), Grundlagen der Approximationstheorie oder anderen Gebieten der Numerischen Mathematik vertraut.</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td></td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage</td>
<td></td>
</tr>
<tr>
<td>• Algorithmen zur Lösung mathematischer Probleme zu entwickeln und</td>
<td></td>
</tr>
<tr>
<td>• deren Stabilität, Fehlerverhalten und Komplexität abzuschätzen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Numerische Mathematik II - Übung</td>
</tr>
<tr>
<td>2. Numerische Mathematik II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>B.Mat.2300.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachweis weiterführender Kenntnisse in numerischer Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Deutsch</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
</tr>
<tr>
<td>B.Mat.1300</td>
</tr>
<tr>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td>Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
</tr>
<tr>
<td>jedes Sommersemester</td>
</tr>
<tr>
<td>Dauer:</td>
</tr>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<p>| Modul B.Mat.2300 - Version 3 | 9 C |
| English title: Numerical analysis | 6 SWS |</p>
<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td>Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden der Optimierung vertraut. Sie

- lösen lineare Optimierungsprobleme mit dem Simplex-Verfahren und sind mit der Dualitätstheorie der linearen Optimierung vertraut;
- beurteilen Konvergenzeigenschaften und Rechenaufwand von grundlegenden Verfahren für unrestringierte Optimierungsprobleme wie Gradienten- und (Quasi-)Newton-Verfahren;
- kennen Lösungsverfahren für nichtlineare, restringierte Optimierungsprobleme und gehen sicher mit den KKT-Bedingungen um;
- modellieren Netzwerkflussprobleme und andere Aufgaben als ganzzahlige Optimierungsprobleme und erkennen totale Unimodularität.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- Optimierungsaufgaben in der Praxis zu erkennen und als mathematische Programme zu modellieren sowie
- geeignete Lösungsverfahren zu erkennen und zu entwickeln.

Lehrveranstaltungen:

1. **Übungen**
 Angebotshäufigkeit: jedes Wintersemester

2. **Vorlesung** *(Vorlesung)*
 4 SWS

Prüfung: Klausur (120 Minuten)
Prüfungsvorleistungen:
B.Mat.2310.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:
Nachweis der Grundkenntnisse der Optimierung

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
B.Mat.0021, B.Mat.0022

Sprache:
Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

Angebotshäufigkeit:
keine Sommersession

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
4 - 6
Maximale Studierendenzahl:

| nicht begrenzt |

Bemerkungen:

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Methoden und Denkweisen der angewandten Statistik vertraut. Sie

• gehen sicher mit den Grundbegriffen der deskriptiven Statistik um;
• kennen wichtige Verteilungen von diskreten und stetigen Zufallsvariablen, insbesondere von Verteilungen, die in der Statistik relevant sind;
• verstehen grundlegende stochastische Konvergenzbegriffe und Konvergenzsätze und ihre Bedeutung in der Statistik;
• konstruieren Schätzer wie etwa Maximum Likelihood-Schätzer, Momentenschätzer und Kerndichteschätzer und kennen ihre elementaren Eigenschaften wie Erwartungstreue und Konsistenz;
• konstruieren Konfidenzintervalle zur Parameterschätzung;
• formulieren Hypothesentests und kennen ihre Grundlagen und Eigenschaften;
• sind mit Begriffen von besonderer Wichtigkeit in verschiedenen Gebieten der angewandten Statistik vertraut wie etwa Varianzanalyse, Kontingenztafeln und lineare Regression.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich "Mathematische und Angewandte Statistik" erworben. Sie sind in der Lage,

• statistische Denkweisen und Methoden der deskriptiven Statistik anzuwenden;
• elementare statistische Modelle zu formulieren;
• grundlegende Schätzmethoden zu formulieren und zu verwenden sowie Hypothesentests durchzuführen;
• konkrete Datensätze zu analysieren und entsprechende statistische Verfahren einzusetzen.

Lehrveranstaltungen:
1. Angewandte Statistik 4 SWS
2. Angewandte Statistik - Übung 2 SWS

Prüfung: Klausur (120 Minuten)
Prüfungsvorleistungen:
B.Mat.2400.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen

Prüfungsanforderungen:
Nachweis weiterführender Kenntnisse in Stochastik

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:
<table>
<thead>
<tr>
<th>keine</th>
<th>B.Mat.1420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>Dauer:</td>
</tr>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>zweimalig</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen:
- Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor-Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.
Lernziele/Kompetenzen:

Lernziele:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden

- Grundwissen zu numerischen Verfahren in einem ausgewählten aktuellen Gebiet des wissenschaftlichen Rechnens erworben;
- beispielbezogene Erfahrungen zur Anwendung dieser numerischen Verfahren in dem ausgewählten aktuellen Gebiet des wissenschaftlichen Rechnens und ihren theoretischen Hintergründen gesammelt.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden weitergehende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage,

- numerische Verfahren des ausgewählten aktuellen Gebietes des wissenschaftlichen Rechnens einzusetzen;
- diese numerischen Algorithmen in einem Anwendersystem oder in einer geeigneten Programmiersprache zu implementieren;
- elementare Aussagen zu Konvergenz und Komplexität der ausgewählten numerischen Algorithmen herzuleiten;
- die ausgewählten numerischen Verfahren des Gebietes exemplarisch anzuwenden.

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>56 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium:</td>
<td>124 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Weiterführende Vorlesung zu einem aktuellen Gebiet im Bereich der Verfahren des wissenschaftlichen Rechnens mit Übungen und/oder Praktikum

Prüfung: Mündlich (ca. 20 Minuten)

Prüfungsvorleistungen:
B.Mat.3031.Ue: Teilnahme an Übungen/Praktikum und mündlicher Vortrag

Prüfungsanforderungen:
Die Beherrschung der in der Veranstaltung behandelten Verfahren des wissenschaftlichen Rechnens, ihre Anwendbarkeit und Eigenschaften

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
B.Mat.1300

Sprache:
Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

Angebotshäufigkeit:
keine Angabe

Dauer:
1 Semester

Wiederholbarkeit:
Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>zweimalig</th>
<th>4 - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen:
Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
Learning outcome, core skills:
Learning outcome:
The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Analytical number theory";
- explain basic ideas of proof in the area "Analytical number theory";
- illustrate typical applications in the area "Analytical number theory".

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)
Examination prerequisites:
B.Mat.3111.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
| **Proof of knowledge and mastery of basic competencies in the area "Analytic number theory"** |
|---|---|
| **Admission requirements:** | **Recommended previous knowledge:** |
| none | B.Mat.1100, B.Mat.1200 |
| **Language:** | **Person responsible for module:** |
| English | Programme coordinator |
| **Course frequency:** | **Duration:** |
| not specified | 1 semester(s) |
| **Number of repeat examinations permitted:** | **Recommended semester:** |
| twice | Bachelor: 5 - 6; Master: 1 - 4 |
| **Maximum number of students:** | **Instructor:** Lecturers at the Mathematical Institute |
| not limited | **Additional notes and regulations:** |

Instructor: Lecturers at the Mathematical Institute
Georg-August-Universität Göttingen
Module B.Mat.3112: Introduction to analysis of partial differential equations

Learning outcome, core skills:
Learning outcome:
The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalized functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial differential equations;
- use different theorems of function theory for solving partial differential equations;
- master different asymptotic techniques to study characteristics of the solutions of partial differential equations;
- are paradigmatically familiar with broader application areas of linear theory of partial differential equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial differential equations;
- know the importance of partial differential equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Analysis of partial differential equations";
- explain basic ideas of proof in the area "Analysis of partial differential equations";
- illustrate typical applications in the area "Analysis of partial differential equations".

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Workload:
Attendance time: 84 h
Self-study time: 186 h

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 2898
Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3112.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Analysis of partial differential equations"

Admission requirements:
none

Recommended previous knowledge:
B.Mat.1100, B.Mat.1200

Language:
English

Person responsible for module:
Programme coordinator

Course frequency:
not specified

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
Bachelor: 5 - 6; Master: 1 - 4

Maximum number of students:
not limited

Additional notes and regulations:
Instructor: Lecturers at the Mathematical Institute
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Differential geometry" enables students to learn methods, concepts, theories and applications in the area "Differential geometry". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, areas and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like "space" and "manifolds", "symmetry" and "Lie group", "local structures" and "curvature", "global structure" and "invariants" as well as "integrability";
- master (variably weighted and sorted depending on the current courses offered) the theory of transformation groups and symmetries as well as the analysis on manifolds, the theory of manifolds with geometric structures, complex differential geometry, gauge field theory and their applications as well as the elliptical differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Differential geometry";
- explain basic ideas of proof in the area "Differential geometry";
- illustrate typical applications in the area "Differential geometry".

Courses:

1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3113.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Workload:
Attendance time: 84 h
Self-study time: 186 h
<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th>Proof of knowledge and mastery of basic competencies in the area "Differential geometry"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission requirements:</td>
<td>none</td>
</tr>
<tr>
<td>Recommended previous knowledge:</td>
<td>B.Mat.1100, B.Mat.1200</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Person responsible for module:</td>
<td>Programme coordinator</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>not specified</td>
</tr>
<tr>
<td>Duration:</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>twice</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td>not limited</td>
</tr>
<tr>
<td>Instructor:</td>
<td>Lecturers at the Mathematical Institute</td>
</tr>
<tr>
<td>Additional notes and regulations:</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily.

The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems;
- calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic topology";
- explain basic ideas of proof in the area "Algebraic topology";
- illustrate typical applications in the area "Algebraic topology".

Workload:

Attendance time: 84 h
Self-study time: 186 h

Courses:

1. Lecture course (Lecture) 4 WLH
<table>
<thead>
<tr>
<th>2. Exercise session (Exercise)</th>
<th>2 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)</td>
<td>9 C</td>
</tr>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>B.Mat.3114.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td></td>
</tr>
</tbody>
</table>

| **Examination requirements:** | |
| Proof of knowledge and mastery of basic competencies in the area "Algebraic topology" | |

| **Admission requirements:** | **Recommended previous knowledge:** |
| none | B.Mat.1100, B.Mat.1200 |

| **Language:** | **Person responsible for module:** |
| English | Programme coordinator |

| **Course frequency:** | **Duration:** |
| not specified | 1 semester[s] |

| **Number of repeat examinations permitted:** | **Recommended semester:** |
| twice | Bachelor: 5 - 6; Master: 1 - 4 |

| **Maximum number of students:** | |
| not limited | |

| **Additional notes and regulations:** | |
| Instructor: Lecturers at the Mathematical Institute | |
Georg-August-Universität Göttingen

Module B.Mat.3121: Introduction to algebraic geometry

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning outcome:</td>
<td></td>
</tr>
<tr>
<td>In the modules of the cycle "Algebraic geometry" students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.</td>
<td>Attendance time: 84 h</td>
</tr>
<tr>
<td>Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students</td>
<td>Self-study time: 186 h</td>
</tr>
<tr>
<td>• are familiar with commutative algebra, also in greater detail;</td>
<td></td>
</tr>
<tr>
<td>• know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;</td>
<td></td>
</tr>
<tr>
<td>• examine important examples like elliptic curves, Abelian varieties or algebraic groups;</td>
<td></td>
</tr>
<tr>
<td>• use divisors for classification questions;</td>
<td></td>
</tr>
<tr>
<td>• study algebraic curves;</td>
<td></td>
</tr>
<tr>
<td>• prove the Riemann-Roch theorem and apply it;</td>
<td></td>
</tr>
<tr>
<td>• use cohomological concepts and know the basics of Hodge theory;</td>
<td></td>
</tr>
<tr>
<td>• apply methods of algebraic geometry to arithmetical questions and obtain e. g. finiteness principles for rational points;</td>
<td></td>
</tr>
<tr>
<td>• classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;</td>
<td></td>
</tr>
<tr>
<td>• get to know connections to complex analysis and to complex geometry.</td>
<td></td>
</tr>
<tr>
<td>Core skills:</td>
<td></td>
</tr>
<tr>
<td>After having successfully completed the module, students will be able to</td>
<td></td>
</tr>
<tr>
<td>• discuss basic concepts of the area "Algebraic geometry";</td>
<td></td>
</tr>
<tr>
<td>• explain basic ideas of proof in the area "Algebraic geometry";</td>
<td></td>
</tr>
<tr>
<td>• illustrate typical applications in the area "Algebraic geometry".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>2. Exercise session (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

| Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes) | 9 C |

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7

V10-SoSe17 Seite 2904
<table>
<thead>
<tr>
<th>Examination prerequisites:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Mat.3121.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of knowledge and mastery of basic competencies in the area "Algebraic geometry"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.1100, B.Mat.1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

| Additional notes and regulations: | Instructor: Lecturers at the Mathematical Institute |
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, different and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory;
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic number theory";
- explain basic ideas of proof in the area "Algebraic number theory";
- illustrate typical applications in the area "Algebraic number theory".

Workload:
Attendance time:
84 h
Self-study time:
186 h
<table>
<thead>
<tr>
<th>Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture)</td>
</tr>
<tr>
<td>2. Exercise session (Exercise)</td>
</tr>
<tr>
<td>Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)</td>
</tr>
<tr>
<td>Examination prerequisites:</td>
</tr>
<tr>
<td>B.Mat.3122.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
</tr>
<tr>
<td>Examination requirements:</td>
</tr>
<tr>
<td>Proof of knowledge and mastery of basic competencies in the area "Algebraic number theory"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.1100, B.Mat.1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th>Instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td>Lecturers at the Mathematical Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
</tr>
</thead>
</table>
Module B.Mat.3123: Introduction to algebraic structures

Georg-August-Universität Göttingen

Module B.Mat.3123: Introduction to algebraic structures

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts like rings, modules, algebras and Lie algebras;
- know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- apply basic concepts of category theory to algebras and modules;
- know group actions and their basic classifications;
- apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Algebraic structures";
- explain basic ideas of proof in the area "Algebraic structures";
- illustrate typical applications in the area "Algebraic structures".

Workload:

- **Attendance time:** 84 h
- **Self-study time:** 186 h

Courses:

1. **Lecture course** (Lecture) 4 WLH
2. **Exercise session** (Exercise) 2 WLH

Examination:

- **Written or oral exam**, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:

9 C
<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th>B.Mat.3123.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements:</td>
<td>Proof of knowledge and mastery of basic competencies in the area "Algebraic structures"</td>
</tr>
<tr>
<td>Admission requirements:</td>
<td>none</td>
</tr>
<tr>
<td>Admission requirements:</td>
<td>Recommended previous knowledge: B.Mat.1100, B.Mat.1200</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Language:</td>
<td>Person responsible for module: Programme coordinator</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>not specified</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>Duration: 1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>twice</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester: Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td>not limited</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>Additional notes and regulations:</td>
<td></td>
</tr>
<tr>
<td>Instructor: Lecturers at the Mathematical Institute</td>
<td></td>
</tr>
</tbody>
</table>
Module B.Mat.3124: Introduction to groups, geometry and dynamical systems

Learning outcome, core skills:

Learning outcome:
In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e.g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued.

Students
- know basic concepts of groups and group homomorphisms;
- know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- know the basics of the representation theory of compact Lie groups.

Core skills:
After having successfully completed the module, students will be able to
- discuss basic concepts of the area "Groups, geometry and dynamical systems";
- explain basic ideas of proof in the area "Groups, geometry and dynamical systems";
- illustrate typical applications in the area "Groups, geometry and dynamical systems".

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH
Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3124.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Groups, geometry and dynamical systems"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.1100, B.Mat.1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute
Module B.Mat.3131: Introduction to inverse problems

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors;
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse problems of partial differential equations where the unknown is e. g. a coefficient, an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computed tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Inverse problems";
- explain basic ideas of proof in the area "Inverse problems";
- illustrate typical applications in the area "Inverse problems".

Workload:

- **Attendance time:** 84 h
- **Self-study time:** 186 h

Courses:

1. **Lecture course** (Lecture)
 - **4 WLH**
2. **Exercise session** (Exercise)
 - **2 WLH**
<table>
<thead>
<tr>
<th>Examination</th>
<th>Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td>B.Mat.3131.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of knowledge and mastery of basic competencies in the area "Inverse problems"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended previous knowledge:</td>
<td>B.Mat.1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person responsible for module:</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration:</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>twice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester:</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th>not limited</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor: Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module B.Mat.3132: Introduction to approximation methods

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning outcome:</td>
<td>After having successfully completed the module, students will be able to</td>
</tr>
<tr>
<td>The successful completion of modules of the cycle "Approximation methods" enables students to learn methods, concepts, theories and applications in the area of "Approximation methods", so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students</td>
<td>• discuss basic concepts of the area "Approximation methods";</td>
</tr>
<tr>
<td>• are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;</td>
<td>• explain basic ideas of proof in the area "Approximation methods" for one- and multidimensional data;</td>
</tr>
<tr>
<td>• can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;</td>
<td>• illustrate typical applications in the area of data approximation and data analysis.</td>
</tr>
<tr>
<td>• know and use parts of classical approximation theory, e. g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;</td>
<td></td>
</tr>
<tr>
<td>• acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;</td>
<td></td>
</tr>
<tr>
<td>• apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;</td>
<td></td>
</tr>
<tr>
<td>• evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;</td>
<td></td>
</tr>
<tr>
<td>• acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data;</td>
<td></td>
</tr>
<tr>
<td>• are informed about current developments of efficient data approximation and data analysis;</td>
<td></td>
</tr>
<tr>
<td>• adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
<th>Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time: 84 h</td>
<td>1. Lecture course (Lecture) 4 WLH</td>
</tr>
<tr>
<td>Self-study time: 186 h</td>
<td></td>
</tr>
</tbody>
</table>

Module B.Mat.3132 - Version 4

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7

V10-SoSe17 Seite 2914
Exercise session (Exercise)

Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3132.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Approximation methods"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

Maximum number of students:	
-----------------------------	===
not limited	

Additional notes and regulations:
Instructor: Lecturers at the Institute of Numerical and Applied Mathematics
Georg-August-Universität Göttingen
Module B.Mat.3133: Introduction to numerics of partial differential equations

Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle “Numerics of partial differential equations” enables students to learn methods, concepts, theories and applications in the area of “Numerics of partial differential equations”. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master’s thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e. g. questions of classification as well as existence, uniqueness and regularity of the solution;
- know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application of numerical solution strategies in a special area of partial differential equations, e. g. in variation problems with constraints, singularly perturbed problems or of integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area “Numerics of partial differential equations”;
- explain basic ideas of proof in the area “Numerics of partial differential equations”;
- illustrate typical applications in the area “Numerics of partial differential equations”.

Workload:
Attendance time:
84 h
Self-study time:
186 h
Courses:
1. **Lecture course** (Lecture)
 4 WLH
2. **Exercise session** (Exercise)
 2 WLH

Examination:
Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)
Examination prerequisites:
B.Mat.3133.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions
Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Numerics of partial differential equations"

Admission requirements:

<table>
<thead>
<tr>
<th>Language</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

Recommended previous knowledge:
B.Mat.1300

Recommended semester:
Bachelor: 5 - 6; Master: 1 - 4

Instructor:
Lecturers at the Institute of Numerical and Applied Mathematics
Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;
- evaluate the existence and uniqueness of the solution of an optimisation problem;
- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;
- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised;
- analyse the complexity of an optimisation problem;
- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;
- develop optimisation methods and adapt general methods to special problems;
- deduce upper and lower bounds for optimisation problems and understand their meaning;
- understand the geometrical structure of an optimisation problem and apply it for solution strategies;
- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;
- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e.g. integer optimisation, optimisation of networks or convex optimisation;
- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e.g. traffic planning or location planning;
- handle advanced optimisation problems, like e.g. optimisation problems with uncertainty or multi-criteria optimisation problems.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Optimisation";
- explain basic ideas of proof in the area "Optimisation";
- illustrate typical applications in the area "Optimisation".

Workload:

Attendance time: 84 h
Self-study time: 186 h
Courses:
1. Lecture course (Lecture)
2. Exercise session (Exercise)

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 WLH</td>
</tr>
<tr>
<td>2 WLH</td>
</tr>
</tbody>
</table>

Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)
Examination prerequisites:
B.Mat.3134.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

<table>
<thead>
<tr>
<th>Examination requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of knowledge and mastery of basic competencies in the area "Optimisation"</td>
</tr>
</tbody>
</table>

Admission requirements:
none

<table>
<thead>
<tr>
<th>Admission requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

Recommended previous knowledge:
B.Mat.1300

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Mat.1300</td>
</tr>
</tbody>
</table>

Language:
English

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

Person responsible for module:
Programme coordinator

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

Course frequency:
not specified

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
</tr>
</tbody>
</table>

Duration:
1 semester[s]

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

Number of repeat examinations permitted:
twice

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

Recommended semester:
Bachelor: 5 - 6; Master: 1 - 4

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

Maximum number of students:
not limited

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
</tr>
</tbody>
</table>

Instructor: Lecturers at the Institute of Numerical and Applied Mathematics

<table>
<thead>
<tr>
<th>Instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- know basic concepts and methods of topology;
- are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods;
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Image and geometry processing";
- explain basic ideas of proof in the area "Image and geometry processing";
- illustrate typical applications in the area "Image and geometry processing".

Workload:
Attendance time: 84 h
Self-study time: 186 h
<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>2. Exercise session (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)</th>
<th>9 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>B.Mat.3138.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of knowledge and mastery of basic competencies in the area "Image and geometry processing"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor: Lecturers at the Institute of Numerical and Applied Mathematics</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module B.Mat.3141: Introduction to applied and mathematical stochastics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning outcome:</td>
</tr>
<tr>
<td>The successful completion of modules of the cycle “Applied and mathematical stochastics” enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master’s thesis). Depending on the current course offer the following content-related competencies may be pursued: Students</td>
</tr>
<tr>
<td>• are familiar with advanced concepts of probability theory established on measure theory and apply them independently;</td>
</tr>
<tr>
<td>• are familiar with substantial concepts and approaches of probability modelling and inferential statistics;</td>
</tr>
<tr>
<td>• know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;</td>
</tr>
<tr>
<td>• have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;</td>
</tr>
<tr>
<td>• understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;</td>
</tr>
<tr>
<td>• analyse the convergence characteristic of stochastic processes;</td>
</tr>
<tr>
<td>• analyse regularity characteristics of the paths of stochastic processes;</td>
</tr>
<tr>
<td>• adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;</td>
</tr>
<tr>
<td>• analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;</td>
</tr>
<tr>
<td>• discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>After having successfully completed the module, students will be able to</td>
</tr>
<tr>
<td>• discuss basic concepts of the area “Applied and mathematical stochastics”;</td>
</tr>
<tr>
<td>• explain basic ideas of proof in the area "Applied and mathematical stochastics";</td>
</tr>
<tr>
<td>• illustrate typical applications in the area "Applied and mathematical stochastics".</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time:</td>
</tr>
<tr>
<td>84 h</td>
</tr>
<tr>
<td>Self-study time:</td>
</tr>
<tr>
<td>186 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture) 4 WLH</td>
</tr>
<tr>
<td>2. Exercise session (Exercise) 2 WLH</td>
</tr>
</tbody>
</table>
Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)
Examination prerequisites:
B.Mat.3141.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Applied and mathematical stochastics"

Admission requirements:
none

Recommended previous knowledge:
B.Mat.1400

Language:
English

Person responsible for module:
Programme coordinator

Course frequency:
not specified

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
Bachelor: 5 - 6; Master: 1 - 4

Maximum number of students:
not limited

Additional notes and regulations:
Instructor: Lecturers at the Institute of Mathematical Stochastics
Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e. g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Ito calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these;
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Stochastic processes";

Workload:

Attendance time: 84 h
Self-study time: 186 h
• explain basic ideas of proof in the area "Stochastic processes";
• illustrate typical applications in the area "Stochastic processes".

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3142.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Stochastic processes"

Admission requirements: none
Recommended previous knowledge: B.Mat.1400

Language: English
Person responsible for module: Programme coordinator

Course frequency: not specified
Duration: 1 semester[s]

Number of repeat examinations permitted: twice
Recommended semester:
Bachelor: 5 - 6; Master: 1 - 4

Maximum number of students: not limited

Additional notes and regulations:
Instructor: Lecturers at the Institute of Mathematical Stochastics
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Stochastic methods of economathematics" enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- understand stochastic connections;
- understand references to other mathematical areas;
- get to know possible applications in theory and practice;
- gain insight into the connection of mathematics and economic sciences.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Stochastic methods of economathematics";
- explain basic ideas of proof in the area "Stochastic methods of economathematics";
- illustrate typical applications in the area "Stochastic methods of economathematics".

Workload:

| Attendance time: | 84 h |
| Self-study time: | 186 h |

Courses:

| 1. Lecture course (Lecture) | 4 WLH |
| 2. Exercise session (Exercise) | 2 WLH |

Examination:

Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes)

Examination prerequisites:
B.Mat.3143.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of knowledge and mastery of basic competencies in the area "Stochastic methods of economathematics"

Admission requirements:
none

Recommended previous knowledge:
B.Mat.1400

Language:
English

Person responsible for module:
Programme coordinator
<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics
Module B.Mat.3144: Introduction to mathematical statistics

Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:

After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Mathematical statistics";
- explain basic ideas of proof in the area "Mathematical statistics";
- illustrate typical applications in the area "Mathematical statistics".

Courses:

1. **Lecture course** (Lecture)
 4 WLH

2. **Exercise session** (Exercise)
 2 WLH

Workload:

- **Attendance time:** 84 h
- **Self-study time:** 186 h
| **Examination:** Written or oral exam, written examination (120 minutes) or oral examination (appr. 20 minutes) | 9 C |
| **Examination prerequisites:** B.Mat.3144.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions |

| **Examination requirements:** Proof of knowledge and mastery of basic competencies in the area "Mathematical statistics" |

| **Admission requirements:** none |
| **Recommended previous knowledge:** B.Mat.1400 |

| **Language:** English |
| **Person responsible for module:** Programme coordinator |

| **Course frequency:** not specified |
| **Duration:** 1 semester[s] |

| **Number of repeat examinations permitted:** twice |
| **Recommended semester:** Bachelor: 5 - 6; Master: 1 - 4 |

| **Maximum number of students:** not limited |

| **Additional notes and regulations:** |
| **Instructor:** Lecturers at the Institute of Mathematical Stochastics |
Module B.Mat.3311: Advances in analytic number theory

Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Analytic number theory" enables students to learn methods, concepts, theories and applications in the area of "Analytic number theory". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- solve arithmetical problems with basic, complex-analytical, and Fourier-analytical methods;
- know characteristics of the Riemann zeta function and more general L-functions, and apply them to problems of number theory;
- are familiar with results and methods of prime number theory;
- acquire knowledge in arithmetical and analytical theory of automorphic forms, and its application in number theory;
- know basic sieving methods and apply them to the problems of number theory;
- know techniques used to estimate the sum of the sum of characters and of exponentials;
- analyse the distribution of rational points on suitable algebraic varieties using analytical techniques;
- master computation with asymptotic formulas, asymptotic analysis, and asymptotic equipartition in number theory.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analytic number theory" confidently;
- explain complex issues of the area "Analytic number theory";
- apply methods of the area "Analytic number theory" to new problems in this area.

Workload:

| Attendance time: | 84 h |
| Self-study time: | 186 h |

Courses:

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Lecture course</td>
<td>4 WLH</td>
</tr>
<tr>
<td>Exercise</td>
<td>Exercise session</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

Examination:

- **Oral examination (approx. 20 minutes)**

Examination prerequisites:

- B.Mat.3311.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:

- Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Analytic number theory"
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3111</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>"Introduction to analytic number theory"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th>Instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td>Lecturers at the Mathematical Institute</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Analysis of partial differential equations" enables students to learn methods, concepts, theories and applications in the area "Analysis of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important types of partial differential equations and know their solutions;
- master the Fourier transform and other techniques of the harmonic analysis to analyse partial differential equations;
- are familiar with the theory of generalised functions and the theory of function spaces and use these for solving differential partial equations;
- apply the basic principles of functional analysis to the solution of partial differential equations;
- use different theorems of function theory for solving partial differential equations;
- master different asymptotic techniques to study characteristics of the solutions of partial differential equations;
- are paradigmatically familiar with broader application areas of linear theory of partial differential equations;
- are paradigmatically familiar with broader application areas of non-linear theory of partial differential equations;
- know the importance of partial differential equations in the modelling in natural and engineering sciences;
- master some advanced application areas like parts of microlocal analysis or parts of algebraic analysis.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Analysis of partial differential equations" confidently;
- explain complex issues of the area "Analysis of partial differential equations";
- apply methods of the area "Analysis of partial differential equations" to new problems in this area.

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Workload:
Attendance time: 84 h
Self-study time: 186 h
<table>
<thead>
<tr>
<th>Examination: Oral examination (approx. 20 minutes)</th>
<th>9 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>B.Mat.3312.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td></td>
</tr>
</tbody>
</table>

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Analysis of partial differential equations"

Admission requirements:	
none	
Recommended previous knowledge:	
B.Mat.3312	

Language:	
English	
Person responsible for module:	
Programme coordinator	

Course frequency:	
Usually subsequent to the module B.Mat.3112 "Introduction to analysis of partial differential equations"	
Duration:	
1 semester[s]	

Number of repeat examinations permitted:	
twice	
Recommended semester:	
Bachelor: 6; Master: 1 - 4	

| **Maximum number of students:** | |
| not limited | |

Additional notes and regulations:
Instructor: Lecturers at the Mathematical Institute
Learning outcome, core skills:
Learning outcome:
The successful completion of modules of the cycle “Differential geometry” enables students to learn methods, concepts, theories and applications in the area “Differential geometry”. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master’s thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master the basic concepts of differential geometry;
- develop a spatial sense using the examples of curves, surfaces and hypersurfaces;
- develop an understanding of the basic concepts of differential geometry like “space” and “manifolds”, “symmetry” and “Lie group”, “local structures” and “curvature”, “global structure” and “invariants” as well as “integrability”;
- master (variably weighted and sorted depending on the current courses offered) the theory of transformation groups and symmetries as well as the analysis on manifolds, the theory of manifolds with geometric structures, complex differential geometry, gauge field theory and their applications as well as the elliptical differential equations of geometry and gauge field theory;
- develop an understanding for geometrical constructs, spatial patterns and the interaction of algebraic, geometrical, analytical and topological methods;
- acquire the skill to apply methods of analysis, algebra and topology for the treatment of geometrical problems;
- are able to import geometrical problems to a broader mathematical and physical context.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area “Differential geometry” confidently;
- explain complex issues of the area “Differential geometry”;
- apply methods of the area “Differential geometry” to new problems in this area.

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Oral examination (approx. 20 minutes)
Examination prerequisites:
B.Mat.3313.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
| Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Differential geometry" |
|---|---|
| **Admission requirements:** none | **Recommended previous knowledge:** B.Mat.3113 |
| **Language:** English | **Person responsible for module:** Programme coordinator |
| **Course frequency:** Usually subsequent to the module B.Mat.3113 "Introduction to differential geometry" | **Duration:** 1 semester[s] |
| **Number of repeat examinations permitted:** twice | **Recommended semester:** Bachelor: 6; Master: 1 - 4 |
| **Maximum number of students:** not limited | |
| **Additional notes and regulations:** Instructor: Lecturers at the Mathematical Institute |
Learning outcome, core skills:

Learning outcome:
In the modules of the cycle "Algebraic topology" students get to know the most important classes of topological spaces as well as algebraic and analytical tools for studying these spaces and the mappings between them. The students use these tools in geometry, mathematical physics, algebra and group theory. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic topology uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic topology and supplement one another complementarily.

The following content-related competencies are pursued. Students

- know the basic concepts of set-theoretic topology and continuous mappings;
- construct new topologies from given topologies;
- know special classes of topological spaces and their special characteristics like CW complexes, simplicial complexes and manifolds;
- apply basic concepts of category theory to topological spaces;
- use concepts of functors to obtain algebraic invariants of topological spaces and mappings;
- know the fundamental group and the covering theory as well as the basic methods for the computation of fundamental groups and mappings between them;
- know homology and cohomology, calculate those for important examples and with the aid of these deduce non-existence of mappings as well as fixed-point theorems;
- calculate homology and cohomology with the aid of chain complexes;
- deduce algebraic characteristics of homology and cohomology with the aid of homological algebra;
- become acquainted with connections between analysis and topology;
- apply algebraic structures to deduce special global characteristics of the cohomology of a local structure of manifolds.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic topology" confidently;
- explain complex issues of the area "Algebraic topology";
- apply methods of the area "Algebraic topology" to new problems in this area.

Courses:

1. Lecture course (Lecture)

Workload:
Attendance time: 84 h
Self-study time: 186 h
2. Exercise session (Exercise)

<table>
<thead>
<tr>
<th>Examination: Oral examination (approx. 20 minutes)</th>
<th>2 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>B.Mat.3314.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td>9 C</td>
</tr>
</tbody>
</table>

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic topology"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3114 "Introduction to algebraic topology"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:
Instructor: Lecturers at the Mathematical Institute
Module B.Mat.3315: Advances in mathematical methods in physics

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Mathematical methods of physics" students get to know different mathematical methods and techniques that play a role in modern physics. They are introduced to current research questions and enabled to carry out independent contributions to research, e.g. within the scope of a Master's thesis.

The topics of the cycle can be divided into four blocks, a cycle normally contains parts of different blocks, that topically supplement each other, but can also be read within one block. The introducing parts of the cycle form the basis for the advanced specialisation area. The topic blocks are

- harmonic analysis, algebraic structures and representation theory, (group) effects;
- operator algebra, C* algebra and von-Neumann algebra;
- operator theory, perturbation and scattering theory, special PDE, microlocal analysis, distributions;
- (semi) Riemannian geometry, symplectic and Poisson geometry, quantization.

One of the aims is that a connection to physical problems is visible, at least in the motivation of the covered topics. Preferably, in the advanced part of the cycle, the students should know and be able to carry out practical applications themselves.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical methods in physics" confidently;
- explain complex issues of the area "Mathematical methods in physics";
- apply methods of the area "Mathematical methods in physics" to new problems in this area.

Workload:

- **Attendance time:** 84 h
- **Self-study time:** 186 h

Courses:

1. **Lecture course** (Lecture) 4 WLH
2. **Exercise session** (Exercise) 2 WLH

Examination:

- **Oral examination** (approx. 20 minutes)

Examination prerequisites:

- **B.Mat.3315.Ue:** Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:

- Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Mathematical methods in physics"

Admission requirements: 9 C

Recommended previous knowledge:
<table>
<thead>
<tr>
<th>none</th>
<th>B.Mat.3115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language:</td>
<td>Person responsible for module:</td>
</tr>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>Duration:</td>
</tr>
<tr>
<td>on an irregular basis</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute
Module B.Mat.3321: Advances in algebraic geometry

<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module B.Mat.3321: Advances in algebraic geometry</td>
</tr>
</tbody>
</table>

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle “Algebraic geometry” students get to know the most important classes of algebraic varieties and schemes as well as the tools for studying these objects and the mappings between them. The students apply these skills to problems of arithmetic or complex analysis. They are introduced to current research questions and enabled to carry out independent contributions to research, e.g. within the scope of a Master’s thesis.

Algebraic geometry uses and connects concepts of algebra and geometry and can be used versatilely. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic geometry and supplement one another complementarily. The following content-related competencies are pursued. Students

- are familiar with commutative algebra, also in greater detail;
- know the concepts of algebraic geometry, especially varieties, schemes, sheafs, bundles;
- examine important examples like elliptic curves, Abelian varieties or algebraic groups;
- use divisors for classification questions;
- study algebraic curves;
- prove the Riemann-Roch theorem and apply it;
- use cohomological concepts and know the basics of Hodge theory;
- apply methods of algebraic geometry to arithmetical questions and obtain e.g. finiteness principles for rational points;
- classify singularities and know the significant aspects of the dimension theory of commutative algebra and algebraic geometry;
- get to know connections to complex analysis and to complex geometry.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic geometry” confidently;
- explain complex issues of the area "Algebraic geometry”;
- apply methods of the area "Algebraic geometry” to new problems in this area.

Workload:

| Attendance time: | 84 h |
| Self-study time: | 186 h |

Courses:

1. **Lecture course** (Lecture) 4 WLH
2. **Exercise session** (Exercise) 2 WLH

Examination:

Oral examination (approx. 20 minutes)

Examination prerequisites:

9 C
B.Mat.3321.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area “Algebraic geometry”

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3121 "Introduction to algebraic geometry"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Mathematical Institute
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Algebraic number theory" enables students to learn methods, concepts, theories and applications in the areas "Algebraic number theory" and "Algorithmic number theory". During the course of the cycle students will be successively introduced to current theoretical and/or applied research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued in relation to algebra. Students

- know Noetherian and Dedekind rings and the class groups;
- are familiar with discriminants, differents and bifurcation theory of Hilbert;
- know geometrical number theory with applications to the unit theorem and the finiteness of class groups as well as the algorithmic aspects of lattice theory (LLL);
- are familiar with L-series and zeta functions and discuss the algebraic meaning of their residues;
- know densities, the Tchebotarew theorem and applications;
- work with orders, S-integers and S-units;
- know the class field theory of Hilbert, Takagi and Idele theoretical field theory;
- are familiar with Zp-extensions and their Iwasawa theory;
- discuss the most important hypotheses of Iwasawa theory and their consequences.

Concerning algorithmic aspects of number theory, the following competencies are pursued. Students

- work with algorithms for the identification of short lattice bases, nearest points in lattices and the shortest vectors;
- are familiar with basic algorithms of number theory in long arithmetic like GCD, fast number and polynomial arithmetic, interpolation and evaluation and prime number tests;
- use the sieving method for factorisation and calculation of discrete logarithms in finite fields of great characteristics;
- discuss algorithms for the calculation of the zeta function of elliptic curves and Abelian varieties of finite fields;
- calculate class groups and fundamental units;
- calculate Galois groups of absolute number fields.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic number theory" confidently;
- explain complex issues of the area "Algebraic number theory";
- apply methods of the area "Algebraic number theory" to new problems in this area.
Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Oral examination (approx. 20 minutes)
Examination prerequisites:
B.Mat.3322.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic number theory"

Admission requirements: none
Recommended previous knowledge: B.Mat.3122
Language: English
Person responsible for module: Programme coordinator
Course frequency: Usually subsequent to the module B.Mat.3122 "Introduction to algebraic number theory"
Duration: 1 semester[s]
Number of repeat examinations permitted: twice
Recommended semester:
Maximum number of students: not limited
Recommended semester: Bachelor: 6; Master: 1 - 4

Additional notes and regulations:
Instructor: Lecturers at the Mathematical Institute
Module B.Mat.3323: Advances in algebraic structures

Learning outcome, core skills:

Learning outcome:

In the modules of the cycle "Algebraic structures" students get to know different algebraic structures, amongst others Lie algebras, Lie groups, analytical groups, associative algebras as well as the tools from algebra, geometry and category theory that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e. g. within the scope of a Master's thesis.

Algebraic structures use concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of algebraic structures and supplement one another complementarily. The following content-related competencies are pursued. Students

- know basic concepts like rings, modules, algebras and Lie algebras;
- know important examples of Lie algebras and algebras;
- know special classes of Lie groups and their special characteristics;
- know classification theorems for finite-dimensional algebras;
- apply basic concepts of category theory to algebras and modules;
- know group actions and their basic classifications;
- apply the enveloping algebra of Lie algebras;
- apply ring and module theory to basic constructs of algebraic geometry;
- use combinatorial tools for the study of associative algebras and Lie algebras;
- acquire solid knowledge of the representation theory of Lie algebras, finite groups and compact Lie groups as well as the representation theory of semisimple Lie groups;
- know Hopf algebras as well as their deformation and representation theory.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Algebraic structures" confidently;
- explain complex issues of the area "Algebraic structures";
- apply methods of the area "Algebraic structures" to new problems in this area.

Courses:

1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:

Workload:
Attendance time: 84 h
Self-study time: 186 h
<table>
<thead>
<tr>
<th>B.Mat.3323.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</th>
</tr>
</thead>
</table>

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Algebraic structures"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3123 "Introduction to algebraic structures"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor: Lecturers at the Mathematical Institute</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module B.Mat.3324: Advances in groups, geometry and dynamical systems

Learning outcome, core skills:

Learning outcome:
In the modules of the cycle "Groups, geometry and dynamical systems" students get to know the most important classes of groups as well as the algebraic, geometrical and analytical tools that are necessary for their study and applications. They are introduced to current research questions and enabled to carry out independent contributions to research, e.g. within the scope of a Master's thesis.

Group theory uses concepts and tools of algebra, geometry and analysis and can be applied to these areas. In the course offer several aspects are considered at a time and a cycle will only cover some of the learning objectives mentioned below. The introduction to the cycle and the specialisation in the cycle will normally cover different aspects of the area "Groups, geometry and dynamical systems" that supplement one another complementarily. The following content-related competencies are pursued.

Students
- know basic concepts of groups and group homomorphisms;
- know important examples of groups;
- know special classes of groups and their special characteristics;
- apply basic concepts of category theory to groups and define spaces via universal properties;
- apply the concepts of functors to obtain algebraic invariants;
- know group actions and their basic classification results;
- know the basics of group cohomology and compute these for important examples;
- know the basics of geometrical group theory like growth characteristics;
- know self-similar groups, their basic constructs as well as examples with interesting characteristics;
- use geometrical and combinatorial tools for the study of groups;
- know the basics of the representation theory of compact Lie groups.

Core skills:
After having successfully completed the module, students will be able to
- handle methods and concepts of the area "Groups, geometry and dynamical systems" confidently;
- explain complex issues of the area "Groups, geometry and dynamical systems";
- apply methods of the area "Groups, geometry and dynamical systems" to new problems in this area.

Workload:
Attendance time: 84 h
Self-study time: 186 h

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH
Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:
B.Mat.3324.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
The proof of advancement of knowledge and competencies acquired in the introductory module of the area "Groups, geometry and dynamical systems"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3124</td>
</tr>
</tbody>
</table>

Language:
English

Person responsible for module:
Programme coordinator

Course frequency:
Usually subsequent to the module B.Mat.3124 "Introduction to groups, geometry and dynamical systems"

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
Bachelor: 6; Master: 1 - 4

Maximum number of students:
not limited

Additional notes and regulations:
Instructor: Lecturers at the Mathematical Institute
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Inverse problems" enables students to learn methods, concepts, theories and applications in the area of "Inverse problems". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the phenomenon of illposedness and identify the degree of illposedness of typical inverse problems;
- evaluate different regularisation methods for ill posed inverse problems under algorithmic aspects and with regard to various a priori information and distinguish concepts of convergence for such methods with deterministic and stochastic data errors;
- analyse the convergence of regularisation methods with the help of spectral theory of bounded self-adjoint operators;
- analyse the convergence of regularisation methods with the help of complex analysis;
- analyse regularisation methods from stochastic error models;
- apply fully data-driven models for the choice of regularisation parameters and evaluate these for concrete problems;
- model identification problems in natural sciences and technology as inverse problems of partial differential equations where the unknown is e. g. a coefficient, an initial or a boundary condition or the shape of a region;
- analyse the uniqueness and conditional stability of inverse problems of partial differential equations;
- deduce sampling and testing methods for the solution of inverse problems of partial differential equations and analyse the convergence of such methods;
- formulate mathematical models of medical imaging like computer tomography (CT) or magnetic resonance tomography (MRT) and know the basic characteristics of corresponding operators.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Inverse problems" confidently;
- explain complex issues of the area "Inverse problems";
- apply methods of the area "Inverse problems" to new problems in this area.

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH
Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:
B.Mat.3331.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Inverse problems"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3131 "Introduction to inverse problems"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle “Approximation methods” enables students to learn methods, concepts, theories and applications in the area of “Approximation methods”, so the approximation of one- and multidimensional functions as well as for the analysis and approximation of discrete signals and images. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of approximation problems in suitable finite- and infinite-dimensional vector spaces;
- can confidently handle models for the approximation of one- and multidimensional functions in Banach and Hilbert spaces;
- know and use parts of classical approximation theory, e.g. Jackson and Bernstein theorems for the approximation quality for trigonometrical polynomials, approximation in translationally invariant spaces; polynomial reductions and Strang-Fix conditions;
- acquire knowledge of continuous and discrete approximation problems and their corresponding solution strategies both in the one- and multidimensional case;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods for the efficient solution of the approximation problems on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear approximation methods for multidimensional data;
- are informed about current developments of efficient data approximation and data analysis;
- adapt solution strategies for the data approximation using special structural characteristics of the approximation problem that should be solved.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Approximation methods" confidently;
- explain complex issues of the area “Approximation methods”;
- apply methods of the area "Approximation methods" to new problems in this area.

Workload:

<table>
<thead>
<tr>
<th>Attendance time:</th>
<th>84 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-study time:</td>
<td>186 h</td>
</tr>
</tbody>
</table>

Courses:

<table>
<thead>
<tr>
<th>Courses</th>
<th>1. Lecture course (Lecture)</th>
<th>2. Exercise session (Exercise)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 WLH</td>
<td>2 WLH</td>
</tr>
<tr>
<td>Examination: Oral examination (approx. 20 minutes)</td>
<td>9 C</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Examination prerequisites:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Mat.3332.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Examination requirements:** | |
| Proof of advancement of knowledge and competencies acquired in the introductory module of the area “Approximation methods” | |

| **Admission requirements:** | **Recommended previous knowledge:** |
| none | B.Mat.3132 |

| **Language:** | **Person responsible for module:** |
| English | Programme coordinator |

| **Course frequency:** | **Duration:** |
| Usually subsequent to the module B.Mat.3132 "Introduction to approximation methods" | 1 semester[s] |

| **Number of repeat examinations permitted:** | **Recommended semester:** |
| twice | Bachelor: 6; Master: 1 - 4 |

| **Maximum number of students:** | |
| not limited | |

| **Additional notes and regulations:** | |
| **Instructor:** Lecturers at the Institute of Numerical and Applied Mathematics | |
Module B.Mat.3333: Advances in numerics of partial differential equations

Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Numerics of partial differential equations" enables students to learn methods, concepts, theories and applications in the area of "Numerics of partial differential equations". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of linear partial differential equations, e.g. questions of classification as well as existence, uniqueness and regularity of the solution;
- know the basics of the theory of linear integral equations;
- are familiar with basic methods for the numerical solution of linear partial differential equations with finite difference methods (FDM), finite element methods (FEM) as well as boundary element methods (BEM);
- analyse stability, consistence and convergence of FDM, FEM and BEM for linear problems;
- apply methods for adaptive lattice refinement on the basis of a posteriori error approximations;
- know methods for the solution of larger systems of linear equations and their preconditioners and parallelisation;
- apply methods for the solution of larger systems of linear and stiff ordinary differential equations and are familiar with the problem of differential algebraic problems;
- apply available software for the solution of partial differential equations and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge in the theory as well as development and application of numerical solution strategies in a special area of partial differential equations, e.g. in variation problems with constraints, singularly perturbed problems or of integral equations;
- know propositions about the theory of non-linear partial differential equations of monotone and maximally monotone type as well as suitable iterative solution methods.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Numerics of partial differential equations" confidently;
- explain complex issues of the area "Numerics of partial differential equations";

Workload:

Attendance time: 84 h
Self-study time: 186 h
• apply methods of the area "Numerics of partial differential equations" to new problems in this area.

Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture course (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>Exercise session (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

Examination:

- **Oral examination (approx. 20 minutes)**
- **Examination prerequisites:**
 - B.Mat.3333.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:

- Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Numerics of partial differential equations"

Admission requirements:

- none

Recommended previous knowledge:

- B.Mat.3133

Language:

- English

Person responsible for module:

- Programme coordinator

Course frequency:

- Usually subsequent to the module B.Mat.3133 "Introduction to numerics of partial differential equations"

Duration:

- 1 semester[s]

Number of repeat examinations permitted:

- twice

Recommended semester:

- Bachelor: 6; Master: 1 - 4

Maximum number of students:

- not limited

Instructor:

- Lecturers at the Institute of Numerical and Applied Mathematics
Georg-August-Universität Göttingen

Module B.Mat.3334: Advances in optimisation

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning outcome:</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>The successful completion of modules of the cycle "Optimisation" enables students to learn methods, concepts, theories and applications in the area of "Optimisation", so the discrete and continuous optimisation. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students</td>
<td>84 h</td>
</tr>
<tr>
<td>- identify optimisation problems in application-oriented problems and formulate these as mathematical programmes;</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>- evaluate the existence and uniqueness of the solution of an optimisation problem;</td>
<td></td>
</tr>
<tr>
<td>- identify structural characteristics of an optimisation problem, amongst others the existence of a finite candidate set, the structure of the underlying level set;</td>
<td></td>
</tr>
<tr>
<td>- know which special characteristics of the target function and the constraints (like (virtual) convexity, dc functions) for the development of solution strategies can be utilised;</td>
<td></td>
</tr>
<tr>
<td>- analyse the complexity of an optimisation problem;</td>
<td></td>
</tr>
<tr>
<td>- classify a mathematical programme in a class of optimisation problems and know current solution strategies for it;</td>
<td></td>
</tr>
<tr>
<td>- develop optimisation methods and adapt general methods to special problems;</td>
<td></td>
</tr>
<tr>
<td>- deduce upper and lower bounds for optimisation problems and understand their meaning;</td>
<td></td>
</tr>
<tr>
<td>- understand the geometrical structure of an optimisation problem and apply it for solution strategies;</td>
<td></td>
</tr>
<tr>
<td>- distinguish between proper solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing times;</td>
<td></td>
</tr>
<tr>
<td>- acquire advanced knowledge in the development of solution strategies on the basis of a special area of optimisation, e. g. integer optimisation, optimisation of networks or convex optimisation;</td>
<td></td>
</tr>
<tr>
<td>- acquire advanced knowledge for the solution of special optimisation problems of an application-oriented area, e. g. traffic planning or location planning;</td>
<td></td>
</tr>
<tr>
<td>- handle advanced optimisation problems, like e. g. optimisation problems with uncertainty or multi-criteria optimisation problems.</td>
<td></td>
</tr>
<tr>
<td>Core skills:</td>
<td></td>
</tr>
<tr>
<td>After having successfully completed the module, students will be able to</td>
<td></td>
</tr>
<tr>
<td>- handle methods and concepts of the area "Optimisation" confidently;</td>
<td></td>
</tr>
<tr>
<td>- explain complex issues of the area "Optimisation";</td>
<td></td>
</tr>
<tr>
<td>- apply methods of the area "Optimisation" to new problems in this area.</td>
<td></td>
</tr>
<tr>
<td>Courses:</td>
<td></td>
</tr>
</tbody>
</table>
|-----------|---
| **1. Lecture course** (Lecture) | 4 WLH
| **2. Exercise session** (Exercise) | 2 WLH

| Examination: | Oral examination (approx. 20 minutes) | 9 C
| Examination prerequisites: | B.Mat.3334.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

| Examination requirements: | Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Optimisation"

| Admission requirements: | none
| Recommended previous knowledge: | B.Mat.3134
| Language: | English
| Person responsible for module: | Programme coordinator
| Course frequency: | Usually subsequent to the module B.Mat.3134 "Introduction to optimisation"
| Duration: | 1 semester[s]
| Number of repeat examinations permitted: | twice
| Recommended semester: | Bachelor: 6; Master: 1 - 4
| Maximum number of students: | not limited
| Instructor: | Lecturers at the Institute of Numerical and Applied Mathematics

| Additional notes and regulations: |
Learning outcome, core skills:

Learning outcome:

The successful completion of modules of the cycle "Image and geometry processing" enables students to learn and apply methods, concepts, theories and applications in the area of "Image and geometry processing", so the digital image and geometry processing. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the modelling of problems of image and geometry processing in suitable finite- and infinite-dimensional vector spaces;
- learn basic methods for the analysis of one- and multidimensional functions in Banach and Hilbert spaces;
- learn basic mathematical concepts and methods that are used in image processing, like Fourier and Wavelet transform;
- learn basic mathematical concepts and methods that play a central role in geometry processing, like curvature of curves and surfaces;
- acquire knowledge about continuous and discrete problems of image data analysis and their corresponding solution strategies;
- know basic concepts and methods of topology;
- are familiar with visualisation software;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- know which special characteristics of an image or of a geometry can be extracted and worked on with which methods;
- evaluate different numerical methods for the efficient analysis of multidimensional data on the basis of the quality of the solutions, the complexity and their computing time;
- acquire advanced knowledge about linear and non-linear methods for the geometrical and topological analysis of multidimensional data;
- are informed about current developments of efficient geometrical and topological data analysis;
- adapt solution strategies for the data analysis using special structural characteristics of the given multidimensional data.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Image and geometry processing" confidently;
- explain complex issues of the area "Image and geometry processing";

Workload:

Attendance time:
84 h

Self-study time:
186 h
- apply methods of the area "Image and geometry processing" to new problems in this area.

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>2. Exercise session (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

| Examination: Oral examination (approx. 20 minutes) |
| Examination prerequisites: |
| B.Mat.3338.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions |
| Examination requirements: |
| Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Image and geometry processing" |

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3138 "Introduction to image and geometry processing"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th>Additional notes and regulations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td>Instructor: Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Module B.Mat.3339 - Version 3

Georg-August-Universität Göttingen
Module B.Mat.3339: Advances in scientific computing / applied mathematics

Learning outcome, core skills:
Learning outcome:
The successful completion of modules of the cycle “Scientific computing / Applied mathematics” enables students to learn and apply methods, concepts, theories and applications in the area of "Scientific computing / Applied mathematics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e. g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e. g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e. g. of natural and business sciences.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Scientific computing / applied mathematics" confidently;
- explain complex issues of the area "Scientific computing / applied mathematics";
- apply methods of the area "Scientific computing / applied mathematics" to new problems in this area.

Courses:
1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Examination: Oral examination (approx. 20 minutes)
Examination prerequisites:
B.Mat.3339.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Scientific computing / applied mathematics"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3139 "Introduction to scientific computing / applied mathematics"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor: Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Applied and mathematical stochastics" enables students to understand and apply a broad range of problems, theories, modelling and proof techniques of stochastics. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued: Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- are familiar with substantial concepts and approaches of probability modelling and inferential statistics;
- know basic characteristics of stochastic processes as well as conditions for their existence and uniqueness;
- have a pool of different stochastic processes in time and space at their disposal and characterise those, differentiate them and quote examples;
- understand and identify basic characteristics of invariance of stochastic processes like stationary processes and isotropy;
- analyse the convergence characteristic of stochastic processes;
- analyse regularity characteristics of the paths of stochastic processes;
- adequately model temporal and spatial phenomena in natural and economic sciences as stochastic processes, if necessary with unknown parameters;
- analyse probabilistic and statistic models regarding their typical characteristics, estimate unknown parameters and make predictions for their paths on areas not observed / at times not observed;
- discuss and compare different modelling approaches and evaluate the reliability of parameter estimates and predictions sceptically.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Applied and mathematical stochastics" confidently;
- explain complex issues of the area "Applied and mathematical stochastics";
- apply methods of the area "Applied and mathematical stochastics" to new problems in this area.

Courses:

1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Workload:
Attendance time: 84 h
Self-study time: 186 h
Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:
B.Mat.3341.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

9 C

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Applied and mathematical stochastics"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3141 "Introduction to applied and mathematical stochastics"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Stochastic processes" enables students to learn and apply methods, concepts, theories and proof techniques in the area of "Stochastic processes" and use these for the modelling of stochastic systems. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with advanced concepts of probability theory established on measure theory and apply them independently;
- know basic characteristics as well as existence and uniqueness results for stochastic processes and formulate suitable probability spaces;
- understand the relevance of the concepts of filtration, conditional expectation and stopping time for the theory of stochastic processes;
- know fundamental classes of stochastic processes (like e.g. Poisson processes, Brownian motions, Levy processes, stationary processes, multivariate and spatial processes as well as branching processes) and construct and characterise these processes;
- analyse regularity characteristics of the paths of stochastic processes;
- construct Markov chains with discrete and general state spaces in discrete and continuous time, classify their states and analyse their characteristics;
- are familiar with the theory of general Markov processes and characterise and analyse these with the use of generators, semigroups, martingale problems and Dirichlet forms;
- analyse martingales in discrete and continuous time using the corresponding martingale theory, especially using martingale equations, martingale convergence theorems, martingale stopping theorems and martingale representation theorems;
- formulate stochastic integrals as well as stochastic differential equations with the use of the Itô calculus and analyse their characteristics;
- are familiar with stochastic concepts in general state spaces as well as with the topologies, metrics and convergence theorems relevant for stochastic processes;
- know fundamental convergence theorems for stochastic processes and generalise these;
- model stochastic systems from different application areas in natural sciences and technology with the aid of suitable stochastic processes;
- analyse models in mathematical economics and finance and understand evaluation methods for financial products.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Stochastic processes" confidently;

Workload:
Attendance time: 84 h
Self-study time: 186 h
• explain complex issues of the area "Stochastic processes";
• apply methods of the area "Stochastic processes" to new problems in this area.

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture course (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>2. Exercise session (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

Examination: Oral examination (approx. 20 minutes)	9 C
Examination prerequisites:	
B.Mat.3342.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions	

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Stochastic processes"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3142 "Introduction to stochastic processes"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional notes and regulations:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor: Lecturers at the Institute of Mathematical Stochastics</td>
<td></td>
</tr>
<tr>
<td>Module B.Mat.3343: Advances in stochastic methods of economathematics</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle “Stochastic methods of economathematics” enables students to learn methods, concepts, theories and applications in this area. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master’s thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- master problems, basic concepts and stochastic methods of economathematics;
- understand stochastic connections;
- understand references to other mathematical areas;
- get to know possible applications in theory and practice;
- gain insight into the connection of mathematics and economic sciences.

Core skills:

After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Stochastic methods of economathematics" confidently;
- explain complex issues of the area "Stochastic methods of economathematics";
- apply methods of the area "Stochastic methods of economathematics" to new problems in this area.

Courses:

1. **Lecture course** (Lecture)
2. **Exercise session** (Exercise)

Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:
B.Mat.3343.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Admission requirements:
none

Language:
English

Recommended previous knowledge:
B.Mat.3143

Person responsible for module:
Programme coordinator

Recommended previous knowledge:

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3143</td>
</tr>
</tbody>
</table>

Course frequency:

Duration:
<table>
<thead>
<tr>
<th>Usually subsequent to the module B.Mat.3143</th>
<th>1 semester[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Introduction to stochastic methods of economathematics"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:

Instructor: Lecturers at the Institute of Mathematical Stochastics
Learning outcome, core skills:

Learning outcome:
The successful completion of modules of the cycle "Mathematical statistics" enables students to learn methods, concepts, theories and applications in the area of "Mathematical statistics". During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the most important methods of mathematical statistics like estimates, testing, confidence propositions and classification and use them in simple models of mathematical statistics;
- evaluate statistical methods mathematically precisely via suitable risk and loss concepts;
- analyse optimality characteristics of statistical estimate methods via lower and upper bounds;
- analyse the error rates of statistical testing and classification methods based on the Neyman Pearson theory;
- are familiar with basic statistical distribution models that base on the theory of exponential indexed families;
- know different techniques to obtain lower and upper risk bounds in these models;
- are confident in modelling typical data structures of regression;
- analyse practical statistical problems in a mathematically accurate way with the techniques learned on the one hand and via computer simulations on the other hand;
- are able to mathematically analyse resampling methods and apply them purposively;
- are familiar with advanced tools of non-parametric statistics and empirical process theory;
- independently become acquainted with a current topic of mathematical statistics;
- evaluate complex statistical methods and enhance them in a problem-oriented way.

Core skills:
After having successfully completed the module, students will be able to

- handle methods and concepts of the area "Mathematical statistics" confidently;
- explain complex issues of the area "Mathematical statistics";
- apply methods of the area "Mathematical statistics" to new problems in this area.

Courses:

1. Lecture course (Lecture) 4 WLH
2. Exercise session (Exercise) 2 WLH

Workload:
Attendance time: 84 h
Self-study time: 186 h
Examination: Oral examination (approx. 20 minutes)

Examination prerequisites:
B.Mat.3344.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Proof of advancement of knowledge and competencies acquired in the introductory module of the area "Mathematical statistics"

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.3144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually subsequent to the module B.Mat.3144 "Introduction to mathematical statistics"</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Bachelor: 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:
Instructor: Lecturers at the Institute of Mathematical Stochastics
Georg-August-Universität Göttingen
Modul B.Mat.3413: Seminar im Zyklus "Differenzialgeometrie"
English title: Seminar on differential geometry

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• sich in ein mathematisches Thema im Bereich "Differenzialgeometrie" einzuarbeiten und in einem Vortrag vorzustellen;</td>
</tr>
<tr>
<td>• wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Seminar (2 SWS) (Seminar)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 75 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>Teilnahme am Seminar</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand: |
| Präsenzzeit: |
| 28 Stunden |
| Selbststudium: |
| 62 Stunden |

<p>| Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 | V10-SoSe17 | Seite 2968 |</p>
<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th>Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Differenzialgeometrie"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugangsvoraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch, Deutsch</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>zweimalig</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>nicht begrenzt</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>B.Mat.3113</td>
</tr>
<tr>
<td>Modulverantwortliche[r]:</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Empfohlenes Fachsemester:</td>
<td>6</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td>Dozent/in: Lehrpersonen des Mathematischen Instituts</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Topologie" lernen die Studierenden die wichtigsten Klassen topologischer Räume kennen sowie die algebraischen und analytischen Werkzeuge für das Studium dieser Räume und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Werkzeuge in Geometrie, mathematischer Physik, Algebra und Gruppentheorie an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.

Die algebraische Topologie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte der algebraischen Topologie behandeln und sich komplementär ergänzen. Folgende inhaltbezogenen Kompetenzen werden angestrebt. Die Studierenden

- kennen die grundlegenden Konzepte der mengentheoretischen Topologie und der stetigen Abbildungen;
- konstruieren aus gegebenen Topologien neue Topologien;
- kennen spezielle Klassen topologischer Räume und deren spezielle Eigenschaften wie CW-Komplexe, Simplizialkomplexe und Mannigfaltigkeiten;
- wenden grundlegende Konzepte der Kategorientheorie auf topologische Räume an;
- nutzen Konzepte der Funktoren um algebraische Invarianten von topologischen Räumen und Abbildungen zu erhalten;
- kennen die Fundamentalgruppe und die Überlagerungstheorie sowie die grundlegenden Methoden zur Berechnung von Fundamentalgruppen und Abbildungen zwischen ihnen;
- kennen Homologie und Kohomologie, berechnen diese für wichtige Beispiele und leiten mit ihrer Hilfe Nicht-Existenz von Abbildungen sowie Fixpunktsätze her;
- berechnen Homologie und Kohomologie mit Hilfe von Kettenkomplexen;
- leiten mit Hilfe der homologischen Algebra algebraische Eigenschaften von Homologie und Kohomologie her;
- lernen Verbindungen zwischen Analysis und Topologie kennen;
- wenden algebraische Strukturen an, um aus der lokalen Struktur von Mannigfaltigkeiten spezielle globale Eigenschaften ihrer Kohomologie herzuleiten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,
• sich in ein mathematisches Thema im Bereich "Algebraische Topologie" einzuarbeiten und in einem Vortrag vorzustellen;
• wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Prüfung: Präsentation (ca. 75 Minuten)
Prüfungsvorleistungen:
Teilnahme am Seminar

Prüfungsanforderungen:
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte
im Bereich "Algebraische Topologie"

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
B.Mat.3114

Sprache:
Englisch, Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
6

Maximale Studierendenzahl:
nicht begrenzt

Bemerkungen:
Dozent/in: Lehrpersonen des Mathematischen Instituts
Lernziele/Kompetenzen:

Lernziele:

In den Modulen zum Zyklus "Algebraische Geometrie" lernen die Studierenden die wichtigsten Klassen algebraischer Varietäten und Schemata kennen sowie die Werkzeuge für das Studium dieser Objekte und der Abbildungen zwischen ihnen. Die Studierenden wenden diese Kenntnisse auf Probleme der Arithmetik oder der komplexen Analysis an. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste Beiträge zur Forschung zu leisten, etwa im Rahmen einer Masterarbeit.

Die Studierenden

- sind mit der kommutativen Algebra auch in tiefer liegenden Details vertraut;
- kennen den Begriffssapparat der algebraischen Geometrie, insbesondere Varietäten, Schemata, Garben, Bündel;
- untersuchen wichtige Beispiele wie elliptische Kurven, abelsche Varietäten oder algebraische Gruppen;
- verwenden Divisoren für Klassifikationsfragen;
- studieren algebraische Kurven;
- beweisen den Satz von Riemann-Roch beweisen und wenden ihn an;
- benutzen kohomologische Konzepte und kennen die Grundlagen der Hodge-Theorie;
- wenden Methoden der algebraischen Geometrie auf arithmetische Fragen an und gewinnen z.B. Endlichkeitssätze für rationale Punkte;
- klassifizieren Singularitäten und kennen die wesentlichen Aspekte der Dimensionstheorie der kommutativen Algebra und der algebraischen Geometrie;
- lernen Verbindungen zur komplexen Analysis und komplexen Geometrie kennen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Algebraische Geometrie" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 75 Minuten)</th>
<th>3 C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>28 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>62 Stunden</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Teilnahme am Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Algebraische Geometrie"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>B.Mat.3121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch, Deutsch</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent/in: Lehrpersonen des Mathematischen Instituts</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul B.Mat.3422: Seminar im Zyklus "Algebraische Zahlentheorie"

English title: Seminar on algebraic number theory

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>28 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>62 Stunden</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

Lernziele:

- kennenlernen Noethersche und Dedekind'sche Ringe und die Klassengruppen;
- sind mit Diskriminanten, Differenten und der Verzweigungstheorie von Hilbert vertraut;
- kennenlernen geometrische Zahlentheorie mit Anwendung auf den Einheitensatz und die Endlichkeit von Klassengruppen wie auch die algorithmischen Aspekte von Gittertheorie (LLL);
- sind mit L-Reihen und Zeta-Funktionen vertraut und diskutieren die algebraische Bedeutung ihrer Residuen;
- kennenlernen Dichten, den Satz von Tchebotarew und Anwendungen;
- arbeiten mit Ordnungen, S-ganzen Zahlen und S-Einheiten;
- kennenlernen Klassenkörpertheorie von Hilbert, Takagi und Idèle-theoretische Klassenkörpertheorie;
- sind mit Zp-Erweiterungen und ihrer Iwasawa-Theorie vertraut;
- diskutieren die wichtigsten Vermutungen der Iwasawa-Theorie und deren Konsequenzen.

Hinsichtlich algorithmischer Aspekte der Zahlentheorie werden folgende Kompetenzen angestrebt. Die Studierenden

- arbeiten mit Algorithmen zur Bestimmung von kurzen Gitterbasen, nächsten Punkten in Gittern und kürzesten Vektoren;
- sind mit Grundalgorithmen der Zahlentheorie in langer Arithmetik wie GCD, schneller Zahl- und Polynomarithmetik, Interpolation und Evaluation und Primtests vertraut;
- verwenden die Siebmethode zur Faktorisierung und Berechnung von diskreten Logarithmen in endlichen Körpern großer Charakteristik;
- diskutieren Algorithmen zur Berechnung der Zeta-Funktion von elliptischen Kurven und abelschen Varietäten über endlichen Körpern;
- berechnen Klassengruppen und Fundamentaleinheiten;
- berechnen Galoisgruppen absoluter Zahlkörper.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,
• sich in ein mathematisches Thema im Bereich "Algebraische Zahlentheorie" einzuarbeiten und in einem Vortrag vorzustellen;
• wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

Prüfung: Präsentation (ca. 75 Minuten)
Prüfungsvorleistungen:
Teilnahme am Seminar

Prüfungsanforderungen:
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Algebraische Zahlentheorie"

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>B.Mat.3122</td>
</tr>
</tbody>
</table>

Sprache:
Englisch, Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wiederholbarkeit:
zweimalig

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td>6</td>
</tr>
</tbody>
</table>

Bemerkungen:
Dozent/in: Lehrpersonen des Mathematischen Instituts
Gelegenheit Göttingen

Modul B.Mat.3423: Seminar im Zyklus "Algebraische Strukturen"
English title: Seminar on algebraic structures

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>In den Modulen des Zyklus "Algebraische Strukturen" lernen die Studierenden verschiedene algebraische Strukturen kennen, u.a. Lie-Algebren, Lie-Gruppen, analytische Gruppen, assoziative Algebren, sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und kategorientheoretischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>- kennen grundlegende Konzepte wie Ringe, Moduln, Algebren und Lie-Algebren;</td>
<td></td>
</tr>
<tr>
<td>- kennen wichtige Beispiele von Lie-Algebren und Algebren;</td>
<td></td>
</tr>
<tr>
<td>- kennen spezielle Klassen von Lie-Gruppen und ihre speziellen Eigenschaften;</td>
<td></td>
</tr>
<tr>
<td>- kennen Klassifikationsaussagen für endlich-dimensionale Algebren;</td>
<td></td>
</tr>
<tr>
<td>- wenden grundlegende Konzepte der Kategorientheorie auf Algebren und Moduln an;</td>
<td></td>
</tr>
<tr>
<td>- kennen Gruppenaktionen und deren grundlegenden Klassifikationen;</td>
<td></td>
</tr>
<tr>
<td>- wenden die eindimensionalen Algebra von Lie-Algebren an;</td>
<td></td>
</tr>
<tr>
<td>- wenden Ring- und Modul-Theorie auf grundlegende Konstruktionen algebraischer Geometrie an;</td>
<td></td>
</tr>
<tr>
<td>- wenden kombinatorische Werkzeuge auf die Untersuchung assoziativer Algebren und Lie-Algebren an;</td>
<td></td>
</tr>
<tr>
<td>- erwerben solide Kenntnisse der Darstellungstheorie von Lie-Algebren, endlichen Gruppen und kompakten Lie-Gruppen sowie der Darstellungstheorie halbeinfacher Lie-Gruppen;</td>
<td></td>
</tr>
<tr>
<td>- kennen Hopf-Algebren sowie deren Deformations- und Darstellungstheorie.</td>
<td></td>
</tr>
</tbody>
</table>

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Algebraische Strukturen" einzuarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)
<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 75 Minuten)</th>
<th>Prüfungsvorleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teilnahme am Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Algebraische Strukturen"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>B.Mat.3123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch, Deutsch</td>
<td>Studiengangsbeauftragte/r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent/in: Lehrpersonen des Mathematischen Instituts</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td>In den Modulen des Zyklus "Gruppen, Geometrie und Dynamische Systeme" lernen die Studierenden wichtige Klassen von Gruppen kennen sowie die für ihre Untersuchung und ihre Anwendungen nötigen algebraischen, geometrischen und analytischen Werkzeuge. Sie werden an aktuelle Forschungsfragen herangeführt und befähigt, erste eigene Beiträge zur Forschung in diesem Bereich zu leisten, etwa im Rahmen einer Masterarbeit.</td>
</tr>
<tr>
<td>Gruppentheorie benutzt Ideen und Werkzeuge aus Algebra, Geometrie und Analysis und kann auf diese Bereiche angewandt werden. Im Lehrangebot werden jeweils einige Aspekte betrachtet, und ein Zyklus wird nur einige der unten genannten inhaltlichen Lernziele behandeln. Die Einführung in den Zyklus und die Spezialisierung im Zyklus werden in der Regel verschiedene Aspekte aus dem Bereich "Gruppen, Geometrie und Dynamische Systeme" behandelt, die sich komplementär ergänzen. Folgende inhaltbezogenen Kompetenzen werden angestrebt. Die Studierenden,</td>
</tr>
<tr>
<td>• kennen grundlegende Konzepte von Gruppen und Gruppenhomomorphismen;</td>
</tr>
<tr>
<td>• kennen wichtige Beispiele von Gruppen;</td>
</tr>
<tr>
<td>• kennen spezielle Klassen von Gruppen und deren spezielle Eigenschaften;</td>
</tr>
<tr>
<td>• wenden grundlegende Konzepte der Kategorientheorie auf Gruppen an und definieren Räume durch universelle Eigenschaften;</td>
</tr>
<tr>
<td>• wenden die Konzepte von Funktoren an um algebraische Invarianten zu gewinnen;</td>
</tr>
<tr>
<td>• kennen Gruppenaktionen und deren grundlegenden Klassifikationsresultate;</td>
</tr>
<tr>
<td>• kennen die Grundlagen der Gruppenkohomologie und berechnen diese für wichtige Beispiele;</td>
</tr>
<tr>
<td>• kennen die Grundlagen der geometrischen Gruppentheorie wie Wachstumseigenschaften;</td>
</tr>
<tr>
<td>• kennen selbstähnliche Gruppen, deren grundlegende Konstruktion sowie Beispiele mit interessanten Eigenschaften;</td>
</tr>
<tr>
<td>• nutzen geometrische und kombinatorische Werkzeuge für die Untersuchung von Gruppen;</td>
</tr>
<tr>
<td>• kennen die Grundlagen der Darstellungstheorie kompakter Lie-Gruppen.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• sich in ein mathematisches Thema im Bereich "Gruppen, Geometrie und Dynamische Systeme" einzuarbeiten und in einem Vortrag vorzustellen;</td>
</tr>
<tr>
<td>• wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.</td>
</tr>
</tbody>
</table>

<p>| Lehrveranstaltung: Seminar (2 SWS) (Seminar) |</p>
<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 75 Minuten)</th>
<th>3 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen: Teilnahme am Seminar</td>
<td></td>
</tr>
</tbody>
</table>

| Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Gruppen, Geometrie und Dynamische Systeme" |

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen: keine</th>
<th>Empfohlene Vorkenntnisse: B.Mat.3124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache: Englisch, Deutsch</td>
<td>Modulverantwortliche[r]: Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Angebotshäufigkeit: unregelmäßig</td>
<td>Dauer: 1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig</td>
<td>Empfohlenes Fachsemester: 6</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

| Bemerkungen: Dozent/in: Lehrpersonen des Mathematischen Instituts |
Lernziele/Kompetenzen:

Lernziele:

Die Studierenden

• sind mit der Modellierung von Approximationsproblemen in geeigneten endlich und unendlich-dimensionalen Vektorräumen vertraut;
• gehen sicher mit Modellen zur Approximation von ein- und mehrdimensionalen Funktionen in Banach- und Hilberträumen um;
• kennen und verwenden Elemente der klassischen Approximationstheorie, wie z.B. Jackson- und Bernstein-Sätze zur Approximationsgüte für trigonometrische Polynome, Approximation in translationsinvarianten Räumen, Polynomreproduktion und Strang-Fix-Bedingungen;
• erwerben Kenntnisse zu kontinuierlichen und zu diskreten Approximationsproblemen und den zugehörigen Lösungsstrategien im ein- und mehrdimensionalen Fall;
• wenden verfügbare Software zur Lösung der zugehörigen numerischen Verfahren an und bewerten die Ergebnisse kritisch;
• bewerten verschiedene numerische Verfahren zur effizienten Lösung der Approximationsprobleme anhand der Qualität der Lösungen, der Komplexität und ihrer Rechenzeit;
• erwerben vertiefte Kenntnisse zu linearen und nichtlinearen Approximationsverfahren für mehrdimensionale Daten;
• sind über aktuelle Entwicklungen in der effizienten Datenapproximation und Datenanalyse informiert;
• adaptieren Lösungsstrategien zur Datenapproximation unter Ausnutzung spezieller struktureller Eigenschaften des zu lösenden Approximationsproblems.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

• sich in ein mathematisches Thema im Bereich "Approximationsverfahren" einzuarbeiten und in einem Vortrag vorzustellen;
• wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.
<table>
<thead>
<tr>
<th>Lehrveranstaltung: Seminar (2 SWS) (Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Präsentation, (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten)</td>
</tr>
<tr>
<td>Prüfungsvorleistungen: Teilnahme am Seminar</td>
</tr>
<tr>
<td>Prüfungsanforderungen: Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Approximationsverfahren"</td>
</tr>
<tr>
<td>Zugangsvoraussetzungen: keine</td>
</tr>
<tr>
<td>Sprache: Englisch, Deutsch</td>
</tr>
<tr>
<td>Angebotshäufigkeit: unregelmäßig</td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
</tr>
<tr>
<td>Bemerkungen: Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse: B.Mat.3132</td>
</tr>
<tr>
<td>Modulverantwortliche[r]: Studiengangsbeauftragte/r</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
</tr>
<tr>
<td>Empfohlenes Fachsemester: 6</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Lernziele:

- erkennen Optimierungsprobleme in anwendungsorientierten Fragestellungen und formulieren sie als mathematische Programme;
- beurteilen Existenz und Eindeutigkeit der Lösung eines Optimierungsproblems;
- erkennen strukturelle Eigenschaften eines Optimierungsproblems, u.a. die Existenz einer endlichen Kandidatenmenge, die Struktur der zugrunde liegenden Niveaumengen;
- wissen, welche speziellen Eigenschaften der Zielfunktion und der Nebenbedingungen (wie (quasi-)Konvexität, dc-Funktionen) bei der Entwicklung von Lösungsverfahren ausgenutzt werden können;
- analysieren die Komplexität eines Optimierungsproblems;
- ordnen ein mathematisches Programm in eine Klasse von Optimierungsproblemen ein und kennen dafür die gängigen Lösungsverfahren;
- entwickeln Optimierungsverfahren und passen allgemeine Verfahren auf spezielle Probleme an;
- leiten obere und untere Schranken an Optimierungsprobleme her und verstehen ihre Bedeutung;
- verstehen die geometrische Struktur eines Optimierungsproblems und machen sie sich bei Lösungsverfahren zunutze;
- unterscheiden zwischen exakten Lösungsverfahren, Approximationsverfahren mit Gütegarantie und Heuristiken und bewerten verschiedene Verfahren anhand der Qualität der aufgefundenen Lösungen und ihrer Rechenzeit;
- erwerben vertiefte Kenntnisse in der Entwicklung von Lösungsverfahren anhand eines speziellen Bereiches der Optimierung, z.B. der ganzzahligen Optimierung, der Optimierung auf Netzwerken oder der konvexen Optimierung;
- erwerben vertiefte Kenntnisse bei der Lösung von speziellen Optimierungsproblemen aus einem anwendungsorientierten Bereich, z.B. der Verkehrsplanung oder der Standortplanung;
- gehen mit erweiterten Optimierungsproblemen um, wie z.B. Optimierungsproblemen unter Unsicherheit oder multikriteriellen Optimierungsproblemen.

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>28 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium:</td>
<td>62 Stunden</td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 2982
Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Optimierung" im Bereich "Optimierung" einarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Seminar (2 SWS) (Seminar)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Präsentation, (ca. 75 Minuten, bei Durchführung als Blockseminar ca. 45 Minuten)</th>
</tr>
</thead>
</table>

Prüfungsvorleistungen:

Teilnahme am Seminar

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
</table>

Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Optimierung"

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
</table>

keine | B.Mat.3134 |

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
</table>

Englisch, Deutsch | Modulverantwortliche[r]: |

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
</table>

unregelmäßig | Dauer: |

1 Semester

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
</table>

zweimalig | Empfohlenes Fachsemester: |

6

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
</table>

nicht begrenzt

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
</table>

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
</table>

B.Mat.3134

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
</table>

Studiengangsbeauftragte/r

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
</table>

unregelmäßig | Empfohlenes Fachsemester: |

6

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
</table>

nicht begrenzt

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
</table>

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
Lernziele/Kompetenzen:

Lernziele:

- sind mit weiterführenden Konzepten der maßtheoretisch fundierten Wahrscheinlichkeitstheorie vertraut und wenden diese selbstständig an;
- sind mit wesentlichen Begriffen und Vorgehensweisen der Wahrscheinlichkeitsmodellierung und der schließenden Statistik vertraut;
- kennen grundlegende Eigenschaften stochastischer Prozesse, sowie Bedingungen für deren Existenz und Eindeutigkeit;
- verfügen über einen Fundus von verschiedenen stochastischen Prozessen in Zeit und Raum und charakterisieren diese, grenzen sie gegeneinander ab und führen Beispiele an;
- verstehen und erkennen grundlegende Invarianzeigenschaften stochastischer Prozesse, wie Stationarität und Isotropie;
- analysieren das Konvergenzverhalten stochastischer Prozesse;
- analysieren Regularitätseigenschaften der Pfade stochastischer Prozesse;
- modellieren adäquat zeitliche und räumliche Phänomene in Natur- und Wirtschaftswissenschaften als stochastische Prozesse, gegebenenfalls mit unbekannten Parametern;
- analysieren probabilistische und statistische Modelle hinsichtlich ihres typischen Verhaltens, schätzen unbekannte Parameter und treffen Vorhersagen ihrer Pfade auf nicht beobachteten Gebieten / zu nicht beobachteten Zeiten;
- diskutieren und vergleichen verschiedene Modellierungsansätze und beurteilen die Verlässlichkeit von Parameterschätzungen und Vorhersagen kritisch.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Angewandte und Mathematische Stochastik" einarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.
<table>
<thead>
<tr>
<th>Lehrveranstaltung: Seminar (2 SWS) (Seminar)</th>
</tr>
</thead>
</table>
| **Prüfung:** Präsentation (ca. 75 Minuten)
Prüfungsvorleistungen:
Teilnahme am Seminar |
| **Prüfungsanforderungen:**
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Angewandte und Mathematische Stochastik" |
| **Zugangsvoraussetzungen:**
keine |
| **Empfohlene Vorkenntnisse:**
B.Mat.3141 |
| **Sprache:**
Englisch, Deutsch |
| **Modulverantwortliche[r]:**
Studiengangsbeauftragte/r |
| **Angebotshäufigkeit:**
unregelmäßig |
| **Dauer:**
1 Semester |
| **Wiederholbarkeit:**
zweimalig |
| **Empfohlenes Fachsemester:**
6 |
| **Maximale Studierendenzahl:**
nicht begrenzt |
| **Bemerkungen:**
Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik |
Lernziele/Kompetenzen:

Lernziele:

- beherrschen Fragestellungen, grundlegende Begriffe und stochastische Techniken der Wirtschaftsmathematik;
- verstehen stochastische Zusammenhänge;
- durchdringen Bezüge zu anderen mathematischen Teilgebieten;
- lernen mögliche Anwendungen in Theorie und Praxis kennen;
- erhalten Einsichten in die Verzahnungen von Mathematik und Wirtschaftswissenschaften.

Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- sich in ein mathematisches Thema im Bereich "Stochastische Methoden der Wirtschaftsmathematik" einarbeiten und in einem Vortrag vorzustellen;
- wissenschaftliche Diskussionen in einem bekannten Kontext zu führen.

Lehrveranstaltung: Seminar (2 SWS) (Seminar)

<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 75 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen: Teilnahme am Seminar</td>
</tr>
</tbody>
</table>

Prüfungsanforderungen:
Selbständige Durchdringung und Darstellung komplexer mathematischer Sachverhalte im Bereich "Stochastische Methoden der Wirtschaftsmathematik"

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
B.Mat.3143

Sprache:
Englisch, Deutsch

Modulverantwortliche[r]:
Studiengangsbeauftragte/r

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>zweimalig</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen:
Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden...
• die Begriffe und Methoden der klassischen theoretischen Mechanik anwenden können;
• komplexe mechanische Systeme modellieren und mit den Erlernten formalen Techniken behandeln können.

Arbeitsaufwand:
- Präsenzzeit: 84 Stunden
- Selbststudium: 156 Stunden

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Klausur (180 Minuten)

Prüfungsvorleistungen:
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:
- Newton'sche Mechanik (Zentralkraftproblem, Streuquerschnitte);
- Lagrange-Formalismus (Variationsprinzipien, Nebenbedingungen und Zwangskräfte, Symmetrien und Erhaltungssätze);
- Starre Körper (Euler-Winkel, Trägheitstensor und Hauptachsentransformation, Euler-Gleichungen);
- Kleine Schwingungen;
- Hamilton-Formalismus (Legendre-Transformation, Phasenraum, Liouvillescher Satz, Poisson-Klammern).

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
StudiendekanIn der Fakultät für Physik

Angebotshäufigkeit:
- jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
2

Maximale Studierendenzahl:
180
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden...

- die Begriffe, Interpretation und mathematischen Methoden der Quantentheorie anwenden können;
- einfache Potentialprobleme mit den erlernten mathematischen Techniken behandeln können.

Arbeitsaufwand:

| Präsenzzeit: | 84 Stunden |
| Selbststudium: | 156 Stunden |

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Klausur (180 Minuten)

Prüfungsvorleistungen:
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:
Kenntnis des konzeptionellen Rahmens, der Prinzipien und Methoden der Quantenmechanik:

Wellenmechanik und Schrödinger-Gleichung. Statistische Interpretation von Quantensystemen; Eindimensionale Modellsysteme, gebundene Zustände und Streuzustände; Formulierung der Quantenmechanik (Hilbertraum, lineare Operatoren, unitäre Transformationen, Operatoren und Messgrößen, Symmetrie und Erhaltungsgrößen); Heisenberg-Bild; Quantisierung des Drehimpulses und Spin; Wasserstoffatom; Näherungsverfahren (Störungsrechnung, Variationsverfahren); Mehrteilchensysteme.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
StudiendekanIn der Fakultät für Physik

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
4

Maximale Studierendenzahl:
180
Georg-August-Universität Göttingen

Modul B.Phy.1204: Statistische Physik
English title: Statistical Physics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden...</td>
</tr>
<tr>
<td>• die Konzepte und Methoden der statistischen Physik anwenden können;</td>
</tr>
<tr>
<td>• einfache thermodynamische Systeme modellieren und mit den erlernten mathematischen Techniken behandeln können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>84 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>156 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Klausur (180 Minuten)

Prüfungsvorleistungen:
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:

Thermodynamik (Hauptsätze, Potentiale, Gleichgewichtsbedingungen, Phasenübergänge); Statistik (Wahrscheinlichkeitsverteilungen, Zentralwertsatz); Statistische Ensembles; Ergodenhypothese; Statistische Deutung der Thermodynamik; Zustandssumme; Theorie der Phasenübergänge; Quantenstatistik.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
StudiendekanIn der Fakultät für Physik

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
5

Maximale Studierendenzahl:
180
Modul B.Phy.1511: Einführung in die Kern- und Teilchenphysik

English title: Introduction to Particle Physics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 156 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Einführung in die Kern- und Teilchenphysik

Prüfung: Klausur (120 Min.) oder mdl. Prüfung (ca. 30 Min.)

Prüfungsvorleistungen:
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.

Prüfungsanforderungen:
Eigenschaften und Spektroskopie von stabilen und instabilen Atomkernen; Eigenschaften von Elementarteilchen und Experimente der Hochenergiephysik; Grundlagen der Teilchenbeschleunigerphysik.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
StudiendekanIn der Fakultät für Physik

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
5 - 6

Maximale Studierendenzahl:
180

Georg-August-Universität Göttingen

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7

V10-SoSe17 Seite 2991
Georg-August-Universität Göttingen

Modul B.Phy.1521: Einführung in die Festkörperphysik

English title: Introduction to Solid State Physics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden mit den grundlegenden Begriffen, Phänomenen und Modellen der Festkörperphysik umgehen können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 84 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 156 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung und Übung Einführung in die Festkörperphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (120 min.) oder mdl. Prüfung (ca. 30 min.)</td>
</tr>
<tr>
<td>Prüfungsvorleistungen: Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Sprache: Deutsch |

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudiendekanIn der Fakultät für Physik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit: jedes Wintersemester</th>
</tr>
</thead>
</table>

| Dauer: 1 Semester |

<table>
<thead>
<tr>
<th>Wiederholbarkeit: dreimalig</th>
</tr>
</thead>
</table>

| Empfohlenes Fachsemester: 5 - 6 |

| Maximale Studierendenzahl: 120 |

| StudiendekanIn der Fakultät für Physik |

| Empfehlung | Fachsemester: 5 - 6 |

<table>
<thead>
<tr>
<th>Anzeige für</th>
<th>Empfehlung</th>
</tr>
</thead>
</table>
Modul B.Phy.1531: Einführung in die Materialphysik

English title: Introduction in Materials Physics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sollten nach erfolgreichem Absolvieren des Moduls einen Überblick über wichtige Materialklassen, ihre Struktur und Stabilität und die Nutzung ihrer Eigenschaften in Anwendungen bekommen haben.</td>
<td>Präsenzzeit: 70 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 110 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vorlesung Stabilität und Materialauswahl</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Übung Stabilität und Materialauswahl</td>
<td>2 SWS</td>
</tr>
<tr>
<td>3. Praktikum Stabilität und Materialauswahl</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfung: Klausur (120 Minuten)

Prüfungsvorleistungen:
Mindestens 50 % der Hausaufgaben in den Übungen müssen bestanden worden sein, 100% der Praktikaprotokolle

Prüfungsanforderungen:
Atomare Bindung und Kristallstruktur, Kristallographie (Symmetrien), Grundlagen in Defekte, Thermodynamik von Phasen und Mischungen, Ordnungseffekte, Phasengleichgewichte, Phasendiagramme, Überblick über Materialeigenschaften, Grundlagen Materialauswahl.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof.in Cynthia Volkert

Angebotsfrequenz:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
Bachelor: 5 - 6; Master: 1

Maximale Studierendenzahl:
50
Georg-August-Universität Göttingen

Modul B.Phy.1541: Einführung in die Geophysik

English title: Introduction to Geophysics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden mit den grundlegenden Begriffen und Modellen der Geophysik umgehen können. | Präsenzzeit: 42 Stunden
Selbststudium: 78 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung und Übung zu Einführung in die Geophysik</th>
<th></th>
</tr>
</thead>
</table>
| Prüfung: Klausur (120 min.) oder mdl. Prüfung (ca. 30 min.)
Prüfungsvorleistungen:
Mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein. | |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Geophysik, insbes. Plattentektonik, Erdbeben</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Karsten Bahr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dreimalig</td>
<td>Bachelor: 6; Master: 1 - 2</td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	

120	
Module B.Phy.1551: Introduction to Astrophysics

Learning outcome, core skills:
After successful completion of the modul students should be familiar with the basic concepts of astrophysics in observation and theory.

Workload:
- **Attendance time:** 84 h
- **Self-study time:** 156 h

Course:
Lecture and exercises for introduction to astrophysics

Examination:
Written examination (120 minutes)

Examination prerequisites:
At least 50% of the homework of the exercises have to be solved successfully.

Examination requirements:
Observational techniques, Planets and exoplanets, planet formation, stellar formation, structure and evolution, galaxies, AGN and quasars, cosmology, structure formation

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English, German

Person responsible for module:
Prof. Dr. Wolfram Kollatschny

Course frequency:
each winter semester

Duration:
1 semester[s]

Number of repeat examinations permitted:
3 times

Recommended semester:
Bachelor: 5 - 6; Master: 1

Maximum number of students:
120
Georg-August-Universität Göttingen
Module B.Phy.1561: Introduction to Physics of Complex Systems

| 8 C | 6 WLH |

Learning outcome, core skills:
Sound knowledge of essential methods and concepts from Nonlinear Dynamics and Complex Systems Theory, including practical skills for analysis and simulation (using, for example, the programming language python) of dynamical systems.

| Workload: |
| Attendance time: 84 h
Self-study time: 156 h |

Courses:
1. **Introduction to Physics of Complex Systems** (Lecture)
2. **Introduction to Physics of Complex Systems** (Exercise)

| 4 WLH | 2 WLH |

Examination: written examination (120 Min.) or oral examination (approx. 30 Min.)

Examination requirements:
- Knowledge of fundamental principles and methods of Nonlinear Physics
- Modern experimental techniques and theoretical models of Complex Systems theory.

| 8 C |

Admission requirements: none
Recommended previous knowledge: Basic programming skills (for the exercises)

Language: English, German
Person responsible for module: apl. Prof. Dr. Ulrich Parlitz

Course frequency: each winter semester
Duration: 1 semester[s]

Number of repeat examinations permitted: 3 times
Recommended semester: Bachelor: 5 - 6; Master: 1 - 2

Maximum number of students: 120
Georg-August-Universität Göttingen

Module B.Phy.1571: Introduction to Biophysics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
</table>
| After attending this course, students will be familiar with basic concepts and phenomena, theoretical descriptions, and experimental methods in biophysics. | Attendance time: 84 h
Self-study time: 156 h |

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Biophysics (Lecture)</td>
<td>4 WLH</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>components of the cell; diffusion, Brownian motion and random walks; low Reynolds number hydrodynamics; chemical reactions, cooperativity and enzymes; biomolecular interaction forces and self-assembly; membranes; polymer physics and mechanics of the cytoskeleton; neurobiophysics; experimental methods and microscopy</td>
<td></td>
</tr>
<tr>
<td>2. Introduction to Biophysics (Exercise)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam (120 min.) or oral exam (ca. 30 min.)</td>
<td>8 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination prerequisites:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 50% of the homework of the exercises have to be solved successfully.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of the fundamental principles, theoretical descriptions and experimental methods of biophysics.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Jörg Enderlein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>each winter semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 times</td>
<td>Bachelor: 5 - 6; Master: 1 - 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls sollten die Studierenden...

- ein vertieftes Verständnis folgender Themen entwickelt haben: TCN I: biophysikalische Grundlagen neuronaler Anregbarkeit, mathematische Grundlagen neuronaler Anregbarkeit, Input-Output Beziehungen und Bifurkationen, Klassifizierung, Existenz, Stabilität und Koexistenz synchroner und asynchroner Zustände in spikenden neuronalen Netzwerken;
- Methoden und Methodenentwicklung für die Analyse hochdimensionaler Modelle ratenkodierter Einheiten in Feldmodellen verstehen;
- die Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten verstanden haben.

Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden

Lehrveranstaltung: Collective Dynamics Biological Neural Networks I (Vorlesung)

Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Vortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).

Prüfungsanforderungen:
Grundlagen der Membranbiophysik; Bifurkationen anregbarer Systeme; Verständnis der Grundlagen der Modellierungsansätze der Neurophysik; kollektive Zustände spikender neuronaler Netzwerke; insbesondere Synchronizität; Balanced State; Phase-Locking und diesen Zuständen unterliegenden lokalen und Netzwerkeigenschaften: Netzwerktopologie; Delays; inhibitorische und exzitatorische Kopplung; sparse random networks

Zugangsvoraussetzungen:
keine

Sprache:
Englisch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Fred Wolf

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
dreimalig

Empfohlenes Fachsemester:
Bachelor: 4 - 6; Master: 1

Maximale Studierendenzahl:
90
Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sollten Studierende...

- das vertiefte Verständnis folgender Themen entwickelt haben: TCN II: Grundlagen neuronaler Anregbarkeit, Input-Output Beziehungen bei Einzelneuronen, eindimensionale Feldmodelle (Feature Selectivity, Contrastinvariance), zweidimensionale Feldmodell (Zusammenwirken von kurz- und langreichweitigen Verbindungen sowie lokaler Nichtlinearitäten), Amplitudengleichungen und ihre Lösungen;
- Methoden und Methodenentwicklung für die Analyse spikender neuronaler Netzerwe mit und ohne Delays, Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten verstehen.

Arbeitsaufwand:

| Präsenzzeit: | 28 Stunden |
| Selbststudium: | 62 Stunden |

Lehrveranstaltung: Collective Dynamics Biological Neural Networks II (Vorlesung)

Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Vortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).

Prüfungsanforderungen:

Ratenmodelle von Einzelneuronen; Feldansatz in der theoretischen Neurophysik; Grundlagen der Bifurkationen anregbarer System; Verständnis der Grundlagen der Modellierungsansätze der Neurophysik; Zusammenhang diskrete/continuierliche Modelle; kollektive Zustände ein- und zweidimensionaler Feldmodelle, insbesondere ring model of feature selectivity; orientation preference maps.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Englisch

Modulverantwortliche[r]:

Prof. Dr. Fred Wolf

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

dreimalig

Empfohlenes Fachsemester:

Bachelor: 4 - 6; Master: 1

Maximale Studierendenzahl:

90
Georg-August-Universität Göttingen

Module B.Phy.5605: Computational Neuroscience: Basics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals: Introduction to the different fields of Computational Neuroscience:</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>• Models of single neurons,</td>
<td>28 h</td>
</tr>
<tr>
<td>• Small networks,</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>• Implementation of all simple as well as more complex numerical computations with few neurons.</td>
<td>62 h</td>
</tr>
<tr>
<td>• Aspects of sensory signal processing (neurons as ‘filters’),</td>
<td></td>
</tr>
<tr>
<td>• Development of topographic maps of sensory modalities (e.g. visual, auditory) in the brain,</td>
<td></td>
</tr>
<tr>
<td>• First models of brain development,</td>
<td></td>
</tr>
<tr>
<td>• Basics of adaptivity and learning,</td>
<td></td>
</tr>
<tr>
<td>• Basic models of cognitive processing.</td>
<td></td>
</tr>
</tbody>
</table>

Kompetenzen/Competences: On completion the students will have gained…

- …overview over the different sub-fields of Computational Neuroscience;
- …first insights and comprehension of the complexity of brain function ranging across all sub-fields;
- …knowledge of the interrelations between mathematical/modelling methods and the to-be-modelled substrate (synapse, neuron, network, etc.);
- …access to the different possible model level in Computational Neuroscience.

Course: Vorlesung

Examination: Written examination (45 minutes)

Examination requirements:

Actual examination requirements:

- Having gained overview across the different sub-fields of Computational Neuroscience;
- Having acquired first insights into the complexity of brain function across the whole bandwidth of brain function;
- Having learned the interrelations between mathematical/modelling methods and the to-be-modelled substrate (synapse, neuron, network, etc.)
- Being able to realize different level of modelling in Computational Neuroscience.

Admission requirements:

| none |

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Florentin Andreas Wörgötter</td>
</tr>
</tbody>
</table>

Course frequency:

| each summer semester |

Duration:	

1 semester[s]	

Number of repeat examinations permitted:

| twice |

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor: 2 - 6; Master: 1 - 4</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Module B.Phy.5614: Proseminar Computational Neuroscience</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Learning outcome, core skills:
After successful completion of the module, students have deepened their knowledge in computational neuroscience / neuroinformatics by independent preparation of a topic. They should...
- know and be able to apply methods of presentation of topics from computer science;
- be able to deal with (English-language) literature;
- be able to present a topic of computer science;
- be able to lead a scientific discussion.

Workload:
- Attendance time: 28 h
- Self-study time: 92 h

Course: Proseminar

Examination: Talk (approx. 45 Min.) with written report (max. 7 S.)
Examination requirements:
Proof of the acquired knowledge and skills to deal with scientific literature from the field of computational neuroscience / neuroinformatics under guidance by presentation and preparation.

Admission requirements:
none

Recommended previous knowledge:
B.Phy.5605

Language:
English

Person responsible for module:
StudiendekanIn der Fakultät für Physik

Course frequency:
each semester

Duration:
1 semester[s]

Number of repeat examinations permitted:
3 times

Recommended semester:
Bachelor: 4 - 6; Master: 1 - 3

Maximum number of students:
14
Georg-August-Universität Göttingen

Modul B.Phy.5638: Artificial Intelligence Robotics: An Introduction
English title: Artificial Intelligence Robotics: An Introduction

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• die Grundprinzipien der künstlichen Intelligenz und der Robotik zu kennen und zu</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>• grundlegende Hardwarekomponenten und deren Funktionsweisen zu kennen und zu</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• Steuerungsparadigmen beschreiben und klassifizieren zu können,</td>
<td>62 Stunden</td>
</tr>
<tr>
<td>• eigene Steuerungen zu entwerfen und zu programmieren,</td>
<td></td>
</tr>
<tr>
<td>• Robotersimulationen im Modular Robot Control Environment durchzuführen.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen:

1. Vorlesung (Vorlesung)

Inhalte:
- Geschichte der künstlichen Intelligenz und der Robotik
- Roboterkomponenten (Morphologie, Body Dynamics, Aktuatoren und Sensoren)
- Low Level Steuerungen (Open/Closed Loop Control, PID)
- Manipulator Steuerungen (Forward/Inverse Kinematics)
- Steuerungen zur Fortbewegung (Räder und Beine)
- Steuerungsarchitekturen
- Navigation, Lokalisierung, Mapping
- Anwendungen und Ausblick, kurze Einführung in Lernen in der Robotik

2. Praktikum

Inhalte:
Entwurf und Implementierung von Roboterteuerungen unter Nutzung des Modular Robot Control Environment (using LPZRobots).

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:
Die Studierenden weisen in der Modulprüfung nach, dass sie
- die Vorlesungs Inhalte vollständig wiedergeben können
- mit Hilfe der Vorlesungs Inhalte eine Robotersteuerung für ein gegebenes Problem entwerfen können
- Hardwarekomponenten erkennen und deren Funktionsweisen wiedergeben können

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Englisch

Modulverantwortliche[r]:
Prof. Dr. Florentin Andreas Wörgötter

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester
<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dreimalig</td>
<td>Bachelor: 5 - 6; Master: 1 - 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt:</td>
</tr>
<tr>
<td>Biophysik/Komplexe Systeme</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module B.Phy.5651: Advanced Computational Neuroscience I

Learning outcome, core skills:
Participants in the course can explain and relate biological foundations and mathematical modelling of selected (neuronal) algorithms for learning and pattern formation.

Based on these algorithms' properties, they can discuss and derive possible technical applications (robots).

Workload:
- **Attendance time:** 28 h
- **Self-study time:** 62 h

Course: Vorlesung (Lecture)

Examination:
Written examination (90 Min.) or oral examination (approx. 20 Min.)

Examination requirements:
- Algorithms for learning:
 - Unsupervised Learning (Hebb, Differential Hebb),
 - Reinforcement Learning,
 - Supervised Learning
- Algorithms for pattern formation.

Biological motivation and technical Application (robots).

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Basics Computational Neuroscience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Florentin Andreas Wörgötter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>each winter semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 times</td>
<td>Bachelor: 5 - 6; Master: 1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:
Hinweis: Die B.Phy.5652 kann als vorlesungsbegleitendes Praktikum besucht werden.
Learning outcome, core skills:
Participants in the course can implement, test, and evaluate the properties of selected (neuronal) algorithms for learning and pattern formation.

Workload:
- **Attendance time:** 28 h
- **Self-study time:** 62 h

Examination:
- **Examination:** 4 Protocols (max. 3 Pages) and Presentations (ca. 10 Min.), not graded, not graded
- **Examination requirements:**
 - Algorithms for learning:
 - Unsupervised Learning (Hebb, Differential Hebb),
 - Reinforcement Learning,
 - Supervised Learning
 - Algorithms for pattern formation.
 - Biological motivation and technical Application (robots).
 - For each of the 4 programming assignments 1 protocol (ca. 3 pages) and 1 oral presentations (demonstration and discussion of the program, ca. 10 min).

Admission requirements:
- **B.Phy.5651** (can be taken in parallel to B.Phy.5652)

Recommended previous knowledge:
- Programming in C++,
- Basic numerical algorithms,
- Grundlagen Computational Neuroscience
- B.Phy.5504: Computational Physics (Scientific Computing)

Language:
- **English**

Person responsible for module:
- Prof. Dr. Florentin Andreas Wörgötter

Course frequency:
- **unregelmäßig**

Duration:
- **1 semester[s]**

Number of repeat examinations permitted:
- **3 times**

Recommended semester:
- Bachelor: 5 - 6; Master: 1 - 4

Maximum number of students:
- **24**
Modul M.Bio-NF.141: Allgemeine und Angewandte Mikrobiologie

Lernziele/Kompetenzen:

- **Lernziele:** Evolution und phylogenetisches System, Morphologie und Zellbiologie, Lebensgemeinschaften und symbiontische Beziehungen der Bakterien und Archaeen; Genexpression und molekulare Kontrolle (Transkription, Translation); Posttranslationale Kontrolle, Proteinstabilität und Proteomics; Genetische Netzwerke; Molekulare Schalter und Signaltransduktion; mikrobielle Entwicklungsbiologie; Pathogenitätsmechanismen der wichtigsten Krankheitserreger; Entwicklung neuer antimikrobieller Wirkstoffe;
die Vielfalt des Stoffwechsels in Bakterien und Archaeen als Grundlage für biotechnologische Anwendungen; industrielle Mikrobiologie.

- **Kompetenzen:** Kenntnis biotechnologisch und medizinisch relevanter Mikroorganismen, Fähigkeit, diese Organismen zu identifizieren und mit molekularen Methoden zu untersuchen

Arbeitsaufwand:

- **Präsenzzeit:** 42 Stunden
- **Selbststudium:** 48 Stunden

Lehrveranstaltung: Vorlesung Allgemeine und Angewandte Mikrobiologie (Vorlesung) 3 SWS

Prüfung: Klausur (90 Minuten) 3 C

Zugangsvoraussetzungen:

Kann nicht in Kombination mit Fachmodul M.Bio.101 belegt werden

Empfohlene Vorkenntnisse:

keine

Sprache:

Englisch

Modulverantwortliche[r]:

Prof. Dr. Jörg Stülke

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

tweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

10

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 306
Georg-August-Universität Göttingen

Modul M.Bio-NF.142: Genetik und eukaryotische Mikrobiologie

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukaryotische Mikroorganismen als Modellsysteme: Vielfalt, Morphologie, Ökologie und Entwicklung; DNA, Chromosomen und Plasmide; Genexpression und molekulare Kontrolle (Transkription, Translation); Posttranslationalle Kontrolle, Proteininstabilität und Proteomics; Genetische Netzwerke und intrazellulärer Verkehr; Molekulare Schalter und Signaltransduktion; Mitochondrien: Atmung und Gärungen; Zellzyklus, Zelldifferenzierung, Geschlechtstypen, Konjugation und Meiose; Polarität und Cytoskelett; Hefe, Pseudohyphe, Hyphe, Gewebe: mikrobielle Entwicklungsbiologie; Circadiane Uhren, Lichtkontrolle und Aging; Pathogenitätsmechanismen und Sekundärmetabolismus.</td>
<td>Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Vorlesung "Eukaryotische Mikrobiologie und Genetik" (Vorlesung)

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
</tr>
</thead>
</table>

Prüfungsanforderungen:

Eukaryotische Mikroorganismen als Modellsysteme: Vielfalt, Morphologie, Ökologie und Entwicklung; DNA, Chromosomen und Plasmide; Genexpression und molekulare Kontrolle (Transkription, Translation); Posttranslationalle Kontrolle, Proteininstabilität und Proteomics; Genetische Netzwerke und intrazellulärer Verkehr; Molekulare Schalter und Signaltransduktion; Mitochondrien: Atmung und Gärungen; Zellzyklus, Zelldifferenzierung, Geschlechtstypen, Konjugation und Meiose; Polarität und Cytoskelett; Hefe, Pseudohyphe, Hyphe, Gewebe: mikrobielle Entwicklungsbiologie; Circadiane Uhren, Lichtkontrolle und Aging; Pathogenitätsmechanismen und Sekundärmetabolismus.

Zugangsvoraussetzungen:

Es müssen Grundkenntnisse aus dem Bereich der Mikrobiologie und Genetik nachgewiesen werden.

Empfohlene Vorkenntnisse:

keine

Sprache:

Englisch

Modulverantwortliche[r]:

Prof. Dr. Gerhard Braus

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

5

Bemerkungen:

Kann nicht in Kombination mit Fachmodul M.Bio.102 belegt werden.
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Theorie und Methoden der Analyse von</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Pflanzen-Mikroben-Interaktionen auf zellbiologischer und</td>
<td>42 Stunden</td>
</tr>
<tr>
<td>molekularer Ebene.</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td></td>
<td>48 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung "Pflanzen-Mikroben-Interaktionen" (Vorlesung)</th>
<th>3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Theorie und Methoden der Analyse von Pflanzen-Mikroben-</td>
<td></td>
</tr>
<tr>
<td>Interaktionen auf zellbiologischer und molekularer Ebene.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es müssen Grundkenntnisse aus dem Bereich der Zell- und Mikrobiologie</td>
<td>keine</td>
</tr>
<tr>
<td>nachgewiesen werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. Christiane Gatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kann nicht in Kombination mit Fachmodul M.Bio.104 belegt werden.</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Bio-NF.341: Entwicklungsbiologie von Invertebraten

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung "Entwicklung von Invertebraten" (Vorlesung)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es müssen Grundkenntnisse aus dem Bereich der Entwicklungsbiologie nachgewiesen werden.</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. Ernst A. Wimmer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
Es müssen Grundkenntnisse aus dem Bereich der Entwicklungsbiologie nachgewiesen werden.

Empfohlene Vorkenntnisse:
keine

Sprache:
Englisch

Modulverantwortliche[r]:
Prof. Dr. Ernst A. Wimmer

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
5
Bemerkungen:
Kann nicht in Kombination mit Fachmodul M.Bio.301 belegt werden.
Georg-August-Universität Göttingen
Modul M.Bio-NF.344: Neurobiologie

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 48 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung "Vom Gen zum Verhalten" (Vorlesung)</th>
<th>3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es müssen Grundkenntnisse aus dem Bereich der Zellbiologie nachgewiesen werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Göpfert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlenes Fachsemester:</td>
</tr>
</tbody>
</table>

Sprache: Englisch
Modulverantwortliche[r]: Prof. Dr. Martin Göpfert
Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>zweimalig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Bemerkungen:
Kann nicht in Kombination mit Fachmodul M.Bio.303 belegt werden.
Georg-August-Universität Göttingen

Modul M.Bio.310: Systembiologie

English title: Systems biology

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 147 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 213 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bioinformatik der Systembiologie (Vorlesung)</td>
</tr>
<tr>
<td>2. Bioinformatik der Systembiologie (Übung)</td>
</tr>
<tr>
<td>3. Bioinformatik der Systembiologie (Seminar)</td>
</tr>
<tr>
<td>4. Praktikum: Bioinformatik der Systembiologie</td>
</tr>
<tr>
<td>- 3-wöchiges Blockpraktikum: Modellierung und Analyse biologischer Systeme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Mündlich (ca. 30 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Protokoll (max. 10 Seiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminarvortrag (ca. 30 min), regelmäßige Teilnahme an Übung, Seminar und Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kann nicht in Kombination mit Schlüsselkompetenzmodul M.Bio.340 belegt werden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Edgar Wingender</td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
Kann nicht in Kombination mit Schlüsselkompetenzmodul M.Bio.340 belegt werden

Empfohlene Vorkenntnisse:
keine

Sprache:
Englisch

Modulverantwortliche[r]:
Prof. Dr. Edgar Wingender
<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester; verschieden; siehe Lehrveranstaltungen</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
Modul M.Bio.359: Development and plasticity of the nervous system (lecture)

Lernziele/Kompetenzen:
Es werden die Grundlagen der Entwicklung und Plastizität des Nervensystems von Vertebraten vermittelt. Einen besonderen Schwerpunkt bilden die folgenden 3 Themenkomplexe:

- frühe Entwicklung des Nervensystems (Induktion und Musterbildung, Bildung und Überleben von Nervenzellen, Entwicklung spezifischer Nervenverbindungen, Synaptogenese),
- Entwicklungsplastizität (erfahrungs- und aktivitätsabhängige Entwicklung des Gehirns, kritische Phasen) und
- adulte Plastizität und Regeneration (lerninduzierte Plastizität, zelluläre Mechanismen plastischer Veränderungen, Neurogenese, Therapien nach Läsionen).

Arbeitsaufwand:

| Präsenzzeit: | 28 Stunden |
| Selbststudium: | 62 Stunden |

Lehrveranstaltung: Vorlesung: Development and plasticity of the nervous system (Vorlesung)

Prüfung: Mündlich (ca. 15 Minuten)

Zugangsvoraussetzungen:
keine

Sprache:
Englisch

Modulverantwortliche[r]:
Prof. Dr. Siegrid Löwel

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
35
Georg-August-Universität Göttingen

Modul M.Bio.360: Development and plasticity of the nervous system (seminar)

English title: Development and plasticity of the nervous system (seminar)

<table>
<thead>
<tr>
<th>3 C</th>
<th>2 SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden lernen aktuelle Publikationen auf dem Gebiet der Entwicklung und Plastizität des Nervensystems zu referieren und in einem Seminarbericht kritisch zu diskutieren.</td>
<td>Präsenzzeit: 28 Stunden</td>
</tr>
</tbody>
</table>

| Lehrveranstaltung: Seminar: Development and plasticity of the nervous system (Seminar) | 2 SWS |

| Prüfung: Vortrag (ca. 20 Min.) mit schriftlicher Ausarbeitung (max. 8 Seiten) | 3 C |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefte Kenntnisse aktueller Forschungsergebnisse sowie Verständnis wissenschaftlicher Forschungsansätze zum Thema Entwicklung und Plastizität des Nervensystems.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnahme an M.Bio.359</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. Siegrid Löwel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3016
Modul M.Forst.1411: Modellierung von Populationsdynamik und Biodiversität

English title: Modelling of Population Dynamics and Biodiversity

Lernziele/Kompetenzen:

Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden

Lehrveranstaltung: Modellierung von Populationsdynamik und Biodiversität
(Seminar)

Inhalte:

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Kerstin Wiegand

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
nicht begrenzt
Modul M.Forst.1413: Ökosystemtheorie - Analyse, Simulationstechniken

English title: Ecosystem Theory - Analysis, Simulation Technologies

Kurzbeschreibung: Grundlegende Kenntnisse in den Bereichen Systemanalyse und Modellierung sowie Stoffhaushalt von Waldökosystemen, Fähigkeit zu interdisziplinärem analytischen Denken, eigenständiger Einsatz von Modellen für praktische Fragestellungen, kritische Bewertung der Möglichkeiten und Grenzen verschiedener Modellierungsansätze, Erstellung einfacher Modelle.

Lehrveranstaltungen:

1. **Modellbildung in der Populations- und Synökologie** (Vorlesung, Übung)
 2 SWS

2. **Modellbildung und Simulation des Wasser- und Stoffhaushaltes von Waldökosystemen** (Vorlesung, Übung)
 2 SWS

Prüfung: Zwei Hausarbeiten (je ca. 10 Seiten)
6 C

Prüfungsanforderungen:

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Kerstin Wiegand

Dauer:

1 Semester

Zugangsvoraussetzungen:

keine

Angebotshäufigkeit:

jedes Wintersemester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Maximale Studierendenzahl:

nicht begrenzt

Arbeitsaufwand:

Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

6 C
4 SWS
Georg-August-Universität Göttingen
Modul M.Forst.1421: Prozesse in der Ökologie
English title: Processes in Ecology

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative und qualitative Beschreibung physikalischer, chemischer und physiologischer Prozesse in Ökosystemen als Grundlage für die Interpretation bodenphysikalischer, bodenchemischer, ökophysiologischer und meteorologischer Messungen. Fähigkeit zur Beurteilung der Möglichkeiten und Grenzen solcher Modelle für ökologische Fragestellungen.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:
- **Präsenzzeit:** 56 Stunden
- **Selbststudium:** 124 Stunden

Lehrveranstaltung: Physikalische und physiologische Prozesse in der Ökologie *(Vorlesung)*

Inhalte:
Physikalische Prozesse sind die Ursache aller Stoff- und Energietransporte in Ökosystemen. Ihre quantitative Beschreibung bildet die Grundlage für die Interpretation bodenphysikalischer, ökophysiologischer und meteorologischer Messungen. Anhand realer Datensätze werden quantitative Beschreibung und Interpretation im Kurs geübt und anschließend ein einfaches Modell des Stofftransfers in einem Waldökosystem entwickelt.

Prüfung: Klausur (120 Minuten)

Prüfungsvorleistungen:
Mindestens 80% der Protokolle

Lehrveranstaltung: Chemische Prozesse in der Ökologie *(Vorlesung)*

Inhalte:

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Alexander Knohl

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.Forst.1422: Fernerkundung und GIS
English title: Remote Sensing and GIS

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 124 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Fernerkundung und GIS (Vorlesung, Übung)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte:</td>
<td>4 SWS</td>
</tr>
</tbody>
</table>

| Prüfung: Klausur (120 Minuten) | 6 C |

| Prüfungsanforderungen: |
|------------------------|---|
| Kenntnis der unter “Lernziele/Kompetenzen” genannten Konzepte und Verfahren. | |

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Winfried Kurth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

| Maximale Studierendenzahl: |
|---------------------------|---|
| nicht begrenzt | |
Georg-August-Universität Göttingen
Modul M.Forst.1423: Struktur- und Funktionsmodelle auf ökophysiologischer Basis
English title: Structural and Functional Models on an Eco-Physical Basis

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Verständnis von ökophysiologischen Grundlagen für FSPM und von Voraussetzungen aus der Informatik (formale Sprachen, regelbasiertes Paradigma); Ein schätzung der Möglichkeiten und Grenzen von FSPM; Fähigkeit, ein FSPM zu analysieren und anhand eigener Daten zu parametrisieren; Kenntnis von Simulations- und Visualisierungstechniken. | Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Struktur- und Funktionsmodelle auf ökophysiologischer Basis (Vorlesung, Übung)</th>
<th>4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Überblick zu Functional-structural plant models (FSPM); Lindenmayer-Systeme, Graph-Grammatiken und Grundzüge der regelbasierten Modellierung und Programmierung, bei spielsweise in der Programmiersprache XL; Modellierungs- und Werkzeuge für FSPM (z.B. die Softwaresysteme Grogra und GroIMP – teilweise unterstützt durch e-Learning-Einheiten zum Selbststudium); Grundlagen zu physiologischen Prozessen, beispielsweise zur Photosynthese; Modellansätze zur pflanzlichen Architektur, zu Prozessen und zur Kopplung von Struktur und Funktion in Pflanzen; Grundlagen der Datenaufnahme zur Gehölzmorphologie und -physiologie; digitale Repräsentation von ausgemessenen Verzweigungssystemen und von ausgewählten Prozessen; Analyse, Parametrisierung, Modifikation und Evaluation eines existierenden FSPM.</td>
<td></td>
</tr>
</tbody>
</table>

| Prüfung: Hausarbeit (max. 20 Seiten) | 6 C |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnis der unter "Lernziele/Kompetenzen" genannten Konzepte und Verfahren.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Winfried Kurth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>56 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium</td>
<td>124 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Computergestützte Datenanalyse (Vorlesung, Übung)

Inhalte:
Einführung in wichtige statistische Modelle, Testverfahren und Versuchspläne: deskriptive Statistik; Anpassungstests; Kreuztabellen und Chi quadrat-Tests; einfache, multiple und schrittweise Regression; t-Tests und ein- und zweifaktorielle Varianzanalyse; Transformationen; randomisierte Versuchspläne und randomisierte Blockversuchs- Kovarianzanalyse. Versuche mit Messwiederholungen, nichtlineare Regression, logistische Regression, Fehlerfortpflanzung, Rangtests, Hauptkomponentenanalyse, Geostatistik. Zusätzlich zu den theoretischen Grundlagen wird in den Übungen eine Einführung in die Benutzung einer Statistik-Software zur Datenanalyse gegeben und werden die diskutierte Verfahren auf konkrete Experimente und Datensätze angewendet, die Analyseergebnisse diskutiert und interpretiert.

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Dr. Irina Kuzyakova

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
nicht begrenzt
Georg-August-Universität Göttingen

Modul M.Forst.1431: Projekt: Waldökosystemanalyse und Informationsverarbeitung

English title: Project: Forest Ecosystem Analysis and Information Processing

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 332 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Projekt: Waldökosystemanalyse und Informationsverarbeitung

<table>
<thead>
<tr>
<th>Prüfung: Referat (ca. 20 Minuten / 30%) und Hausarbeit (max. 20 Seiten / 70%) [Projektarbeit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 C</td>
</tr>
</tbody>
</table>

Prüfungsanforderungen:

Kenntnis der unter "Lernziele/Kompetenzen" genannten Konzepte und Verfahren.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Winfried Kurth

Angebotshäufigkeit:
jedes Semester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
nicht begrenzt

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
Georg-August-Universität Göttingen

Modul M.Forst.1659: Datenanalyse für Fortgeschrittene

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnis und problemgerechte Anwendung und Interpretation spezieller statistischer Methoden und erweiterte Fähigkeiten der Softwareanwendung</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 124 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrveranstaltung: Datenanalyse für Fortgeschrittene (Vorlesung, Übung) |
|---------------------------|--------------------------|
| **Inhalte:** | |

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Winfried Kurth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
- Keine

Sprache:
- Deutsch

Modulverantwortliche[r]:
- Prof. Dr. Winfried Kurth

Angebotshäufigkeit:
- jedes Wintersemester

Dauer:
- 1 Semester

Wiederholbarkeit:
- gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
- Keine

Maximale Studierendenzahl:
- Nicht begrenzt
Modul M.Forst.1665: Grundlagen der Populationsgenetik

English title: Basics of Population Genetics

Lernziele/Kompetenzen:
Kenntnisse in der Interpretation populationsgenetischer Prozesse.

Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden

Lehrveranstaltungen:

1. **Paarungssysteme** (Vorlesung, Seminar)

 Inhalte:

2. **Selektionstheorie** (Vorlesung, Seminar)

 Inhalte:
 Aufbauend auf dem ersten Teil der Populationsgenetik (Paarungssysteme) werden in diesem Semester die Auswirkungen von Selektion auf die Entwicklung genetischer Strukturen, insbesondere die Etablierung und Erhaltung genetischer Polymorphismen und auch die Entwicklung der Populationsfitness behandelt (Selektion und Paarungssystem, Formen der Selektion, Berechnung von Fitnesswerten, Selektion mit konstanten, häufigkeitsabhängigen bzw. dichteabhängigen genotypischen Fitnesswerten).

Prüfung: Hausarbeit (max. 20 Seiten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Martin Ziehe

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Maximale Studierendenzahl:
nicht begrenzt
Georg-August-Universität Göttingen

Modul M.Forst.1678: Variationsmessung in der Biologie und speziell der Genetik
English title: Variation Measurements in Biology and Specifically in Genetics

| 6 C

| 4 SWS |

Lernziele/Kompetenzen:
Vertrautheit mit Methoden der Quantifizierung von Eigenschaften biologischer und speziell genetischer Variation.

| Arbeitsaufwand:

| Präsenzzeit:

| 56 Stunden

| Selbststudium:

| 124 Stunden |

Lehrveranstaltungen:

1. **Das Ausmaß von Variation** (Vorlesung, Seminar)
 Inhalte:
 Es werden die Möglichkeiten dargestellt, das Ausmaß von Variation quantitativ zu erfassen und zu beschreiben. Dazu gehört auch die Behandlung entsprechender Konzepte (wie etwa für die Diversität oder Differenzierung). Die hier demonstrierten Anwendungen beziehen sich zwar zum Teil ganz allgemein auf Variation (wie sie auch in der Ökologie zu finden sind), verstärkt aber auf solche speziell aus dem Bereich der Genetik.

| 2 SWS |

2. **Räumliche und andere Aspekte der Variation** (Vorlesung, Seminar)
 Inhalte:
 In diesem Semester steht zunächst die Beschreibung der räumlichen Organisation und Verteilung von Variation (räumliche Charakterisierungen mit Ripley’s K, räumliche Autokorrelationen mit Moran’s I usw.) im Vordergrund. Anschließend werden weitere ausgewählte Themen behandelt, deren Auswahl sich auch an den speziellen Interessen der Zuhörer orientieren kann.

| 2 SWS |

Prüfung: Hausarbeit (max. 20 Seiten)

| 6 C |

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Martin Ziehe

Angebotshäufigkeit:

dedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

nicht begrenzt
Georg-August-Universität Göttingen
Modul M.Forst.1685: Ökologische Modellierung

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kenntnis der behandelten Modellierungstechniken;</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• Fähigkeit, eine geeignete Modellierungstechnik für eine gegebene Fragestellung im Bereich der Ökologie auszuwählen und eigenständig anzuwenden;</td>
<td>56 Stunden</td>
</tr>
<tr>
<td>• den aktuellen Stand der Forschung in der ökologischen Modellierung kennen lernen;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• kritische Wertschätzung und Diskussion von Forschungsergebnissen;</td>
<td>124 Stunden</td>
</tr>
<tr>
<td>• Präsentationstechniken üben und verfeinern;</td>
<td></td>
</tr>
<tr>
<td>• konstruktives Feedback geben und nehmen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Simulationsmodelle (Vorlesung, Übung)</th>
<th>3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Modellierung ökologischer Prozesse mit Schwerpunkt auf Simulationsmodellen;</td>
<td></td>
</tr>
<tr>
<td>Modellbildung eigenständig implementieren von Matrizenmodellen;</td>
<td></td>
</tr>
<tr>
<td>und regelbasierten, individuenbasierten und räumlichen Simulationsmodellen;</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Modellierung mit MS Excel und NetLogo;</td>
<td></td>
</tr>
<tr>
<td>Integration quantitative und qualitativa Daten;</td>
<td></td>
</tr>
<tr>
<td>Musterorientierte Modellierung;</td>
<td></td>
</tr>
<tr>
<td>Modellskalierung;</td>
<td></td>
</tr>
<tr>
<td>Validierung; Sensitivitätsanalyse; Szenariengestaltung und -analyse;</td>
<td></td>
</tr>
<tr>
<td>Modellinhalt: Populationsgefährdungsanalyse als Artenschutz-Tool (Matrizen und individuenbasiert);</td>
<td></td>
</tr>
<tr>
<td>Bedeutung von Raum in der Vegetationsmodellierung;</td>
<td></td>
</tr>
<tr>
<td>Prüfung: Klausur (60 Minuten)</td>
<td>4 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Current topics in ecological modelling (Seminar)</th>
<th>1 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Vorstellung aktueller Publikationen oder eigener Forschungsergebnisse seitens der Teilnehmer;</td>
<td></td>
</tr>
<tr>
<td>Vorstellung schließt die Diskussionsleitung und -stimulation ein;</td>
<td></td>
</tr>
<tr>
<td>Teampräsentationen mit Pro- und Kontra-VertreterInnen möglich;</td>
<td></td>
</tr>
<tr>
<td>strukturiertes Feedback zur Präsentation;</td>
<td></td>
</tr>
<tr>
<td>Prüfung: Referat (ca. 20 Minuten) mit schriftl. Ausarbeitung (max. 1 Seite)</td>
<td>2 C</td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen: keine

Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

Empfohlene Vorkenntnisse: keine

Modulverantwortliche[r]: Prof. Dr. Kerstin Wiegand

Dauer: 1 Semester
<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen:
Beide Teilmodule auch für andere Studiengänge, wie MSc "Biologische Diversität und Ökologie", MSc "Agrawissenschaften", Studienrichtung Ressourcenmanagement verwendbar.
Georg-August-Universität Göttingen
Modul M.Forst.1689: Ökologische Modellierung mit C++

Lernziele/Kompetenzen:
Umsetzung ökologischer Fragestellungen in Modellstrukturen; freie Programmierung mit C++; eigenständige Entwicklung von Modellen.

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltung: Ökologische Modellierung mit C++ (Seminar)

Inhalte:
Das Modul vermittelt fortgeschrittene Kenntnisse der Modellierung ökologischer Fragestellungen. Dabei steht die Implementierung von ökologischen Modellen mit der Programmiersprache C++ im Mittelpunkt. Dazu werden die für die Modellimplementierung relevanten Grundzüge von C++ vermittelt.
Abschließend wird das Erlernte in einer Projektarbeit angewandt, in der eine Modellierungsaufgabe weitgehend eigenständig bearbeitet wird. Die Projektarbeit wird in einer Hausarbeit als Leistungsnachweis dokumentiert.

Prüfung: Hausarbeit (max. 20 Seiten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Kerstin Wiegand

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
nicht begrenzt
Lernziele/Kompetenzen:

Die berufliche Handlungskompetenz wird durch die Kenntnis von Werkzeugen (den Modellen) an der Schnittstelle des konsolidierten Wissens zur Anwendung (Stand der Technik), von Methoden zur Informationsgewinnung und durch die Schulung der Transferfähigkeiten verbessert.

Arbeitsaufwand:
- **Präsenzzeit:** 56 Stunden
- **Selbststudium:** 124 Stunden

Lehrveranstaltung:
Modellanalyse und Modellanwendung (Vorlesung, Übung)
4 SWS

Prüfung:
Klausur (90 Minuten) und unbenotetes Referat (ca. 10 Minuten)

Prüfungsanforderungen:
Kenntnis der beschriebenen Lehrinhalte, Erreichung der festgelegten Lernziele und Nachweis der angestrebten Kompetenzen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Dr. Peter Schall

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

Georg-August-Universität Göttingen

Modul M.Geg.02: Ressourcennutzungsprobleme

English title: Resource Use Problems

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulinhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globaler Überblick</td>
</tr>
<tr>
<td>Einführung – Ressourcenprobleme auf der Erde</td>
</tr>
<tr>
<td>Internationale Organisationen – Aufgaben, Ziele und Aktionen</td>
</tr>
<tr>
<td>Land- und Bodenressource – Nutzungspotenzial und Bodenstressfaktoren</td>
</tr>
<tr>
<td>Waldökosysteme und Biodiversität – Probleme der Erhaltung und Entwicklung</td>
</tr>
<tr>
<td>Wasserressourcen – genug Wasser für alle?</td>
</tr>
<tr>
<td>Internationale Ressourcensyndrome und Ressourcendegradation</td>
</tr>
<tr>
<td>Bodendegradationsprozesse – das „Sahelsyndrom“;</td>
</tr>
<tr>
<td>Waldkonversion und seine geoökologischen Folgen („Raubbausyndrom“)</td>
</tr>
<tr>
<td>Wasserüberschüttung: Überschwemmungen und Dürren – der Wasserhaushalt außer Norm?</td>
</tr>
<tr>
<td>Wasserqualität – ein Problem nur der Armen?</td>
</tr>
<tr>
<td>Desertifikation – Verschärfung unter climate change?</td>
</tr>
<tr>
<td>Internationale Konventionen zum Ressourcenschutz</td>
</tr>
<tr>
<td>Regionale Beispiele</td>
</tr>
<tr>
<td>Regenwaldkonversion – globale und regionale Konsequenzen</td>
</tr>
<tr>
<td>Einzugsgebietmanagement – integrierte Analyse und Antworten auf Wasserressourcenkonflikte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>56 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ressourcennutzungsprobleme (Vorlesung)</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Ressourcennutzungsprobleme (mit 3 Geländetagen) (Seminar)</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelmäßige Teilnahme am Seminar; Referat mit schriftl. Ausarbeitung bzw. mit Poster (ca. 30 Min., max. 20 S. bzw. 1 DIN A 0 Poster)</td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3033
Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Empfohlene Vorkenntnisse: keine</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Daniela Sauer</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>Dauer:</td>
</tr>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>40</td>
</tr>
</tbody>
</table>
Modul M.Geg.03: Globaler Umweltwandel / Landnutzungsänderung

English title: Global Change / Land Use Change

Lernziele/Kompetenzen:
Die Studierenden verfügen über ein Überblickswissen zur Forschung über Klimawandel und Global Change.

Die Studierenden sind in der Lage:
- Veränderungen der Umwelt unter dem Einfluss des Menschen zu analysieren,
- typische Syndrome und Syndromkomplexe zu erkennen und zu verstehen,
- Global Change als zentrales Thema der Geographie an der Schnittstelle von Natur- und Gesellschaftswissenschaften zu erkennen,
- Adaptation- und Mitigation-Ansätze zu bewerten.

Modulinhalte der Vorlesung:
Das Modul bearbeitet in der Vorlesung folgende Themen:
- Basiswissen Klimawandel – Summary des IPCC AR5-Report der WGI
- Basiswissen Klimawandel in Deutschland
- Zivilisationsdynamik der Menschheit
- Industrielle Revolution und ihre anhaltende Raumwirksamkeit
- Kippelemente mit direkter und indirekter Wirkung auf die zukünftige Menschheitsentwicklung
- Bevölkerungsentwicklung und Ernährungssicherung
- Global und regionale Wasserressourcen
- Globaler Umweltwandel und Gesundheit der Menschheit (Global Health - One Health Ansatz)
- Globale Umweltsyndrome
- Energieversorgung der Menschheit - Transformation der Energiesysteme

Modulinhalte des Seminars:
Das Seminar nimmt aktuelle Themen des Globalen Umweltwandels auf wie z.B. Themen der Energiewende in Deutschland, das Erneuerbare-Energien-Gesetz (EEG), Landnutzungswandel, Anpassung der Pflanzenproduktion an den Klimawandel, Bevölkerungswandel und Konsumentenwandel etc.

Lehrveranstaltungen:
1. Globaler Umweltwandel (Global Change) (Vorlesung) 2 SWS
2. Spezielle Fallbeispiele des Globalen Umweltwandels (Seminar) 2 SWS

Prüfung: Klausur (90 Minuten)
Prüfungsvorleistungen:
Regelmäßige Teilnahme am Seminar; Referat mit schriftl. Ausarbeitung (30 Min., 12-20 S.)

Prüfungsanforderungen:

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3035

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine

Sprache: Deutsch
Modulverantwortliche[r]: Prof. Dr. Martin Kappas

Angebotshäufigkeit: jedes Wintersemester
Dauer: 1 Semester

Wiederholbarkeit: zweimalig
Empfohlenes Fachsemester:

Maximale Studierendenzahl: 40
Lernziele/Kompetenzen:

Modulinhalte:

Lehrveranstaltungen:
1. **Globaler soziokultureller und ökonomischer Wandel** (Vorlesung)
2. **Globaler soziokultureller und ökonomischer Wandel** (Übung)

Prüfung: Referat mit schriftl. Ausarbeitung (ca. 30 Min., max. 20 S.)

Prüfungsvorleistungen:
Regelmäßige Teilnahme an der Übung

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine
<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Heiko Faust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Geg.05: Geoinformationssysteme und Umweltmonitoring

English title: GIS and Remote Sensing / Geographical Information Systems and Environmental Monitoring

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

| Lehrveranstaltungen: | \[|\]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GIS und Fernerkundung in der Ressourcenanalyse und -bewertung (Vorlesung)</td>
<td>1 SWS</td>
</tr>
<tr>
<td>2. Übung mit Praktikum: GIS und Fernerkundung oder GIS und Umweltmonitoring (Übung)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

| Prüfung: Projektarbeitsbericht (max. 15 Seiten) | 5 C |
| Prüfungsvorleistungen: | Regelmäßige Teilnahme an der Übung |

| Prüfungsanforderungen: | \[|\]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erbringen den Nachweis, dass sie für die Modellierung von Faktoren und der raum-zeitlichen Dynamik der Landoberfläche die theoretischen und praktischen Grundlagen des Einsatzes von GIS/Fernerkundung kennen, grundlegende flächenhafte Indikatoren in GIS erstellen bzw. aus Fernerkundungsdaten ableiten und GIS-Modelle zur Umweltmodellierung sowie die Geostatistik zur Ressourcenanalyse und Umweltbewertung anwenden können.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Martin Kappas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

| Maximale Studierendenzahl: | \[|\]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.Geg.06: Landschaftsökologie und Landschaftsentwicklung
English title: Landscape Ecology and Landscape Development

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
42 Stunden
Selbststudium:
108 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Landschaftsökologie und Landschaftsentwicklung (Vorlesung)</td>
<td>1 SWS</td>
</tr>
<tr>
<td>2. Landschaftsökologie und Landschaftsentwicklung (Seminar)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

| Prüfung: Referat mit schriftl. Ausarbeitung (ca. 30 Min., max. 20 S.) | 5 C |

<table>
<thead>
<tr>
<th>Prüfungsvorleistungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelmäßige Teilnahme am Seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erbringen den Nachweis, dass sie Theorien, Analyseverfahren und Modellierungskonzepte zur Charakterisierung des Landschaftshaushaltes in der Landschaftsökologie beispielhaft auf die Analyse und Bewertung anthropogener Nutzungseingriffe in den Landschaftshaushalt anwenden können. Ferner erbringen sie den Nachweis, dass sie geoökologische Folgeprozesse aus den anthropogenen Eingriffen in terrestrischen Ökosystemen für die Landschaftsentwicklung ableiten sowie zukünftige Entwicklungsszenarien ableiten und abschätzen können.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Daniela Sauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3040
Georg-August-Universität Göttingen
Modul M.Geg.07: Ressourcenwahrnehmung, -bewertung und -management
English title: Perception, Evaluation and Management of Resources

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 108 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ressourcenwahrnehmung, -bewertung und -management (Vorlesung)</td>
</tr>
<tr>
<td>2. Ressourcenwahrnehmung, -bewertung und -management (Seminar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Referat mit schriftl. Ausarbeitung (ca. 30 Min., max. 25 S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen: Regelmäßige Teilnahme am Seminar</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Faust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3041
Lernziele/Kompetenzen:

Arbeitsaufwand:

| Präsenzzeit: | 28 Stunden |
| Selbststudium: | 152 Stunden |

Lehrveranstaltung: GIS-Studienprojekt (Übung)

2 SWS

Prüfung: Projektarbeitsbericht (max. 15 Seiten)

Prüfungsvorleistungen:
Regelmäßige Teilnahme an der Übung

6 C

Prüfungsanforderungen:
Die Studierenden erbringen den Nachweis, dass sie eine eigenständige GIS-basierte Projektstudie erstellen können, die grundlegende Funktionalität eines GIS kennen und deren Nutzung beherrschen, um ein konkretes Ressourcennutzungsproblem zu lösen. Ferner erbringen sie den Nachweis, dass sie die Einsatzmöglichkeiten einer GIS-gestützten Ressourcenbewertung auch in der praktischen Ressourcennutzungsplanung verstehen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Martin Kappas

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
20
Georg-August-Universität Göttingen
Modul M.Geg.903: Projektpraktikum Geoinformatik

English title: Project Internship in Geoinformatics

Lernziele/Kompetenzen:
Die Studierenden erweitern Ihre technischen Grundkenntnisse über die Arbeit mit GIS und Geodaten indem Sie sich im Rahmen eines Projektpraktikums mit der Entwicklung einer eigenen GIS-Applikation (z. B. aus dem Bereich Web-GIS, Mobile-GIS, etc.) oder der Evaluierung / Weiterentwicklung bestehender Applikationen / Algorithmen beschäftigen.

Das Praktikum findet grundsätzlich in der Organisationseinheit des betreuenden Dozenten statt, kann aber auf Anfrage auch in einem externen Betrieb bzw. einer Behörde durchgeführt werden.

Arbeitsaufwand:
Präsenzzeit: 120 Stunden
Selbststudium: 120 Stunden

Lehrveranstaltung: Praktikum (mind. 120 Stunden)

Prüfung: Praktikumsbericht (max. 25 Seiten)

Prüfungsanforderungen:
Die Studierenden erbringen den Nachweis, dass Sie sich eigenständig mit einer (GIS-) technischen Fragestellung auseinander setzen können und die Ergebnisse systematisch aufbereitet darlegen können.

Zugangsvoraussetzungen: keine
Sprache: Deutsch
Angebotshäufigkeit: jedes Semester
Wiederholbarkeit: zweimalig
Maximale Studierendenzahl: 5

Empfohlene Vorkenntnisse: M.Geg.05, M.Geg.12
Modulverantwortliche[r]: Dr. Stefan Erasmi
Dauer: 1 Semester
Empfohlenes Fachsemester:

8 C
Georg-August-Universität Göttingen
Modul M.Inf.1101: Modellierungspraktikum

Lernziele/Kompetenzen:

Arbeitsaufwand:
Präsenzzeit: 7 Stunden
Selbststudium: 143 Stunden

Lehrveranstaltung: Modellierungspraktikum (Praktikum)

Inhalte:
Typische implementierende Lehrveranstaltungen sind interdisziplinäre Projektseminare, die sich über ein Semester erstrecken, mit einer Projektwoche beginnen und einer Abschlusspräsentation enden. Möglich ist auch die Bearbeitung eines Pilotprojekts innerhalb einer Forschungsgruppe der Informatik oder der Angewandten Informatik in Vorbereitung auf das Forschungsbezogene Praktikum.

Prüfung: Vortrag (ca. 15 Min.) mit schriftlicher Ausarbeitung (max. 5 Seiten), unbenotet

Prüfungsanforderungen:
Wissen und Fähigkeiten zur Systementwicklung bei der Modellierung einer Aufgabenstellung aus der Kerninformatik, einem Anwendungsbereich oder aus der Angewandten Informatik.

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine

Sprache: Deutsch, Englisch

Modulverantwortliche[r]: Prof. Dr. Jens Grabowski

Angebotshäufigkeit: unregelmäßig
Dauer: 1 Semester

Wiederholbarkeit: zweimalig
Empfohlenes Fachsemester:

Maximale Studierendenzahl: 50

5 C
0,5 SWS

5 C
0,5 SWS
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul M.Inf.1102: Großes Modellierungspraktikum</td>
<td>9 C</td>
</tr>
<tr>
<td></td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

Arbeitsaufwand:

| Präsenzzeit: | 14 Stunden |
| Selbststudium: | 256 Stunden |

Lehrveranstaltung: Großes Modellierungspraktikum (Praktikum)

Inhalte:
Typische implementierende Lehrveranstaltungen sind interdisziplinäre Projektseminare, die sich über ein Semester erstrecken, mit einer Projektwoche beginnen und einer Abschlusspräsentation enden. Möglich ist auch die Bearbeitung eines Pilotprojekts innerhalb einer Forschungsgruppe der Informatik oder der Angewandten Informatik in Vorbereitung auf das Forschungsbezogene Praktikum.

Prüfung: Vortrag (ca. 30 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten), unbenotet

Prüfungsanforderungen:
Erweitertes Wissen und vertiefte Fähigkeiten zur Systementwicklung bei der Modellierung einer Aufgabenstellung aus der Kerninformatik, einem Anwendungsbereich oder aus der Angewandten Informatik.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Jens Grabowski
(Prof. Dr. Dieter Hogrefe, Prof. Dr. Stephan Waack,
Prof. Dr. Carsten Damm, Prof. Dr. Xiaoming Fu, Prof.
Dr. Wolfgang May, Prof. Dr. Winfried Kurth, Jun.
Prof. Dr. Konrad Rieck)

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
50
Georg-August-Universität Göttingen

Modul M.Inf.1111: Seminar Theoretische Informatik

English title: Seminar on Theoretical Computer Science

Lernziele/Kompetenzen:

Arbeitsaufwand:
Präsenzzeit:
28 Stunden
Selbststudium:
122 Stunden

Lehrveranstaltung: Seminar Theoretische Informatik (Seminar)

Inhalte:
Erarbeitung aktueller Themen anhand von relevanten Originalarbeiten aus dem Bereich der Theoretischen Informatik und ihrer Anwendungen oder auch gemeinsame systematische Erarbeitung eines fortgeschrittenen klassischen Themas im Hinblick auf Eignung für einen neuen Anwendungsbereich.

Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 5 Seiten)
Prüfungsanforderungen:
Kompetenzen bei der selbständigen Erarbeitung und Präsentation von fortgeschrittenen Themen zur Theoretischen Informatik.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch, Englisch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Stephan Waack
(Prof. Dr. C. Damm)

Angebotshäufigkeit:
jährlich; jedes 2. Semester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
14

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

Sprache:

Modulverantwortliche[r]:
Prof. Dr. Stephan Waack
(Prof. Dr. C. Damm)

Angebotshäufigkeit:
jährlich; jedes 2. Semester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
14
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erwerb fortgeschrittener Kenntnisse und Fähigkeiten zur Entwicklung und Analyse effizienter Algorithmen und zur Untersuchung der Komplexität von Problemen in unterschiedlichen Anwendungsbereichen.</td>
<td>Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Vorlesung/Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Zum Beispiel: Randomisierte und Approximationsalgorithmen, Graphalgorithmen, Onlinealgorithmen, Netzwerkalgorithmen, Neurocomputing, Pattern-Matching-Algorithmen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen: Fähigkeit zum Entwurf von effizienten Algorithmen für gegebene Probleme. Beurteilungskompetenz von deren inherenter Komplexität in den Bereichen der Kerninformatik und ggf. ihren Anwendungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Sprache: Deutsch, Englisch | Modulverantwortliche[r]: Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm, Prof. Dr. Anita Schöbel, Prof. Dr. Florentin Andreas Wörgötter) |

<table>
<thead>
<tr>
<th>Angebotshäufigkeit: unregelmäßig</th>
<th>Dauer: 1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit: zweimalig</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
</table>

| Maximale Studierendenzahl: 30 | |

<table>
<thead>
<tr>
<th>Modul M.Inf.1112 - Version 2</th>
<th>5 C 3 SWS</th>
</tr>
</thead>
</table>
Lernziele/Kompetenzen:

Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 108 Stunden

Lehrveranstaltung: Vorlesung/Übung

Inhalte:
z. B. Vorlesung Komplexitätstheorie, Vorlesung Datenstrukturen für boolesche Funktionen, Vorlesung Informationstheorie.

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.)

Prüfungsanforderungen:
Fortgeschrittene Kompetenz im Umgang mit Konzepten der theoretischen Informatik z. B. der Komplexitätstheorie und den damit verbundenen mathematischen Techniken.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch, Englisch

Sprachverantwortliche[r]:
Prof. Dr. Stephan Waack
(Prof. Dr. Carsten Damm)

Angebotsähnlichkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
30
Georg-August-Universität Göttingen
Module M.Inf.1120: Mobile Communication

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>On completion of the module students should be able to:</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>• explain the fundamentals of mobile communication including the use of frequencies, modulation, antennas and how mobility is managed</td>
<td>42 h</td>
</tr>
<tr>
<td>• distinguish different multiple access schemes such as SDMA (Space Division Multiple Access), FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), CDMA (Code Division Multiple Access) and their variations as used in cellular networks</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>• describe the history of cellular network generations from the first generation (1G) up to now (4G), recall their different ways of functioning and compare them to complementary systems such as TETRA</td>
<td>108 h</td>
</tr>
<tr>
<td>• explain the fundamental idea and functioning of satellite systems</td>
<td></td>
</tr>
<tr>
<td>• classify different types of wireless networks including WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX and recall their functioning</td>
<td></td>
</tr>
<tr>
<td>• explain the challenges of routing in mobile ad hoc and wireless sensor networks</td>
<td></td>
</tr>
<tr>
<td>• compare the transport layer of static systems to the transport layer in mobile systems and explain the approaches to improve the mobile transport layer performance</td>
<td></td>
</tr>
<tr>
<td>• differentiate between the security concepts used in GSM and 802.11 security as well as describe the way tunnelling works</td>
<td></td>
</tr>
</tbody>
</table>

Course: Mobile Communication (Lecture, Exercise)	3 WLH
Examination: Written exam (90 min.) or oral exam (approx. 20 min.)	5 C
Examination requirements:	
Fundamentals of mobile communication (frequencies, modulation, antennas, mobility management); multiple access schemes (SDMA, FDMA, TDMA, CDMA) and their variations; history of cellular network generations (first (1G) up to current generation (4G) and outlook to future generations); complementary systems (e.g. TETRA); fundamentals of satellite systems; wireless networks (WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX); routing in MANETs and WSNs; transport layer for mobile systems; security challenges in mobile networks such as GSM and 802.11 and tunneling;	

<p>| Admission requirements: | Recommended previous knowledge: |
| none | Basic knowledge in telematics and computer networks |
| Language: | Person responsible for module: |
| English | Prof. Dr. Dieter Hogrefe |
| Course frequency: | Duration: |
| unregelmäßig | 1 semester[s] |</p>
<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:

On completion of the module students should be able to:

- recall the basic terms and definitions of wireless ad hoc networks, their history and name their basic application areas
- describe the special characteristics of the physical layer of wireless ad hoc networks
- differentiate the various media access control (MAC) schemes as used in wireless ad hoc networks; and name their challenges
- explain the network protocols used in wireless ad hoc networks, reason the design decisions taken in this context as well as classifying and comparing the different existing routing protocol approaches
- identify the energy management issues in wireless ad hoc networks and classify existing energy management schemes
- describe security challenges in ad hoc networks, threats and attacks and corresponding security solutions such as cryptography schemes, key management, secure routing protocols and soft security mechanisms
- discuss the challenges on the transport layer in wireless ad hoc and sensor networks, compare them to existing protocols, classify them and discuss enhancements of TCP for wireless ad hoc networks
- describe the challenges of wireless sensor networks (WSN) and explain the differences to wireless ad hoc networks
- memorize the WSN architecture and topology, the used operating systems and the existing hardware nodes
- discuss the optimization goals in WSNs, the used MAC protocols as well as the utilised naming and addressing schemes; additionally, describe the used approaches for time synchronization, localization and routing

Workload:

- Attendance time: 42 h
- Self-study time: 108 h

Course: Wireless Ad Hoc and Sensor Networks (Lecture, Exercise)

3 WLH

Examination:

- Written exam (90 min.) or oral exam (approx. 20 min.)

Examination requirements:

Terms, definitions and characteristics of wireless ad hoc networks; Network Layer used in wireless ad hoc networks (Physical, MAC, Network Layer, Transport, Application); Energy Management; Security Challenges, threats and attacks in wireless ad hoc networks and their counter measures (cryptographic schemes, key management, secure routing, soft security); architecture, topologies and characteristics of wireless sensor networks (WSNs) and the differences to ad hoc networks; WSN specifics (naming and addressing, synchronization, localization and routing)

Admission requirements:

- none

Recommended previous knowledge:

- Basic knowledge in telematics and computer networks

Language:

- Person responsible for module:
<table>
<thead>
<tr>
<th>English</th>
<th>Prof. Dr. Dieter Hogrefe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course frequency:</td>
<td>Duration:</td>
</tr>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.Inf.1122: Seminar on Advanced Topics in Telematics

Learning outcome, core skills:
On completion of the module students should be able to:

- critically investigate current research topics from the area of telematics such as bio-inspired approaches in the area of wireless communication or security attacks and countermeasures for mobile wireless networks
- collect, evaluate related work and reference them correctly
- summarize the findings in a written report
- prepare a scientific presentation of the chosen research topic

Workload:
- Attendance time: 28 h
- Self-study time: 122 h

Courses:

1. **Network Security and Privacy** (Seminar)
2. **Security of Self-organizing Networks** (Seminar)
3. **Trust and Reputation Systems** (Seminar)

Examination: Presentation (approx. 45 minutes) and written report (max. 20 pages)

Examination requirements:
The students shall show that:

- they are able to become acquainted with an advanced topic in telematics by investigating up-to-date research publications.
- they are able to present up-to-date research on an advanced topic in telematics.
- they are able to assess up-to-date research on an advanced topic in telematics.
- they are able to write a scientific report on an advanced topic in telematics according to good scientific practice.

Admission requirements: none

Recommended previous knowledge:
Basic knowledge in telematics and computer networks

Language: English

Person responsible for module: Prof. Dr. Dieter Hogrefe

Course frequency: unregelmäßig

Duration: 1 semester[s]

Number of repeat examinations permitted: twice

Recommended semester:

Maximum number of students: 15
Georg-August-Universität Göttingen

Module M.Inf.1123: Computer Networks

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time: 28 h</td>
</tr>
<tr>
<td>• have gained a deeper knowledge in specific topics within the computer networks field</td>
<td>Self-study time: 122 h</td>
</tr>
<tr>
<td>• have improved their oral presentation skills</td>
<td></td>
</tr>
<tr>
<td>• know how to methodically read and analyse scientific research papers</td>
<td></td>
</tr>
<tr>
<td>• know how to write an analysis of a specific research field based on their analysis of state-of-the-art research</td>
<td></td>
</tr>
<tr>
<td>• have improved their ability to work independently in a pre-defined context</td>
<td></td>
</tr>
</tbody>
</table>

Course: Advanced Topics in Mobile Communications (Seminar)

<table>
<thead>
<tr>
<th>Examination: Präsentation (ca. 30 Min.) und Hausarbeit (max. 15 Seiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements: Knowledge in a specific field of mobile communication; Ability to present the earned knowledge in a proper way both orally and in a written report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in computer networks; basics of algorithms and data structures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Xiaoming Fu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

Admission requirements:
none

Recommended previous knowledge:
Basic knowledge in computer networks; basics of algorithms and data structures

Person responsible for module:
Prof. Dr. Xiaoming Fu

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Module M.Inf.1123 - Version 2
Georg-August-Universität Göttingen
Module M.Inf.1124: Seminar Computer Networks

Learning outcome, core skills:
The students
- have gained a deeper knowledge in specific topics within the computer networks field
- have improved their oral presentation skills
- know how to methodically read and analyse scientific research papers
- know how to write an analysis of a specific research field based on their analysis of state-of-the-art research
- have improved their ability to work independently in a pre-defined context

Workload:
Attendance time: 28 h
Self-study time: 122 h

Course: Seminar on Internet Technology (Seminar)

Examination: Präsentation (ca. 30 Min.) und Hausarbeit (max. 15 Seiten)
Examination requirements:
Knowledge in a specific field of internet technology; ability to present the earned knowledge in a proper way both orally and in a written report

Admission requirements:
none

Recommended previous knowledge:
Basic knowledge in computer networks; basics of algorithms and data structures

Language:
English

Person responsible for module:
Prof. Dr. Xiaoming Fu

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
30
Module M.Inf.1127: Introduction to Computer Security

Learning outcome, core skills:
After successful completion of the module students are able to:

- describe and apply symmetric-key cryptosystems
- describe and apply public-key cryptosystems
- apply and compare mechanisms for authentication and access control
- explain attacks on different networks layers
- apply and compare defenses against network attacks
- identify vulnerabilities in software and use countermeasures
- describe types and mechanisms of malware
- apply and compare methods for intrusion and malware detection
- describe and use honeypot and sandbox systems

Workload:

| Attendance time: | 56 h |
| Self-study time: | 94 h |

Course: Introduction to Computer Security (Lecture, Exercise)

| Examination: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.) |
| Successful completion of 50% of the exercises |
| Symmetric-key and public-key cryptosystems; mechanisms for authentication and access control; network attacks and defenses; software vulnerabilities and countermeasures; detection of intrusions and malicious software |

Examination prerequisites:
Successful completion of 50% of the exercises

Examination requirements:

- Symmetric-key and public-key cryptosystems; mechanisms for authentication and access control; network attacks and defenses; software vulnerabilities and countermeasures; detection of intrusions and malicious software

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English

Person responsible for module:
Prof. Dr. Konrad Rieck

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
50
Georg-August-Universität Göttingen

Module M.Inf.1128: Seminar Intrusion and Malware Detection

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>After successful completion of the modul students are able to</td>
<td>Attendance time:</td>
</tr>
<tr>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>• explain current problems of intrusion/malware detection</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>• summarize and present an approach for intrusion/malware detection</td>
<td>122 h</td>
</tr>
<tr>
<td>• discuss theoretical and practical details of the approach</td>
<td></td>
</tr>
<tr>
<td>• identify and review related worka</td>
<td></td>
</tr>
<tr>
<td>• analyse advantages and shortcomings of related approaches</td>
<td></td>
</tr>
<tr>
<td>• propose possible solutions and extensions</td>
<td></td>
</tr>
</tbody>
</table>

Course: Intrusion and Malware Detection (Seminar)

| Examination: Vortrag (ca. 30 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten) | 5 C |
| Examination requirements: Intrusion and malware detection; detailed discussion of one approach; comparison with related work; written report; oral presentation | |

Admission requirements:

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

Language:

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Konrad Rieck</td>
</tr>
</tbody>
</table>

Course frequency:

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

Number of repeat examinations permitted:

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

Maximum number of students:

| 15 |

1. Workload:

 - Attendance time: 28 h
 - Self-study time: 122 h

2. Course:

 - Intrusion and Malware Detection (Seminar)

3. Examination:

 - Vortrag (ca. 30 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)
 - Intrusion and malware detection; detailed discussion of one approach; comparison with related work; written report; oral presentation

4. Admission requirements:

 - none

5. Language:

 - English

6. Person responsible for module:

 - Prof. Dr. Konrad Rieck

7. Course frequency:

 - unregelmäßig

8. Duration:

 - 1 semester[s]

9. Number of repeat examinations permitted:

 - twice

10. Recommended semester:

 - none
Module M.Inf.1129: Social Networks and Big Data Methods

Learning outcome, core skills:
The students
- are familiar with basic concepts of social networks
- know how to methodically read and analyse scientific research papers
- have enriched their practical skills in computer science with regards to analysis of big data applications
- have improved their ability to work independently in a pre-defined context
- have improved their ability to work in diverse teams

Workload:
- **Attendance time:** 28 h
- **Self-study time:** 122 h

Course: Social Networks and Big Data Methods (Exercise, Seminar)

Examination: Term Paper (max. 20 pages)
Examination prerequisites: Erreichen von mindestens 50% der Übungspunkte
Examination requirements: Basic knowledge in social networks and data analysis; ability to transfer the theoretical knowledge to practical exercises; ability to present the earned knowledge in a proper written report

Admission requirements:
none

Recommended previous knowledge:
Basic knowledge in computer networks; basics of algorithms and data structures; advanced programming skills

Language:
English

Person responsible for module:
Prof. Dr. Xiaoming Fu

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
15
Module M.Inf.1130: Software-defined Networks (SDN)

Learning outcome, core skills:
The students
- are familiar with the concepts of software defined networking (SDN)
- know how to methodically read and analyse scientific research papers
- have enriched their practical skills in computer networks with regards to SDN
- know about practical deployability issues of SDN
- have improved their ability to work independently in a pre-defined context

Course: Software-defined Networking (Exercise, Seminar)

Examination: Term Paper (max. 20 pages)

Examination prerequisites:
Erreichen von mindestes 50% der Übungspunkte

Examination requirements:
Knowledge in software-defined networking; ability to transfer the theoretical knowledge to practical exercises; ability to present the earned knowledge in a proper in a written report

Admission requirements:
none

Recommended previous knowledge:
Basic knowledge in computer networks; basics of algorithms and data structures; advanced programming skills

Language:
English

Person responsible for module:
Prof. Dr. Xiaoming Fu

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
15

Lernziele/Kompetenzen:

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltung: Semistrukturierte Daten und XML (Vorlesung, Übung)

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.)

Prüfungsvoraussetzungen:

Zugangsvoraussetzungen: Datenbanken
Sprache: Deutsch, Englisch
Angebotshäufigkeit: unregelmäßig
Wiederholbarkeit: zweimalig
Maximale Studierendenzahl: 100

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Wolfgang May
Dauer:
1 Semester

Empfohlenes Fachsemester:

Zugangsvoraussetzungen: Datenbanken

Empfohlene Vorkenntnisse:

Modulverantwortliche[r]:

Angebotshäufigkeit:

Dauer:

Empfohlenes Fachsemester:
Georg-August-Universität Göttingen
Modul M.Inf.1142: Semantic Web

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

| Lehrveranstaltung: Semantic Web (Vorlesung, Übung) | 4 SWS |

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.) Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse der theoretischen Grundlagen und technischen Konzepte des Semantic Web; Fähigkeit zum Abschätzen des Nutzens und der Grenzen der verwendeten Technologien; Fähigkeit zur Abwägung realer Szenarien; Fähigkeit zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken, Formale Systeme</td>
<td>M.Inf.1243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Wolfgang May</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	

50	
Georg-August-Universität Göttingen
Module M.Inf.1150: Advanced Topics in Software Engineering

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time: 42 h</td>
</tr>
<tr>
<td>• gain knowledge about an advanced topic in software engineering. The advanced topic may be related to areas such as software development processes, software quality assurance, and software evolution</td>
<td></td>
</tr>
<tr>
<td>• become acquainted with the status in industry and research of the advanced topic under investigation</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about methods and tools needed to apply or investigate the advanced topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-study time: 108 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Construction of Reusable Software</th>
<th>3 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Block course, Seminar)</td>
<td></td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>Topics which will be covered by lecture and associated seminar include</td>
<td></td>
</tr>
<tr>
<td>• design patterns</td>
<td></td>
</tr>
<tr>
<td>• frameworks</td>
<td></td>
</tr>
<tr>
<td>• unit testing with the JUnit Framework</td>
<td></td>
</tr>
<tr>
<td>• the Eclipse Framework</td>
<td></td>
</tr>
<tr>
<td>• refactoring</td>
<td></td>
</tr>
<tr>
<td>• design-by-Contract/Assertions</td>
<td></td>
</tr>
<tr>
<td>• aspect-oriented programming (AOP)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</th>
<th>5 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements:</td>
<td></td>
</tr>
<tr>
<td>Preliminary test</td>
<td></td>
</tr>
<tr>
<td>If the module is implemented by a lecture with exercises:</td>
<td></td>
</tr>
<tr>
<td>• Development and presentation of the solution of at least one exercise (presentation and report) and active participation in the exercises</td>
<td></td>
</tr>
<tr>
<td>If the module is implemented by a block lecture with an associated seminar:</td>
<td></td>
</tr>
<tr>
<td>• Presentation of at least one topic in the associated seminar</td>
<td></td>
</tr>
<tr>
<td>• Attendance in 80% of the seminar presentations</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>The students shall show knowledge about</td>
<td></td>
</tr>
<tr>
<td>• the principles of the advanced topic under investigation</td>
<td></td>
</tr>
<tr>
<td>• the status of the advanced topic under investigation in industry and research</td>
<td></td>
</tr>
<tr>
<td>• the methods and tools for applying or investigating the advanced topic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Foundations of software engineering.</td>
</tr>
<tr>
<td>Language:</td>
<td>Person responsible for module:</td>
</tr>
<tr>
<td>English</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Course frequency: unregelmäßig</td>
<td>Duration: 1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted: twice</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>Maximum number of students: 30</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.Inf.1151: Specialisation Softwareengineering: Data Science and Big Data Analytics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time: 42 h</td>
</tr>
<tr>
<td>• can define the terms data science, data scientist and big data, and acquire knowledge about the principle of data science and big data analytics</td>
<td>Self-study time: 108 h</td>
</tr>
<tr>
<td>• become acquainted with the life cycle of data science projects and know how the life cycle can be applied in practice</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about a statistical and machine learning modelling system</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about basic statistical tests and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about clustering algorithms and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about association rules and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about regression techniques and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about classification techniques and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about text analysis techniques and how to apply them</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about big data analytics with MapReduce</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about advanced in-database analytics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Data Science and Big Data Analytics (Lecture, Exercise)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</td>
<td>3 WLH</td>
</tr>
<tr>
<td>Examination prerequisites: Successful completion of 50% of each exercise and the conduction of a small analysis project.</td>
<td></td>
</tr>
<tr>
<td>Examination requirements: Data science, big data, analytics, data science life cycle, statistical tests, clustering, association rules, regression, classification, text analysis, in-database analytics.</td>
<td>5 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements: none</th>
<th>Recommended previous knowledge: Foundations of statistics and stochastic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language: English</td>
<td>Person responsible for module: Prof. Dr. Jens Grabowski</td>
</tr>
<tr>
<td>Course frequency: unregelmäßig</td>
<td>Duration: 1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted: twice</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>Maximum number of students: 30</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.Inf.1152: Specialisation Softwareengineering: Quality Assurance

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td>• can define the term software quality and acquire knowledge on the principles of software quality assurance</td>
<td>Attendance time: 42 h</td>
</tr>
<tr>
<td>• become acquainted with the general test process and know how it can be embedded into the overall software development process</td>
<td>Self-study time: 108 h</td>
</tr>
<tr>
<td>• gain knowledge about manual static analysis and about methods for applying manual static analysis</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about computer-based static analysis and about methods for applying computer-based static analysis</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about black-box testing and about the most important methods for deriving test cases for black-box testing</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about glass-box testing and about the most important methods for deriving test cases for glass-box testing</td>
<td></td>
</tr>
<tr>
<td>• acquire knowledge about the specialties of testing of object oriented software</td>
<td></td>
</tr>
<tr>
<td>• acquire knowledge about tools that support software testing</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about the principles of test management</td>
<td></td>
</tr>
</tbody>
</table>

Course: Software Testing (Lecture, Exercise)

- **Examination:** Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Examination prerequisites:

Develop and present the solution of at least one exercise (presentation and report) and active participation in the exercises.

Examination requirements:

The students have to show knowledge in software quality, principles of software quality assurance, general test process, static analysis, dynamic analysis, black-box testing, glass-box testing, testing of object-oriented systems, testing tools, and test management.

Admission requirements:

- none

Language:

- English

Person responsible for module:

- Prof. Dr. Jens Grabowski

Course frequency:

- unregelmäßig

Duration:

- 1 semester[s]

Number of repeat examinations permitted:

- twice

Maximum number of students:

- 30

Recommended previous knowledge:

- Foundations of software engineering.
Learning outcome, core skills:

The students

- can define the terms requirement and requirements engineering and acquire knowledge on the principles of requirements engineering
- become acquainted with the general requirements engineering process and know how it can be embedded into the overall software development process
- gain knowledge about the system context and context boundaries
- gain knowledge about requirements elicitation techniques and the interpretation of elicitation results
- gain knowledge about the negotiation of requirements with different stakeholders
- gain knowledge about the structure of documents for the requirements documentation
- gain knowledge about the requirements documentation in natural language and techniques for the use of structured natural language
- gain knowledge about the requirements documentation with models and model-based techniques for requirements documentation
- gain knowledge about the validation of requirements
- gain knowledge about managing changes to requirements
- gain knowledge about tracing requirements through a development process

Course: Requirements Engineering (Lecture, Exercise)

Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Examination prerequisites:
Develop and present the solution of at least one exercise (presentation and report) and active participation in the exercise sessions.

Examination requirements:
Requirements, requirements engineering, general requirements engineering process, system context, system boundary, context boundary, requirements elicitation and interpretation, requirements negotiation, structure of requirements documentation, requirements documentation in natural language, model-based requirements documentation, requirements validation, requirements change management, requirements tracing.

Admission requirements:

- none

Recommended previous knowledge:

- Foundations of software engineering.

Language:

- English

Person responsible for module:

- Prof. Dr. Jens Grabowski

Course frequency:

- unregelmäßig

Duration:

- 1 semester[s]

Number of repeat examinations permitted:

- 1
<table>
<thead>
<tr>
<th>twice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of students:</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.Inf.1154: Specialisation Softwareengineering: Software Evolution

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time: 42 h</td>
</tr>
<tr>
<td>• can define the term software evolution and acquire knowledge on the principles of software evolution and maintenance</td>
<td>Self-study time: 108 h</td>
</tr>
<tr>
<td>• become acquainted with general approaches for mining software repositories to understand, predict, and control the evolution of software</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about typical data and data sources used in software evolution studies</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about mining methods and tools for modeling, obtaining, and integrating data from software projects, including mining version control system data, mining issue tracking system data, mining static analysis data, mining clone detection data</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about labelling and classification of artifacts and activities in software projects</td>
<td></td>
</tr>
<tr>
<td>• gain knowledge about prediction, simulation, visualization, and other applications built upon mined software evolution data</td>
<td></td>
</tr>
</tbody>
</table>

Course: Software Evolution (Lecture, Exercise)

<table>
<thead>
<tr>
<th>Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
</tr>
<tr>
<td>Develop and present the solution of at least one exercise (presentation and report), active participation in the exercise sessions.</td>
</tr>
<tr>
<td>Examination requirements:</td>
</tr>
<tr>
<td>The students shall prove knowledge in the area of software evolution. This includes knowledge regarding principles of software evolution, software maintenance, software quality, mining software repositories, data mining, defect prediction, software clones, static analysis, dynamic analysis and human factors in software evolution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements: none</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of software engineering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language: English</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency: unregelmäßig</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Duration: 1 semester[s]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted: twice</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students: 30</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload: 3 WLH</th>
</tr>
</thead>
</table>
Georg-August-Universität Göttingen
Module M.Inf.1155: Seminar: Advanced Topics in Software Engineering

Learning outcome, core skills:
The students
- learn to become acquainted with an advanced topic in software engineering by studying up-to-date research papers.
- gain knowledge about advanced topics in software engineering. The advanced topic may be related to areas such as software development processes, software quality assurance, and software evolution.
- learn to present and discuss up-to-date research on advanced topics in software engineering.
- learn to assess up-to-date research on advanced topics in software engineering.

Workload:
Attendance time: 28 h
Self-study time: 122 h

Course: Seminar on Advanced Topics in Software-Engineering (Seminar)
Contents:
Topics which will be covered by this seminar can include
- Usability and Usability-Engineering
- User-oriented Usability Testing
- Expert-oriented Usability Evaluation
- Web-analytics
- Information Architecture
- SOA – Service-oriented Architecture
- UML-Tools and Code Generation
- Details of Specific Process Models
- Model-driven Architecture
- Usage-based Testing
- Defect Prediction
- Design Patterns
- Agent-based Simulation
- Reliability-Engineering for Cloud Systems

Examination: Presentation (approx. 45 minutes) and written report (max. 20 pages)
Examination prerequisites:
Attendance in 80% of the seminar presentations
Examination requirements:
The students shall show that
- they are able to become acquainted with an advanced topic in software engineering by investigating up-to-date research publications.
- they are able to present up-to-date research on an advanced topic in software engineering.
- they are able to assess up-to-date research on an advanced topic in software engineering.
they are able to write a scientific report on an advanced topic in software engineering according to good scientific practice.

Presentation of an advanced topic in software engineering and written report.

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Foundations of software engineering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:
Kompetenz, grundlegende Techniken der Bildverarbeitung sinnvoll zur Auswertung von Bilddaten einzusetzen; Verständnis für Probleme, Methoden und Begrenzungen der Bildanalyse mit elementaren Signalverarbeitungs- und höheren KI-Ansätzen.

Arbeitsaufwand:
| Präsenzzeit: | 56 Stunden |
| Selbststudium: | 124 Stunden |

Lehrveranstaltung: Bildanalyse und Bildverstehen (Vorlesung, Übung)

Prüfung:
Klausur (120 Min.) oder mündliche Prüfung (ca. 25 Min.)

Prüfungsvorleistungen:
Aktive Teilnahme an den Übungen belegt durch die erfolgreiche Bearbeitung von 60 % der Übungszettel

Prüfungsanforderungen:
Nachweis über den Erwerb vertiefter Kenntnisse und Fähigkeiten: Kompetenz, grundlegende Techniken der Bildverarbeitung sinnvoll zur Auswertung von Bilddaten einzusetzen; Verständnis für Probleme, Methoden und Begrenzungen der Bildanalyse mit elementaren Signalverarbeitungs- und höheren KI-Ansätzen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Winfried Kurth

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zewimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
100
Learning outcome, core skills:

Successfully completing the module, students

- understand basic web technologies (transfer protocols, markup languages, markup processing, RESTful and SOAP web services)
- understand virtualisation technologies (server, storage, and network virtualisation)
- understand Cloud computing (standards, APIs, management, service layers)
- understand security mechanisms for distributed systems (authentication, authorisation, certificates, public key infrastructures)
- understand data services (sharing, management, and analysis)
- understand Big Data technology (MapReduce)

On completion of this module students will have a good understanding of the fundamental and up-to-date concepts used in the context of service-oriented infrastructures. This basic knowledge can be leveraged by students to design, implement, and manage service-oriented infrastructures by themselves.

Course: Service Computing (Lecture, Exercise)

Contents:

Service-oriented infrastructures are the backbone of modern IT systems. They pool resources, enable collaboration between people, and provide complex services to end-users. Everybody who uses today's web applications such as Facebook, Google, or Amazon implicitly relies on sophisticated service-oriented infrastructures. The same is true for users of mobile devices such as tablet computers and smart phones, which provide most of their benefits leveraging services such as Dropbox, Evernote, and iTunes. These examples and many more services build on sophisticated service-oriented infrastructures. The key challenges of service-oriented infrastructures are related to scaling services. More specifically large service-oriented infrastructures require scalability of IT management, programming models, and power consumption. The challenges to scale services lie in the inherent complexity of hardware, software, and the large amount of user requests, which large-scale services are expected to handle. This module teaches methods that address and solve those challenges in practice.

Key aspects of the module are the management of IT infrastructures, the management of service landscapes, and programming models for distributed applications. IT management covers Cloud computing, and the virtualisation of computing, storage, and network resources. Cloud computing in specific is covered by the discussion of production-grade infrastructure-as-service and platform-as-a-service middlewares. IT management is covered by the discussion of deployment models, service level agreements, and security aspects. Programming models are covered by discussing RESTful and SOAP web-services, MapReduce, and OSGi.

Both, lectures and exercises, keep a close connection to the practical application of the discussed topics. The practical value of service-oriented infrastructures is highlighted in the context of enterprises as well as in the context of science. The methods taught
in this module benefit from the lecturers' experiences at GWDG and thus provide exclusive insights into the topic. After successfully attending these modules students will understand the most important aspects to design, implement, and manage internet-scale service-oriented infrastructures.

Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Examination requirements:
- RESTful and SOAP web services
- XML
- Compute, storage, and network virtualisation
- Infrastructure-as-a-service, platform-as-a-service, software-as-a-service
- Characteristics of Cloud computing (NIST)
- OSGi
- MapReduce
- iRODS
- Service level agreements
- Symmetric and asymmetric encryption (SSL, TLS)
- Security certificates (X.509)
- Public key infrastructures

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>• Programming basics in Java or a similar language</td>
</tr>
<tr>
<td></td>
<td>• Basic understanding of operating systems and command line interfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Ramin Yahyapour</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
Successfully completing the module, students

- understand what methods and services are available in state-of-the-art research infrastructures and direction of future development
- understand the infrastructures for eScience and eResearch
- know basics of data management and data analysis
- know the fundamental of technologies like cloud computing and grids
- understand the real-world problems from different domains (e.g., high energy physics, humanities, medical science, etc.) which are tackled by research infrastructures
- understand certain aspects, methods and tools of these infrastructures for different use cases from different domains
- will be motivated to take part in other related modules (e.g., Specialization in Distributed Systems, Parallel Computing, etc.)

Workload:
- Attendance time: 42 h
- Self-study time: 108 h

Course: Using Research Infrastructures - Examples from Humanities and Sciences (Lecture, Exercise)

Contents:
Successfully completing the lecture, students

- understand the role and importance of the research infrastructure and their general building blocks
- know the basics of grid computing
- know the basics of cloud computing
- learn basics on system virtualization
- learn fundamental ideas of data management and analysis
- understand the real-world problems from different domains (e.g., high energy physics, humanities, medical science/life science, etc.) which are tackled by research infrastructures
- understand certain aspects, methods and tools of these infrastructures for different use cases from different domains
- will be motivated to take part in other related modules (e.g., Specialization in Distributed Systems, Parallel Computing, etc.)
- get familiar with real-world challenges through talks from experts who will present their current research activities and the role of research infrastructures on their research

Examination: Written examination (90 minutes)

Examination requirements:
Grid computing; cloud computing; system virtualization; data management; data analysis; application of eResearch infrastructure in high energy physics; eResearch in medicine and life science; eResearch in humanities
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Ramin Yahyapour</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
Selbststudium: 122 Stunden |

Lehrveranstaltung: Seminar NOSQL Databases (Seminar)	
Inhalt: Erarbeitung aktueller Themen im Bereich NOSQL-Datenbanken anhand von wissenschaftlichen Arbeiten sowie praktischer Umgang mit einem NOSQL-Datenbanksystem.	
Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)	
Prüfungsanforderungen: Eigenständiges Erarbeiten der Inhalte und Erstellen der Ausarbeitung sowie Halten des Vortrags.	

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache: Deutsch, Englisch</th>
<th>Modulverantwortliche[r]: Dr. Lena Wiese</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georg-August-Universität Göttingen</td>
<td>Modul M.Inf.1182: Seminar Knowledge Engineering</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>English title: Seminar Knowledge Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium: 122 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Seminar Knowledge Engineering (Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)</td>
</tr>
<tr>
<td>Prüfungsanforderungen: Eigenständiges Erarbeiten der Inhalte und Erstellen der Ausarbeitung sowie Halten des Vortrags.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Dr. Lena Wiese</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	

14	
Module M.Inf.1185: Sensor Data Fusion

Learning outcome, core skills:
This module is concerned with fundamental principles and algorithms for the processing and fusion of noisy (sensor) data. Applications in the context of navigation, object tracking, sensor networks, robotics, Internet-of-Things, and data science are discussed. After successful completion of the module, students are able to

- define the notion of data fusion and distinguish different data fusion levels
- explain the fundamentals of dynamic state estimation (including the Kalman filter)
- formalize data fusion problems as state estimation problems
- describe and model the most relevant sensors
- define the most common discrete-time and continuous-time dynamic models
- perform a time-discretization of continuous-time models
- apply the Kalman filter to linear state estimation problems
- explain and apply basic nonlinear estimation techniques such as the Extended Kalman filter (EKF)
- assess the properties, advantages, and disadvantages of the discussed (nonlinear) estimators
- deal with unknown correlations in data fusion
- implement, simulate, and analyze data fusion problems in MATLAB
- describe and implement basic algorithms for simultaneous localization and mapping (SLAM) in MATLAB
- identify data fusion applications and assess the benefits of data fusion

Workload:
- Attendance time: 42 h
- Self-study time: 108 h

Course: Sensor Data Fusion (Lecture, Exercise)

<table>
<thead>
<tr>
<th>Examination</th>
<th>Written exam (90 min.) or oral exam (approx. 20 min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
<td>Presentation of at least one exercise and active participation during the exercises.</td>
</tr>
<tr>
<td>Examination requirements:</td>
<td>Definition of data fusion; fundamentals of dynamic state estimation (including the Kalman filter); formalization of data fusion problems; typical sensor models; typical discrete-time and continuous-time dynamic models; discretization of continuous-time models; Extended Kalman filter (EKF); algorithms for dealing with unknown correlations in data fusion; basic algorithms for simultaneous localization and mapping (SLAM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended previous knowledge:</td>
<td>none</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Person responsible for module:</td>
<td>Jun.-Prof. Dr. Marcus Baum</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>irregular</td>
</tr>
<tr>
<td>Duration:</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>twice</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td></td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3079
<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.Inf.1186: Seminar Hot Topics in Data Fusion and Analytics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>After successful completion of the modul students are able to</td>
<td>Attendance time: 28 h</td>
</tr>
<tr>
<td>- get acquainted with a specific research topic in the area of data fusion and data analytics</td>
<td>Self-study time: 122 h</td>
</tr>
<tr>
<td>- explain the considered problem in the chosen research topic</td>
<td></td>
</tr>
<tr>
<td>- collect, evaluate, and summarize related work</td>
<td></td>
</tr>
<tr>
<td>- describe solution approaches for the considered problem</td>
<td></td>
</tr>
<tr>
<td>- discuss advantages and disadvantages of the proposed approaches</td>
<td></td>
</tr>
<tr>
<td>- give an outlook to future research directions</td>
<td></td>
</tr>
<tr>
<td>- prepare and give a presentation about the chosen research topic</td>
<td></td>
</tr>
<tr>
<td>- write a scientific report about the chosen research topic</td>
<td></td>
</tr>
<tr>
<td>- follow recent research in data fusion and data analytics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Hot Topics in Data Fusion and Analytics (Seminar)</th>
<th>2 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination: Presentation (approx. 45 minutes) and written report (max. 20 pages)</td>
<td>5 C</td>
</tr>
<tr>
<td>Examination prerequisites:</td>
<td></td>
</tr>
<tr>
<td>Attendance in 80% of the seminar presentations</td>
<td></td>
</tr>
<tr>
<td>Examination requirements:</td>
<td></td>
</tr>
<tr>
<td>Advanced knowledge of a specific research topic in the field of data fusion and data analytics; written scientific report; oral presentation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Jun.-Prof. Dr. Marcus Baum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>irregular</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Module M.Inf.1187: Simulation-based Data Fusion and Analysis

Learning outcome, core skills:
This module introduces fundamental simulation-based algorithms for the Bayesian fusion and analysis of noisy data sets. After completion, the students are able to

- describe the Bayesian approach to data fusion and analysis
- set up probabilistic state space models for time series data
- describe the concept of a recursive Bayesian state estimator
- employ Monte Carlo simulation for Bayesian inference
- explain and apply sequential Monte Carlo methods, i.e., particle filters, such as Sequential Importance Sampling (SIS) and Sequential Importance Resampling (SIR)
- explain and apply Markov Chain Monte Carlo (MCMC) methods such as Metropolis-Hasting and Gibbs sampling
- describe the Bayesian interpretation of the Kalman filter
- apply simulation-based implementations of the Kalman filter such as the Unscented Kalman Filter (UKF) and the Ensemble Kalman filter (EnKF)
- employ Monte Carlo simulation for inference in probabilistic graphical models
- explain Rao-Blackwellization and apply it to Simultaneous Localization and Mapping (SLAM)
- assess the properties, advantages, and disadvantages of simulation-based techniques
- apply the above concepts in the context of machine learning, computer vision, robotics, object tracking, and data science

Workload:
- Attendance time: 42 h
- Self-study time: 108 h

<table>
<thead>
<tr>
<th>Course: Simulation-based Data Fusion and Analysis (Lecture, Exercise)</th>
<th>3 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination: Written exam (90 min.) or oral exam (approx. 20 min.)</td>
<td>5 C</td>
</tr>
<tr>
<td>Examination prerequisites:</td>
<td>Presentation of at least one exercise and active participation during the exercises.</td>
</tr>
<tr>
<td>Examination requirements:</td>
<td>Probabilistic state space models for time series data; recursive Bayesian state estimator; Monte Carlo simulation; Sequential Monte Carlo methods (particle filters); Sequential Importance Sampling (SIS) and Sequential Importance Resampling (SIR); Markov Chain Monte Carlo (MCMC) methods such as Metropolis-Hasting and Gibbs sampling; simulation-based implementations of the Kalman filter; Application of Monte Carlo simulation for inference in probabilistic graphical models; Rao-Blackwellization.</td>
</tr>
</tbody>
</table>

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English

Person responsible for module:
Jun.-Prof. Dr. Marcus Baum

Course frequency:
irregular

Duration:
1 semester[s]
<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
<td>Modul M.Inf.1200: Wissenschaftliches Rechnen in einer kleinen forschungsbezogenen Projektarbeit</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>English title: Advanced Research Training (small scale) - Scientific Computing</td>
<td></td>
</tr>
</tbody>
</table>

|-----------------------|--|

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Kleine forschungsbezogene Projektarbeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 12 Seiten), unbenotet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Gert Lube</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Inf.1201: Systementwicklung in einer forschungsbezogenen Projektarbeit

English title: Advanced Research Training - Applied System Development

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Forschungsbezogene Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Die forschungsbezogene Projektarbeit ist an ein aktuelles Forschungsvorhaben zur Systementwicklung gekoppelt. Die Tätigkeit des Studierenden liegt im Kernbereich dieses Vorhabens. Sie reicht vom Studium projektrelevanter wissenschaftlicher Literatur über die Mitarbeit zu Lösungsvorschlägen bis hin zur praktischen Umsetzung der auf diese Weise erworbenen Kenntnisse und Einsichten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 24 Seiten), unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen: Kompetenzen im Bereich der projektbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements ggf. Erwerb von Fähigkeiten beim Umsetzen theoretischer Konzepte in praktische Lösungen in einem Forschungsprojekt der Systemorientierten Informatik.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen: keine
Sprache: Deutsch, Englisch
Angebotshäufigkeit: unregelmäßig
Wiederholbarkeit: zweimalig

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch
Modulverantwortliche[r]: Prof. Dr. Jens Grabowski
Angebotshäufigkeit: unregelmäßig
Dauer: 1 Semester
Wiederholbarkeit: zweimalig
Georg-August-Universität Göttingen
Modul M.Inf.1202: Bioinformatik in einer forschungsbezogenen Projektarbeit
English title: Advanced Research Training - Bioinformatics

Lernziele/Kompetenzen:

Überblick über die Modulinhalte:

Lehrveranstaltung: Forschungsbezogene Projektarbeit

Inhalte:

Prüfung: Hausarbeit (max. 24 Seiten), unbenotet

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Burkhard Morgenstern

Angebotshäufigkeit:
keine Angabe

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
Georg-August-Universität Göttingen
Modul M.Inf.1203: Neuroinformatik in einer kleinen forschungsbezogenen Projektarbeit
English title: Advanced Research Training (small scale) - Computational Neuroscience

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 173 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Kleine forschungsbezogene Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Inhalte:

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 12 Seiten), unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Florentin Andreas Wörgötter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Arbeitsaufwand:
Präsenzzeit: 14 Stunden
Selbststudium: 346 Stunden

Lehrveranstaltung: Forschungsbezogene Projektarbeit
Inhalte:

Prüfung: Hausarbeit (max. 24 Seiten), unbenotet
Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Winfried Kurth

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
Georg-August-Universität Göttingen
Modul M.Inf.1205: Medizinische Informatik in einer kleinen forschungsbezogenen Projektarbeit
English title: Advanced Research Training (small scale) - Health Informatics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

Lehrveranstaltung: Kleine forschungsbezogene Projektarbeit

Inhalte:

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 12 Seiten), unbenotet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
</table>

Zugangsvoraussetzungen: keine
Sprache: Deutsch, Englisch
Angebotshäufigkeit: unregelmäßig
Wiederholbarkeit: zweimalig

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
</tbody>
</table>

Dauer: 1 Semester
Wiederholbarkeit: zweimalig
Georg-August-Universität Göttingen
Modul M.Inf.1206: Recht der Informatik in einer forschungsbezogenen Projektarbeit
English title: Advanced Research Training - Information Law

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 346 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Forschungsbezogene Projektarbeit</th>
</tr>
</thead>
</table>

Inhalte:

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 24 Seiten), unbenotet</th>
</tr>
</thead>
</table>

Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache:

Deutsch, Englisch

Modulverantwortliche[r]:

Prof. Dr. Gerald Spindler

Angebotshäufigkeit:

unregelmäßig

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Empfohlenes Fachsemester:

unbestimmt
Georg-August-Universität Göttingen
Modul M.Inf.1208: Wissenschaftliches Rechnen in einer forschungsbezogenen Projektarbeit
English title: Advanced Research Training - Scientific Computing

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

Lehrveranstaltung: Forschungsbezogene Projektarbeit

Inhalte:

Prüfung: Hausarbeit (max. 24 Seiten), unbenotet
Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Gert Lube

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Forschungsbezogene Projektarbeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 20 Seiten), unbenotet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Sprache: Deutsch, Englisch | Modulverantwortliche[r]: Prof. Dr. Florentin Andreas Wörgötter |

| Angebotshäufigkeit: unregelmäßig | Dauer: 1 Semester |

| Wiederholbarkeit: zweimalig | Empfohlenes Fachsemester: |
Georg-August-Universität Göttingen

Modul M.Inf.1210: Seminar Algorithmische Methoden und theoretische Konzepte

English title: Seminar on Algorithmic Methods and Theoretical Concepts in Computer Science

Lernziele/Kompetenzen:

Überblick über die Modulinhalte:
Aktuelle Originalarbeiten aus dem Bereich der theoretischen Informatik und algorithmischer Methoden.

Lehrveranstaltung: Algorithmische Methoden und theoretische Konzepte
(Seminar)

Inhalte:
Aktuelle Originalarbeiten aus dem Bereich der theoretischen Informatik und algorithmischer Methoden.

Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)
Prüfungsanforderungen:

Zugangsvoraussetzungen: keine

Sprache: Deutsch, Englisch

Modulverantwortliche[r]: Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm)

Angebotshäufigkeit: unregelmäßig

Dauer: 1 Semester

Wiederholbarkeit: zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl: 14

Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 122 Stunden

5 C 2 SWS
Georg-August-Universität Göttingen

Modul M.Inf.1211: Probabilistische Datenmodelle und ihre Anwendungen
English title: Probabilistic Data Models and Applications

<table>
<thead>
<tr>
<th>Lerneinheiten/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In dem Modul erwerben Studierende spezialisierte Kenntnisse zu Auswahl, Entwurf und Anwendungen von Modellen, für die die (parametrisierte) Zufälligkeit der Daten eine wesentliche Komponente der Modellierung ist.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Überblick über die Modulinhalte:</td>
<td>Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>Zu verarbeitende Daten in verschiedensten Anwendungsbreichen (z. B. Bioinformatik) unterliegen meist statistischen Gesetzmäßigkeiten. Das Modul ist fokussiert auf Methoden zur Erkennung und algorithmischen Ausnutzung solcher typischen Muster durch geeignete probabilistische Modellierung der Daten und auf die Schätzung der Modellparameter.</td>
<td></td>
</tr>
<tr>
<td>z. B. Vorlesung Algorithmisches Lernen, Vorlesung Datenkompression und Informationstheorie, Probabilistische Datenmodelle in der Angewandten Informatik.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Vorlesungen, Übungen und Seminare zu den vorgenannten Themen

| Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 20 Min.) |
| Prüfungsanforderungen: |
| Nachweis über den Erwerb spezialisierter Kenntnisse und Fähigkeiten zu probabilistischen Datenmodellen, der Komplexität ihrer algorithmischen Unterstützung und ggf. ihrer Anwendung in einer der Angewandten Informatiken oder einem Anwendungsbereich. |

Zugangsvoraussetzungen:

| Keine |

Empfohlene Vorkenntnisse:

| Keine |

Sprache:

| Deutsch, Englisch |

Modulverantwortliche[r]:

| Prof. Dr. Stephan Waack (Prof. Dr. Carsten Damm) |

Angebotshäufigkeit:

| Unregelmäßig |

Dauer:

| 1 Semester |

Wiederholbarkeit:

| Zweimalig |

Empfohlenes Fachsemester:

| |

Maximale Studierendenzahl:

| 30 |

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3094
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Modul M.Inf.1213: Algorithmisches Lernen und Mustererkennung</th>
</tr>
</thead>
<tbody>
<tr>
<td>English title: Algorithmic Learning and Pattern Recognition</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
Es werden spezialisierte Kompetenzen im Bereich des algorithmischen Lernens und der Mustererkennung vermittelt. Verständnis der theoretischen Grundlagen und der Probleme bei praktischen Anwendungen.

Arbeitsaufwand:
Präsenzzeit:
56 Stunden
Selbststudium:
124 Stunden

Lehrveranstaltung: Algorithmisches Lernen (Vorlesung, Übung)

Inhalte:

Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 20 Min.)
Prüfungsanforderungen:
Nachweis über den Erwerb spezialierter anwendungsorientierter Kenntnisse und Kompetenzen aus dem Bereich des algorithmischen Lernens und der Mustererkennung.

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine

Sprache: Deutsch, Englisch
Modulverantwortliche[r]:
Prof. Dr. Stephan Waack
(Prof. Dr. Carsten Damm)

Angebotshäufigkeit: unregelmäßig
Dauer: 1 Semester

Wiederholbarkeit: zweimalig
Empfohlenes Fachsemester:

Maximale Studierendenzahl: 30
Georg-August-Universität Göttingen
Modul M.Inf.1215: Fehlerkorrigierende Codes

English title: Error Correcting Codes

Lernziele/Kompetenzen:
Die Studierenden

- kennen den schematischen Aufbau von Kommunikationssystemen und verstehen ihre stochastischen/algorithmischen Beschreibungen
- kennen einfache Kanalcodes und können ihre Parameter bestimmen
- kennen verschiedene Decodierprinzipien, können sie im Rahmen der statistischen Schätztheorie interpretieren und ihre algorithmische Komplexität analysieren
- verstehen im Detail die Grundzüge der Theorie linearer Codes und effiziente Decodierverfahren für spezielle Codes
- kennen und verstehen kombinatorische und asymptotische untere und obere Schranken für die Existenz von Codes
- beherrschen allgemeine Konstruktionsverfahren für Fehlerkorrektur-Codes bzw. Codes und können sie mit geeigneter Software implementieren
- kennen die Grundzüge der Informationstheorie und den Kanalcodierungssatz und können bekannte Codefamilien diesbezüglich bewerten
- verstehen die algebraische Theorie zyklischer Codes und können sie für die Konstruktion von Codes mit speziellen Eigenschaften anwenden
- kennen Reed-Solomon-Codes und ihre Eigenschaften und Anwendungen, können sie im Vergleich zu allgemeinen algebraischen Codes bewerten
- beherrschen verschiedene Decodierverfahren für RS-Codes und können sie analysieren

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltung: Fehlerkorrigierende Codes (Vorlesung, Übung)

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Prüfungsanforderungen:
In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Verständnis der Zusammenhänge durch Umschreibung in eigenen Worten nachweisen
- Konstruktion von Codes nach Vorgabe kombinatorischer Parameter
- Parameter gegebener Codes bestimmen
- Decodierung gestörter Empfangswörter
- Codier-/Decodierverfahren nach Korrektheit und Komplexität analysieren
- begründete Auswahl von Codierungsverfahren in hypothetischer Anwendungssituation
- (teilweise) programmtechnische Umsetzung von Kanal-(De-)codierern

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3096
<table>
<thead>
<tr>
<th>kein</th>
<th>Beherrschung einer Programmiersprache, Grundkenntnisse der Theorie endlicher Körper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>zweimalig</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>30</td>
</tr>
<tr>
<td>Modulverantwortliche[r]:</td>
<td>Prof. Dr. Carsten Damm</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Empfohlenes Fachsemester:</td>
<td>---</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Inf.1216: Datenkompression und Informationstheorie

English title: Data Compression and Information Theory

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• kennen den schematischen Aufbau von Kommunikationssystemen und verstehen ihre stochastischen/algorithmen Beschreibungen</td>
<td>56 Stunden</td>
</tr>
<tr>
<td>• kennen die Grundbegriffe und Sätze der Shannonschen und der algorithmischen Informationstheorie und können sie in konkreten Situationen anwenden</td>
<td>Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>• kennen grundlegende verlustfreie Quellencodes (Huffman, Shannon, Lauflängen) und Erweiterungen sowie arithmetische Codes und können ihre Eignung in Anwendungssituationen bewerten</td>
<td></td>
</tr>
<tr>
<td>• verstehen das Prinzip der Codeadaptionen und seine Implementierung anhand ausgewählter Codes</td>
<td></td>
</tr>
<tr>
<td>• kennen allgemeine Entwurfsprinzipien für Quellencodes und verstehen ihre Umsetzung in konkreten Implementierungen</td>
<td></td>
</tr>
<tr>
<td>• kennen die Schritte der verlustbehaf teten Datenkompression und können ihre Leistungsparameter analysieren</td>
<td></td>
</tr>
<tr>
<td>• kennen die Grundzüge der Ratenverzerrungstheorie und können sie in konkreten Situationen anwenden</td>
<td></td>
</tr>
<tr>
<td>• kennen wichtige Beispiele verlustbehaf teten Datenkompression, können sie analysieren und in Anwendungssituationen bewerten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Datenkompression und Informationstheorie (Vorlesung, Übung)</th>
<th>4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</td>
<td>6 C</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
<td></td>
</tr>
<tr>
<td>Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen</td>
<td></td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
<td></td>
</tr>
<tr>
<td>In der Prüfung wird die active Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.</td>
<td></td>
</tr>
<tr>
<td>• Verständnis der Zusammenhänge durch Umschreibung in eigenen Worten nachweisen</td>
<td></td>
</tr>
<tr>
<td>• Konstruktion von Codes nach Vorgabe stochastischer Parameter</td>
<td></td>
</tr>
<tr>
<td>• Schätzung stochastischer Parameter von Quellen und Kanälen</td>
<td></td>
</tr>
<tr>
<td>• begründete Auswahl von Codierungsverfahren in hypothetischer Anwendungssituation</td>
<td></td>
</tr>
<tr>
<td>• Codeparameter, Kanalkapazität etc. berechnen</td>
<td></td>
</tr>
<tr>
<td>• (teilweise) programmtechnische Umsetzung von Quellen (de-)codierern</td>
<td></td>
</tr>
<tr>
<td>• modulare Beschreibung konkreter Kommunikationssysteme darlegen</td>
<td></td>
</tr>
<tr>
<td>• Leistungsparameter konkreter Quellencodierverfahren analysieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
</table>

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:
<table>
<thead>
<tr>
<th>Sprache:</th>
<th>keiner</th>
<th>Beherrschung einer Programmersprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Modulverantwortliche[r]:</td>
<td>Prof. Dr. Carsten Damm</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>unregelmäßig</td>
<td>Dauer:</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>zweimalig</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td>30</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Die Studierenden

- kennen den schematischen Aufbau kryptographischer Systeme und Protokolle, unterscheiden symmetrische und asymmetrische Verfahren und können ihre Nachteile und Vorzüge erklären
- kennen klassische Kryptosysteme und können sie in Bezug auf Sicherheit, Korrektheit und Komplexität analysieren
- beherrschen statistische Kryptoanalyseverfahren für klassische Systeme und können sie implementieren, verstehen die Unizitätstheorie klassischer Systeme
- kennen Entwurfsprinzipien für moderne Block- sowie Stromchiffren und beherrschen fortgeschrittene Angriffsverfahren auf schwache Implementierungen
- kennen die Grundzüge der Theorie der one-way- bzw. trapdoor-Funktionen und ihre Zusammenhänge zur Komplexitätstheorie, können diese für den Entwurf kryptographischer Hashfunktionen bzw. Protokolle anwenden
- kennen zahlentheoretische Grundlagen und verstehen ihre Bedeutung für verschiedene Public-Key-Verfahren
- kennen Public-Key-Verfahren und darauf basierende Signaturenverfahren und können sie mit Hilfe geeigneter Software implementieren
- kennen fortgeschrittene kryptographische Protokolle auf der Basis von Public-Key-Verfahren, können ihre Korrektheit nachweisen und ihre Sicherheit grundsätzlich bewerten

Arbeitsaufwand:

- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden

Lehrveranstaltung: Kryptographie (Vorlesung, Übung)

- 4 SWS

Prüfung:

- Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Prüfungsvorleistungen:

Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen

Prüfungsanforderungen:

In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Verständnis der Zusammenhänge durch Umschreibung in eigenen Worten nachweisen
- Konstruktion einfachster Protokolle nach Situationsvorgabe
- Kryptoanalyse klassischer Systeme durch statistische Angriffsverfahren
- prinzipielle Sicherheitsanalyse vorgegebener einfachen Protokolle
- prinzipielle Analyse gewisser Block- bzw. Stromchiffren
- Komplexitätsanalyse zahlentheoretischer Kryptoverfahren
- (teilweise) programmtechnische Umsetzung von Kryptoverfahren
- Auswahl und Realisierung geeigneter Betriebsmodi für Blockchiffren

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:
<table>
<thead>
<tr>
<th>kehren</th>
<th>Beherrschung einer Programmiersprache, Grundkenntnisse der Zahlentheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache: Deutsch, Englisch</td>
<td>Modulverantwortliche[r]: Prof. Dr. Carsten Damm</td>
</tr>
<tr>
<td>Angebotshäufigkeit: unregelmäßig</td>
<td>Dauer: 1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: 30</td>
<td></td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Module M.Inf.1222: Specialisation Computer Networks</td>
<td></td>
</tr>
</tbody>
</table>

Learning outcome, core skills:
The students

- have gained a deeper knowledge in specific topics within the computer networks field
- have improved their oral presentation skills
- know how to methodically read and analyse scientific research papers
- know how to write an analysis of a specific research field based on their analysis of state-of-the-art research
- have improved their ability to work independently in a pre-defined context

<table>
<thead>
<tr>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time: 28 h</td>
</tr>
<tr>
<td>Self-study time: 122 h</td>
</tr>
</tbody>
</table>

Course: Advanced Topics in Computer Networks (Seminar)

Examination: Präsentation (ca. 30 min.) und Hausarbeit (max. 15 Seiten)

Examination requirements:
Knowledge in a specific field of advanced computer networks technology; ability to present the earned knowledge in a proper way both orally and in a written report

<table>
<thead>
<tr>
<th>Admission requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in computer networks; basics of algorithms and data structures</td>
</tr>
</tbody>
</table>

Language:
English

Person responsible for module:
Prof. Dr. Xiaoming Fu

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
30
Georg-August-Universität Göttingen

Module M.Inf.1223: Advanced Topics in Computer Networks

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
</tr>
<tr>
<td>• know the principles of existing and emerging advanced networking technologies</td>
</tr>
<tr>
<td>• know the details of Peer-to-Peer networks</td>
</tr>
<tr>
<td>• are capable to describe the principles of cloud computing</td>
</tr>
<tr>
<td>• have a basic understanding of information centric networking</td>
</tr>
<tr>
<td>• are able to analyze social networks</td>
</tr>
<tr>
<td>• have been introduced to state-of-the-art research in the computer networks field</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time: 28 h</td>
</tr>
<tr>
<td>Self-study time: 122 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Advanced Computer Networks (Lecture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 WLH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Mündliche Prüfung (ca. 30 min.) oder Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements: advanced networking technologies, Peer-to-Peer networks, cloud computing, information centric networking, social networks, state-of-the-art research in the computer networks field</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in computer networks; basics of algorithms and data structures; basic programming skills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Xiaoming Fu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Georg-August-Universität Göttingen

Module M.Inf.1226: Security and Cooperation in Wireless Networks

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>On completion of the module students should be able to:</td>
<td>Attendance time: 56 h</td>
</tr>
<tr>
<td>• recall cryptographic algorithms and protocols such as encryption, hash functions, message authentication codes, digital signatures and session key establishment</td>
<td>Self-study time: 124 h</td>
</tr>
<tr>
<td>• explain security requirements and vulnerabilities of existing wireless networks</td>
<td></td>
</tr>
<tr>
<td>• discuss upcoming wireless networks and new security challenges that are arising</td>
<td></td>
</tr>
<tr>
<td>• name trust assumptions and adversary models in the era of ubiquitous computing</td>
<td></td>
</tr>
<tr>
<td>• show how naming and addressing schemes will be used in the future of the Internet and how these schemes can be protected against attacks</td>
<td></td>
</tr>
<tr>
<td>• explain how security associations can be established via key establishment, exploiting physical contact, mobility, properties of vicinity and radio link</td>
<td></td>
</tr>
<tr>
<td>• define secure neighbour discovery and explain the wormhole attack and its detection mechanisms</td>
<td></td>
</tr>
<tr>
<td>• describe secure routing in multi-hop wireless networks by explaining existing routing protocols, attacks on them and the security mechanisms that can help to achieve secure routing</td>
<td></td>
</tr>
<tr>
<td>• discuss how privacy protection can be achieved in MANETs in several contexts, such as location privacy and privacy in routing, and recall privacy related notions and metrics</td>
<td></td>
</tr>
<tr>
<td>• recall selfish and malicious node behaviour on the MAC layer CSMA/CA, in packet forwarding and the impact on wireless operators and the shared spectrum; as countermeasure secure protocols for behaviour enforcement should be known</td>
<td></td>
</tr>
<tr>
<td>• differentiate between different game theory strategies that can be used in wireless networks</td>
<td></td>
</tr>
</tbody>
</table>

Course: Security and Cooperation in Wireless Networks (Lecture, Exercise)	4 WLH
Examination: Written exam (90 min.) or oral exam (approx. 20 min.)	
Examination requirements:	
Cryptographic algorithms and protocols, hash functions, message authentication codes, digital signatures, session keys; security requirements, challenges and vulnerabilities in wireless networks; trust assumptions and adversary models in ubiquitous computing; naming and addressing schemes in the future internet; establishment of secure associations (key establishment, exploiting physical contact, mobility, properties of vicinity and radio link); secure neighbourhood discovery and wormhole attack detection mechanisms; secure routing in multi-hop wireless networks; privacy protection in MANETs (location privacy, routing privacy); enforcement of cooperative behaviour in MANETs; game theory strategies used in wireless networks	

| Admission requirements: | Recommended previous knowledge: |
| none | Basic knowledge in telematics and computer networks |

<p>| Language: | Person responsible for module: | |
| | | |</p>
<table>
<thead>
<tr>
<th>English</th>
<th>Prof. Dr. Dieter Hogrefe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course frequency:</td>
<td></td>
</tr>
<tr>
<td>unregelmäßig</td>
<td></td>
</tr>
<tr>
<td>Duration:</td>
<td></td>
</tr>
<tr>
<td>1 semester[s]</td>
<td></td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td></td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Recommended semester:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
After successful completion of the module students are able to
- differentiate different types of learning methods
- analyse and design feature spaces for security problems
- create kernel functions for security problems
- explain learning methods for classification and anomaly detection
- apply and compare learning methods for network intrusion detection
- explain learning methods for clustering
- apply and compare learning methods for malware analysis
- describe signature generation and evasion attacks
- explain learning methods for dimension reduction
- apply and compare learning methods for vulnerability discovery

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Course: Machine Learning for Computer Security (Lecture, Exercise)
4 WLH

Examination:
Klausur (120 min.) oder mündliche Prüfung (ca. 20 Min.)

Examination prerequisites:
successful completion of 50 % of the exercises

Examination requirements:
Feature spaces and kernel functions; anomaly detection and classification for intrusion detection; clustering of malicious software; signature generation; evasion attacks; dimension reduction and vulnerability discovery

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English

Person responsible for module:
Prof. Dr. Konrad Rieck

Course frequency:
unregelmäßig

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:

Maximum number of students:
50
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Module M.Inf.1228: Seminar Recent Advances in Computer Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning outcome, core skills:</td>
<td>Workload: Attendance time: 28 h Self-study time: 122 h</td>
</tr>
<tr>
<td>After successful completion of the modul students are able to</td>
<td></td>
</tr>
<tr>
<td>• explain current problems of computer security</td>
<td></td>
</tr>
<tr>
<td>• summarize and present an approach addressing current problems</td>
<td></td>
</tr>
<tr>
<td>• discuss theoretical and practical details of the approach</td>
<td></td>
</tr>
<tr>
<td>• identify and review related work</td>
<td></td>
</tr>
<tr>
<td>• analyse advantages and shortcomings of related approaches</td>
<td></td>
</tr>
<tr>
<td>• propose possible solutions and extensions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Hot Topics in Computer Security (Seminar)</th>
<th>2 WLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination: Vortrag (ca. 30 min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)</td>
<td>5 C</td>
</tr>
<tr>
<td>Examination requirements:</td>
<td></td>
</tr>
<tr>
<td>Current problems of security; detailed discussion of one solution; comparison with related work; written report; oral presentation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Konrad Rieck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.Inf.1229: Seminar on Specialization in Telematics

Learning outcome, core skills:
On completion of the module students should be able to:

- critically investigate current research topics from the area of telematics such as bio-inspired approaches in the area of wireless communication or security attacks and countermeasures for mobile wireless networks
- collect, evaluate related work and reference them correctly
- summarize the findings in a written report
- prepare a scientific presentation of the chosen research topic

Workload:
- Attendance time: 28 h
- Self-study time: 122 h

Courses:
1. **Network Security and Privacy** (Seminar)
 2 WLH
2. **Security of Self-organizing Networks** (Seminar)
 2 WLH
3. **Trust and Reputation Systems** (Seminar)
 2 WLH

Examination:
- **Presentation** (approx. 45 minutes) and **written report** (max. 20 pages)

Examination requirements:
The students shall show that:

- they are able to become acquainted with a specialized topic in telematics by investigating up-to-date research publications
- they are able to present up-to-date research on a specialized topic in telematics
- they are able to assess up-to-date research on a specialized topic in telematics
- they are able to write a scientific report on a specialized topic in telematics according to good scientific practice

Admission requirements:
- none

Recommended previous knowledge:
- Basic knowledge in telematics and computer networks

Language:
- English

Person responsible for module:
- Prof. Dr. Dieter Hogrefe

Course frequency:
- unregelmäßig

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Recommended semester:
-

Maximum number of students:
- 15
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Module M.Inf.1230: Specialisation Software-defined Networks (SDN)</th>
</tr>
</thead>
</table>
| **Learning outcome, core skills:** | **Workload:** Attendance time: 28 h
 Self-study time: 122 h |
| The students | 5 C 2 WLH |
| • are familiar with advanced concepts of software defined networking (SDN) | |
| • know how to methodically read, analyse and discuss scientific research papers | |
| • have enriched their practical skills in computer networks with regards to SDN and its applications | |
| • know about practical deployability issues of SDN | |
| • have improved their ability to work independently in a pre-defined context | |
| • have improved their ability to work in diverse teams | |

Course: Specialization in Software-defined Networking **(Exercise, Seminar)**	2 WLH
Examination: Term Paper (max. 20 pages)	5 C
Examination prerequisites: Erreichen von mindestes 50% der Übungspunkte	
Examination requirements: Advanced knowledge in software-defined networking; ability to transfer the theoretical knowledge to practical exercises; ability to present the earned knowledge in a proper written report	

Admission requirements: none	**Recommended previous knowledge:** Basic knowledge in computer networks; basics of algorithms and data structures; advanced programming skills
Language: English	**Person responsible for module:** Prof. Dr. Xiaoming Fu
Course frequency: unregelmäßig	**Duration:** 1 semester[ss]
Number of repeat examinations permitted: twice	**Recommended semester:**
Maximum number of students: 15	
Georg-August-Universität Göttingen

Module M.Inf.1231: Specialisation in Distributed Systems

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successfully completing the module, students</td>
<td>Attendance time: 56 h</td>
</tr>
<tr>
<td>• have in-depth knowledge about one specific topical area of distributed systems</td>
<td>Self-study time: 124 h</td>
</tr>
<tr>
<td>• understand the challenges of designing this specific part of a distributed system and integrating it into a larger infrastructure</td>
<td></td>
</tr>
<tr>
<td>• understand the tasks to operate this specific part of a distributed system within a modern data centre</td>
<td></td>
</tr>
<tr>
<td>• can apply their knowledge to evaluate application scenarios and make decisions regarding the applicability of certain technical solutions</td>
<td></td>
</tr>
</tbody>
</table>

Examples for specific topics are distributed architectures or distributed data and information management.

Course: Distributed Storage and Information Management (Lecture, Exercise)	4 WLH
Contents:	
Successfully completing the module, students	
• understand how data and information can be stored and managed	
• know the generic components of a modern data centre	
• understand how to protect data using RAID and what RAID level to apply to what problem	
• know about "intelligent" storage systems, including concepts like caching	
• understand various storage networking technologies like Fibre Channel, iSCSI, and FCoE	
• know about network-attached, object and unified storage	
• basically understand how to achieve business continuity of storage systems	
• understand the different backup and archiving technologies	
• understand data replication	
• have a basic understanding of storage virtualization	
• know how to manage and how to secure storage infrastructures	

Remark

With this lecture, we provide a preparation for the exam for the EMC Information Storage and Management Certificate. The Institute of Computer Science of the University of Göttingen is a Proven Professional of the EMC Academic Alliance.

References

Examination: Written exam (90 min.) or oral exam (ca. 20 min.)

Examination prerequisites:
Solving and presenting at least one exercise (written solution and presentation), as well as active participation during the exercises.

Examination requirements:
Information Storage; Data Centre Environment and Components; RAID; Caching; Storage Provisioning; Fibre Channel; IP SAN; FCoE; Network-Attached Storage; Object-Based and Unified Storage; Backup and Archiving; Replication; Storage Cloud; Security in Storage Infrastructures; Management of Storage Infrastructures

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>• Computer architecture</td>
</tr>
<tr>
<td></td>
<td>• Basic network protocols</td>
</tr>
<tr>
<td></td>
<td>• Virtualisation techniques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Ramin Yahyapour</td>
</tr>
<tr>
<td></td>
<td>(Dr. Philipp Wieder)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Module M.Inf.1232: Parallel Computing

Learning outcome, core skills:
Successfully completing the module, students are able to:

- define and describe the benefit of parallel computing
- specify the classification of parallel computers (Flyn classification)
- analytically evaluate the performance of parallel computing approaches (scaling/performance models)
- know the parallel hardware and performance improvement approaches (cache coherence, pipeline, etc.)
- know the interconnects and networks and their role in parallel computing
- understand and develop sample parallel programs using different paradigms and development environments (e.g., shared memory and distributed models)
- expose to some applications of Parallel Computing through hands-on exercises

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Contents:
Successfully completing the lecture, students are able to:

- define and describe the benefit of parallel computing and identify the role of software and hardware in parallel computing
- specify the Flynn classification of parallel computers (SISD, SIMD, MIMD)
- analytically evaluate the performance of parallel computing approaches (Scaling/Performance models)
- understand the different architecture of parallel hardware and performance improvement approaches (e.g., caching and cache coherence issues, pipeline, etc.)
- define Interconnects and networks for parallel computing
- architecture of parallel computing (MPP, Vector, Shared memory, GPU, Many-Core, Clusters, Grid, Cloud)
- design and develop parallel software using a systematic approach
- parallel computing algorithms and development environments (i.e. shared memory and distributed memory parallel programming)
- write parallel algorithms/programs using different paradigms and environments (e.g., POSIX Multi-threaded programming, OpenMP, MPI, OpenCL/CUDA, MapReduce, etc.)
- get exposed to some applications of Parallel Computing through exercises

References
- In addition to the mentioned text book, tutorial and survey papers will be distributed in some lectures as extra reading material.

Examination: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Examination requirements:
- Parallel programming; Shared Memory Parallelism; Distributed Memory Parallelism, Single Instruction Multiple Data (SIMD); Multiple Instruction Multiple Data (MIMD);
- Hypercube; Parallel interconnects and networks; Pipelining; Cache Coherence;
- Parallel Architectures; Parallel Algorithms; OpenMP; MPI; Multi-Threading (pthreads);
- Heterogeneous Parallelism (GPGPU, OpenCL/CUDA)

Admission requirements:
- Data structures and algorithms
- Programming in C/C++

Recommended previous knowledge:
- Computer architecture
- Basic knowledge of computer networks and topologies

Language:
- English

Person responsible for module:
- Prof. Dr. Ramin Yahyapour

Course frequency:
- unregelmäßiger

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Recommended semester:
-

Maximum number of students:
- 50
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 122 Stunden</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung: Seminar Datenbanken (Seminar) 2 SWS</td>
<td></td>
</tr>
<tr>
<td>Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsanforderungen: Einarbeitung in ein Spezialgebiet moderner Datenbank- und Informationssysteme; Fähigkeit, Quellen im Web suchen und in Beziehung zu dem behandelten Gebiet zu setzen, sowie in einer Diskussion darzustellen und zu bewerten</td>
<td></td>
</tr>
<tr>
<td>Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: keine</td>
<td></td>
</tr>
<tr>
<td>Sprache: Deutsch, Englisch Modulverantwortliche[r]: Prof. Dr. Wolfgang May</td>
<td></td>
</tr>
<tr>
<td>Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester</td>
<td></td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig Empfohlenes Fachsemester:</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl: 30</td>
<td></td>
</tr>
</tbody>
</table>
Modul M.Inf.1243: Deduktive Datenbanken

English title: Deductive Databases

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden verfügen über vertiefte Kenntnisse der im Datenbankbereich zugrundeliegenden Theorie. Sie haben einen Einblick in die Möglichkeiten, die logikbasierte Ansätze und entsprechende deklarative Programmiersprachen über reine Datenverwaltung hinaus bieten, um Wissen zu repräsentieren und in intelligenten Anwendungen Schlüsse daraus zu ziehen (z.B. Answer Set Programming).</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Deduktive Datenbanken (Vorlesung, Übung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Relationaler Kalkül, Datalog, Negation in Closed World, Disjunktives Reasoning, Stabile Modelle, Answer Set Programming.</td>
</tr>
<tr>
<td>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 25 Min.).</td>
</tr>
<tr>
<td>Prüfungsanforderungen: Vertiefte Kenntnisse der dem Datenbankbereich zugrundeliegenden Theorie. Praktische Anwendung logikbasierter Programmiersprachen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken, Formale Systeme</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache: Deutsch, Englisch

Modulverantwortliche[r]: Prof. Dr. Wolfgang May

Angebotshäufigkeit: unregelmäßig

Dauer: 1 Semester

Wiederholbarkeit: zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl: 50
Learning outcome, core skills:
The students
- learn to become acquainted with an advanced topic in software quality assurance by studying up-to-date research papers
- gain knowledge about advanced topics in software quality assurance. The advanced topic may be related to areas such as test processes, software metrics, black-box testing, white-box testing, test automation, test generation and testing languages
- learn to present and discuss up-to-date research on advanced topics in software quality assurance.
- learn to assess up-to-date research on advanced topics in software quality assurance.

Workload:
Attendance time:
28 h
Self-study time:
122 h

Course: Randomness and Software Testing (Seminar)

Contents:
Since exhaustive testing of software is almost never possible, different approaches towards the determination of appropriate test suites have been proposed throughout the years. One direction is to randomize the generation of software tests. This does not necessarily mean that there is no underlying strategy, the opposite is the case. The inputs and/or execution paths of software are created using probability distributions with the aim to optimize certain quality aspects of software. This seminar addresses topics from randomized software testing, including randomized selection of execution paths (e.g., through usage-based testing) and randomized generation of test data (e.g., using fuzzing). In addition to the techniques themselves, we also address how randomized approaches differ from traditional approaches based on coverage criteria and/or heuristics.

Examination: Presentation (approx. 45 minutes) and written report (max. 20 pages)

Examination prerequisites:
Attendance in 80% of the seminar presentations

Examination requirements:
The students shall show that
- they are able to become acquainted with an advanced topic in software quality assurance by investigating up-to-date research publications
- they are able to present up-to-date research on an advanced topic in software quality assurance
- they are able to assess up-to-date research on an advanced topic in software quality assurance
- they are able to write a scientific report on an advanced topic in software quality assurance according to good scientific practice

Presentation of an advanced topic in software engineering and written report.
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Foundations of software engineering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
The students

- learn to become acquainted with an advanced topic in software evolution by studying up-to-date research papers
- gain knowledge about advanced topics in software evolution. The advanced topic may be related to areas such as comparison of software projects, defect analysis and prediction, version control and infrastructure, changes and clones, impact analysis, practical applications and experiments, patterns and models, as well as integration and collaboration (process-related and social aspects)
- learn to present and discuss up-to-date research on advanced topics in software evolution
- learn to assess up-to-date research on advanced topics in software evolution

Course: Mining Software Repositories (Seminar)

Contents:
The topics in this seminar on software evolution will include the following areas:

- comparison of projects
- defect analysis and prediction
- version control and infrastructure
- beyond source code - text analysis
- search and recommendation
- changes and clones
- impact analysis
- practical applications and experiments
- available resources
- visualization and presentation of results
- patterns and models
- integration and collaboration (process-related and social aspects)

Examination: Presentation (approx.45 minutes) and written report (max. 20 pages)

Examination prerequisites:
Attendance in 80% of the seminar presentations

Examination requirements:
The students shall show that

- they are able to become acquainted with an advanced topic in software evolution by investigating up-to-date research publications
- they are able to present up-to-date research on an advanced topic in software evolution
- they are able to assess up-to-date research on an advanced topic in software evolution
- they are able to write a scientific report on an advanced topic in software evolution according to good scientific practice
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Foundations of software engineering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:	Erwerb von Kompetenzen im Bereich der projektbezogenen und forschungsorientierten
	Teamarbeit und des Projektmanagements ggf. Erwerb von Fähigkeiten beim Umsetzen
	theoretischer Konzepte in praktische Lösungen.

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Forschungsbezogene Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 12 Seiten), unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Winfried Kurth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Inf.1261: Seminar Grafische Datenverarbeitung
English title: Seminar Graphic Data Processing

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Präsentzeit: 28 Stunden
Selbststudium: 122 Stunden |

| Lehrveranstaltung: Seminar beispielsweise zu den Themen Computergrafik, Bildanalyse, Auswertung von 3D-Daten, Mustererkennung, Modellierung und Rendering natürlicher Objekte. (Seminar)
Inhalte: Aktuelle Forschungsarbeiten der Grafischen Datenverarbeitung (Computergrafik, Bildanalyse, Mustererkennung, Analyse von 3D-Daten)
Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung (max. 20 Seiten).
Prüfungsanforderungen: Selbständige Einarbeitung anhand von Originalarbeiten in aktuelle Themen der Grafischen Datenverarbeitung und Präsentation des erarbeiteten Stoffes einschließlich der Grundlagen die zum Verstehen des eigentlichen Themas notwendig sind. |

| Zugangsvoraussetzungen: keine
Sprache: Deutsch, Englisch
Angebotshäufigkeit: unregelmäßig
Wiederholbarkeit: zweimalig
Maximale Studierendenzahl: 15 |

| Empfohlene Vorkenntnisse: keine
Modulverantwortliche[r]: Prof. Dr. Winfried Kurth
Dauer: 1 Semester
Empfohlenes Fachsemester: |

*Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3121*
Lernziele/Kompetenzen:

Die Studierenden
- kennen die mathematische Grundlagen der Quanteninformationstheorie und der Quantenberechnung
- beherrschen die grundlegenden Begriffe der Quanteninformationstheorie
- beherrschen die Grundlagen der Quantenberechnung
- kennen exemplarisch grundlegende Prinzipien des Entwurfs effizienter Quantenalgorithmen

Arbeitsaufwand:

Präsenzzeit:
- 56 Stunden

Selbststudium:
- 124 Stunden

Lehrveranstaltung:

Quantum Information and Quantum Computation (Vorlesung, Übung)

Prüfung:

Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)

Prüfungsvorleistungen:

Bearbeitung von 50% aller Übungsaufgaben, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen

Prüfungsanforderungen:

In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Fundamentale Eigenschaften normaler, hermitischer, positiver und unitärer Operatoren als mathematische Grundlagen
- Begriffe: Zustand, Dichteoperator, Observable, Messung, unitäre Entwicklung
- Quantenbits und Verschränkung
- Von-Neumann Entropie und Quanteninformation
- Quantenregister und Quantengatter
- Grundlegende Quanten-Algorithmen wie z.B. Grovers, Simons und Shor-Algorithmus

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch, Englisch

Modulverantwortliche[r]:

Prof. Dr. Stephan Waack

Angebotshäufigkeit:

unregelmäßig

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Maximale Studierendenzahl:

30
Georg-August-Universität Göttingen
Modul M.Inf.1268: Informationstheorie

English title: Information Theory

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
<td>Pränzzeit:</td>
</tr>
<tr>
<td>• kennen die mathematische Grundlagen der Informationstheorie</td>
<td>56 Stunden</td>
</tr>
<tr>
<td>• beherrschen die grundlegenden Begriffe der Informationstheorie</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• beherrschen die zentralen Begriffe und Verfahren der Datenkompression</td>
<td>124 Stunden</td>
</tr>
<tr>
<td>• kennen grundlegende Begriffe und Aussagen zur Kanalkapazität</td>
<td></td>
</tr>
<tr>
<td>• kennen grundlegende Begriffe und Aussagen zur Kolmogorov-Komplexität</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Elements of Information Theory (Vorlesung, Übung)</th>
<th>4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</td>
<td>6 C</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
<td></td>
</tr>
<tr>
<td>Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe</td>
<td></td>
</tr>
<tr>
<td>während der Übung, kontinuierliche Teilnahme an den Übungen</td>
<td></td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
<td></td>
</tr>
<tr>
<td>In der Prüfung wird die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.</td>
<td></td>
</tr>
<tr>
<td>• Kenntnisse von Grundbegriffen wie Entropie, relative Entropie, wechselseitige Information</td>
<td></td>
</tr>
<tr>
<td>• asymptotische Äquipartitionseigenschaft und Typtheorie</td>
<td></td>
</tr>
<tr>
<td>• Entropierate stochastischer Prozesse</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der Datenkompression einschließlich ihrer Bezüge zur Spieltheorie</td>
<td></td>
</tr>
<tr>
<td>• Kanalkapazität und Kanalcodierungssatz</td>
<td></td>
</tr>
<tr>
<td>• Grundbegriffe der Kolmogorov-Komplexität</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Stephan Waack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

| Maximale Studierendenzahl: | 30 |

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine

Sprache: Deutsch, Englisch
Modulverantwortliche[r]: Prof. Dr. Stephan Waack

Angebotshäufigkeit: unregelmäßig
Dauer: 1 Semester

Wiederholbarkeit: zweimalig
Empfohlenes Fachsemester:

Maximale Studierendenzahl: 30
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
</tr>
<tr>
<td>• kennen die mathematische Grundlagen der Komplexitätstheorie</td>
</tr>
<tr>
<td>• beherrschen die Grundlagen der Komplexitätstheorie</td>
</tr>
<tr>
<td>• beherrschen ausgewählte fortgeschrittene Themen der Komplexitätstheorie</td>
</tr>
<tr>
<td>• kennen exemplarisch zentrale Theoreme der Komplexitätstheorie als Grenzen für den Entwurf effizienter Algorithmen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>56 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Complexity Theory (Vorlesung, Übung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe während der Übung, kontinuierliche Teilnahme an den Übungen</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>In der Prüfung wird die active Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.</td>
</tr>
<tr>
<td>• NP-Vollständigkeit und NP-Äquivalenz</td>
</tr>
<tr>
<td>• randomisierte und approximative Berechnungen</td>
</tr>
<tr>
<td>• grundlegende Techniken zu Zeit- und Speicherkomplexitätsklassen</td>
</tr>
<tr>
<td>• Polynomialzeitierarchie</td>
</tr>
<tr>
<td>• Boolische Schaltkreise und untere Schranken</td>
</tr>
<tr>
<td>• interaktive Beweissysteme</td>
</tr>
<tr>
<td>• Derandomisierung und Pseudozufallsgeneratoren</td>
</tr>
<tr>
<td>• Bedeutung des PCP-Theorems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stephan Waack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.Inf.1281: NOSQL Databases

Learning outcome, core skills:
Learning how to store arbitrary documents, objects of programming languages, XML data and graphs in native databases; and comparison to storing these data in relational databases. Getting to know novel requirements for database management systems like flexible update and query behavior and distributed data on multiple servers.

Workload:
- **Attendance time:** 56 h
- **Self-study time:** 124 h

Course: NOSQL Databases (Lecture, Exercise)

Contents:
The lecture covers for example graph databases, object databases, XML databases, key-value stores, and column-based databases, as well as concepts of distributed data management.

Examination: Klausur (90 Minuten) oder mündliche Prüfung (ca. 25 Minuten)

Examination requirements:
Presenting concepts, data models and storage mechanisms of the different NOSQL databases; explaining differences to the relational model. Showing basic knowledge of NOSQL query languages and access models. Explaining concepts of distributed database systems.

Admission requirements:
- none

Recommended previous knowledge:
- none

Language:
- German, English

Person responsible for module:
- Dr. Lena Wiese

Course frequency:
- unregelmäßig

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Recommended semester:
- none

Maximum number of students:
- 50
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen die Methoden einer Marktanalyse, können sie anwenden sowie die Ergebnisse schriftlich und mündlich darstellen.</td>
<td>Präsenzzeit: 28 Stunden Selbststudium: 212 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Mögliche Lehrformen: Vorlesung, Übung, Seminar, Blockseminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Marktanalyse eines IT-Marktes I; Marktanalyse eines IT-Marktes II</td>
</tr>
<tr>
<td>Angebotshäufigkeit: jedes Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Präsentation (ca. 30 Minuten) und Hausarbeit (max. 20 Seiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen: regelmäßige Teilnahme bei Blockseminaren und bei Seminaren</td>
</tr>
<tr>
<td>Prüfungsanforderungen: Die Studierenden beschreiben die Methoden einer Marktanalyse, können sie anwenden sowie die Ergebnisse schriftlich und mündlich darstellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache: Deutsch, Englisch</th>
<th>Modulverantwortliche[r]: Prof. Dr. med. Otto Rienhoff</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>2</td>
</tr>
</tbody>
</table>

<p>| Maximale Studierendenzahl: | |
|---------------------------| |</p>
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden wissen, wie sich die wichtigsten Themen der Medizinischen Informatik entwickeln und können sie durch eigene Literaturrecherche kritisch aufarbeiten und präsentieren.</td>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 108 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Mögliche Lehrformen: Vorlesung, Übung, Seminar, Blockseminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte:</td>
</tr>
<tr>
<td>Entwicklungslinien der Medizinischen Informatik: Vorlesung und Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 20 Seiten) und Vortrag (ca. 20 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>regelmäßige Teilnahme bei Blockseminaren und bei Seminaren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden wissen, wie sich die wichtigsten Themen der Medizinischen Informatik entwickeln und können sie durch eigene Literaturrecherche kritisch aufarbeiten und präsentieren. Die Studierenden beurteilen aktuelle Forschungsthemen und Veröffentlichungen der Biomedizinischen Informatik und sind in der Lage, diese kritisch zu diskutieren und zu präsentieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Modul M.Inf.1303: Bildgebung und Visualisierung</td>
</tr>
<tr>
<td>English title: Imaging and Visualization</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
Die Studierenden haben vertiefte Kenntnisse über Art und Aufbau von bildgebenden Systemen in der Medizin und können die Grundlagen der Virtual Reality in der Medizin beurteilen und ihre Funktionsweise verstehen.

Lehrveranstaltung: Mögliche Lehrformen: Vorlesung, Übung, Seminar, Blockseminar

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)

Prüfungsvorleistungen:
regelmäßige Teilnahme bei Blockseminaren und bei Seminaren

Prüfungsanforderungen:

Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch, Englisch

Angebotshäufigkeit:
unregelmäßig

Wiederholbarkeit:
zweimalig

Maximale Studierendenzahl:
25

Empfohlene Vorkenntnisse:
keine
Georg-August-Universität Göttingen
Modul M.Inf.1304: E-Health
English title: E-Health

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Die Studierenden kennen und verstehen verschiedene Methoden und Herausforderungen der Software-Entwicklung komplexer medizinischer Anwendungssysteme. Sie kennen die Komponenten der Telematik-Infrastrukturen im deutschen Gesundheitswesen und können diese beurteilen. | Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden |

| Arbeitsaufwand: | Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)</td>
<td></td>
</tr>
</tbody>
</table>
Prüfungsanforderungen:
Die Studierenden können verschiedene Methoden der Software-Entwicklung anwenden, um die Herausforderungen komplexer medizinischer Anwendungssysteme zu lösen. Sie sind in der Lage, Komponenten der Telematik-Infrastrukturen im deutschen Gesundheitswesen zu beschreiben und kritisch zu beurteilen. |

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:
Die Studierenden wissen, wie sich die wichtigsten Themen der Medizinischen Informatik entwickeln und können sie durch eigene Literaturrecherche kritisch aufarbeiten und präsentieren. Die Studierenden beurteilen aktuelle Forschungsthemen und Veröffentlichungen der Biomedizinischen Informatik und sind in der Lage, diese kritisch zu diskutieren und zu präsentieren.

Arbeitsaufwand:
- **Präsenzzeit:** 42 Stunden
- **Selbststudium:** 108 Stunden

Lehrveranstaltung: Mögliche Lehrformen:
- Vorlesung, Übung, Seminar, Blockseminar

Inhalte:
- Journal Club I; Journal Club II

Prüfung:
- **Hausarbeit (max. 20 Seiten) und Präsentation (ca. 30 Minuten)**

Prüfungsvorleistungen:
regelmäßige Teilnahme bei Blockseminaren und bei Seminaren

Prüfungsanforderungen:
Nachweis über den Erwerb spezialisierter Fähigkeiten und Kompetenzen in ausgewählten Gebieten der Medizinischen und Biomedizinischen Informatik anhand topaktueller Literatur.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
- Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. med. Otto Rienhoff

Angebotshäufigkeit:
unregelmäßig

Dauer:
2 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
1 - 2

Maximale Studierendenzahl:
25
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen Methoden, Aufbau und Ziele kollaborativer, IT-unterstützter Arbeitsorganisationen und verstehen ihre Bedeutung im globalen Forschungs- und Gesundheitsmarkt. Sie kennen die Methoden zur Bearbeitung wissenschaftlicher Projekte und können deren Ergebnisse präsentieren.</td>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 108 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Mögliche Lehrformen: Vorlesung, Übung, Seminar, Blockseminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte:</td>
</tr>
<tr>
<td>Werden ständig den aktuellen Entwicklungen dieses dynamischen Gebietes angepasst.</td>
</tr>
<tr>
<td>Beispiele: Grundlagen und Arbeitsmethoden in Forschung und Projektarbeit. Kollaborative Arbeitsmethoden in der Forschung: Vorlesung und Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 20 Seiten) und Vortrag (ca. 20 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
</tr>
<tr>
<td>regelmäßige Teilnahme bei Blockseminaren und bei Seminaren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können die Bedeutung kollaborativer, IT-unterstützter Arbeitsorganisationen im globalen Forschungs- und Gesundheitsmarkt, sowie deren Methoden und Aufbau beschreiben. Sie können wissenschaftlicher Projekte bearbeiten und deren Ergebnisse präsentieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Inf.1355: IT-Managementtechniken im Gesundheitswesen

English title: IT-Management Techniques in Health Care

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ökonomische Aspekte von IT-Investitionen im Gesundheitswesen (Vorlesung) Inhalte: Die Studierenden kennen die betriebswirtschaftlichen Grundlagen zum ökonomischen Einsatz von Informationstechnologien im Gesundheitswesen und verstehen die Einsatz- und Entwicklungspotentiale von IT-Systemen.</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Spezielle Aspekte des Projektmanagements im Gesundheitswesen (Seminar) Inhalte: Die Studierenden können mit ihrem Wissen und ihren Fertigkeiten des Projektmanagements praxisnah die Herausforderungen des Projektmanagements nach speziellen Aspekten beschreiben und hinsichtlich deren Bedeutung für den Erfolg von Projekten bewerten.</td>
<td>4 SWS</td>
</tr>
<tr>
<td>3. Wissensmanagement (Seminar) Inhalte: Die Studierenden beschreiben Methoden sowie technische, organisatorische und menschliche Aspekte von Wissensmanagement und verstehen die Bedeutung des Wissensmanagements als Produktions- und Wettbewerbsfaktor im Bereich Life Sciences/Health Care.</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Minuten), Hausarbeit (max. 25 Seiten)
Prüfungsvorleistungen: regelmäßige Teilnahme (Seminare)
Prüfungsanforderungen: Die Studierenden zeigen ihr Verständnis für die Methoden sowie technische, organisatorische und menschliche Aspekte von Wissensmanagement und verstehen
die Bedeutung des Wissensmanagements als Produktions- und Wettbewerbsfaktor im Bereich Life Sciences/Health Care.

Die Studierenden beschreiben die betriebswirtschaftlichen Grundlagen zum ökonomischen Einsatz von Informationstechnologien im Gesundheitswesen und zeigen ihr Verständnis von Einsatz- und Entwicklungspotentialen von IT-Systemen.

Die Studierenden nutzen ihr Wissen und ihre Fertigkeiten des Projektmanagements, um in einer Seminararbeit praxisnah die Herausforderungen des Projektmanagements nach speziellen Aspekten zu beschreiben und hinsichtlich deren Bedeutung für den Erfolg von Projekten zu bewerten.

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Der vorherige Besuch des Moduls B.Inf.1304: IT-Projekte oder einer vergleichbaren Lehrveranstaltung wird empfohlen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. med. Otto Rienhoff</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. rer. nat. Ulrich Sax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Die Studierenden kennen die Grundlagen der Bioinformatik und Biostatistik. Sie kennen die wichtigsten Methoden und Werkzeuge in der Analyse von Hochdurchsatzdaten.

Die Studierenden kennen die Ziele, Methoden, Anwendungen und Entwicklungen einer personalisierten Medizin. Sie können diese in Bezug auf exemplarische Felder in Forschung und Versorgung erläutern.

Die Studierenden lernen die interdisziplinäre Bedeutung der Bioinformatik, Biostatistik und Medizininformatik kennen und können diese im Kontext von Forschung und Versorgung darstellen.

Arbeitsaufwand:

- **Präsenzzeit:** 112 Stunden
- **Selbststudium:** 158 Stunden

Lehrveranstaltungen:

1. **Personalisierte Medizin** (Vorlesung)
 Inhalte:
 Die Studierenden kennen die Ziele, Methoden, Anwendungen und Entwicklungen einer personalisierten Medizin. Sie können diese in Bezug auf exemplarische Felder in Forschung und Versorgung erläutern.

2. **Grundlagen der Biostatistik und Bioinformatik** (Blockveranstaltung)
 Inhalte:
 Die Studierenden kennen die Grundlagen der Bioinformatik und Biostatistik. Sie kennen die wichtigsten Methoden und Werkzeuge in der Analyse von Hochdurchsatzdaten.

3. **Klinische Studien** (Vorlesung, Übung)
 Inhalte:

Prüfung:

- **2 Klausuren (je 90 Minuten) oder mündliche Prüfung (ca. 45 Minuten)**

Prüfungsanforderungen:

Die Studierenden beschreiben die Ziele, Methoden, Anwendungen und Entwicklungen einer personalisierten Medizin. Sie können die interdisziplinäre Bedeutung des Themas...
darstellen und Anwendungsfelder der personalisierten Medizin in Forschung und Versorgung exemplarisch erläutern. Die Studierenden können die Potentiale und Herausforderungen des behandelten interdisziplinären Forschungsgebiets kritisch bewerten.

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Der vorherige Besuch des Moduls B.Inf.1351: Grundlagen der Biomedizin oder einer vergleichbaren Lehrveranstaltung wird dringend empfohlen. Der vorherige Besuch des Moduls B.Mat.0804: Diskrete Stochastik bzw. des Moduls B.Mat.1420: Grundlagen der Stochastik oder einer vergleichbaren Lehrveranstaltung wird dringend empfohlen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
</table>
| Deutsch, Englisch | Prof. Dr. Tim Friede
| | Prof. Dr. med. Otto Rienhoff |

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.Inf.1403: Neurorehabilitation Technologies: Introduction and Applications

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are able to describe the state of the art in Neurorehabilitation technologies and understand the basics of the related physiological processes.</td>
</tr>
<tr>
<td>In addition, they are in a position to discuss and evaluate current trends as well as to recognize limitations of available assistive and rehabilitative technology.</td>
</tr>
<tr>
<td>The exercise allows students to understand basic concepts of programming in the MATLAB environment. By utilizing the acquired set of theoretical and programming skills they are fit to address variety of practical Neurorehabilitation challenges.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time: 42 h</td>
</tr>
<tr>
<td>Self-study time: 108 h</td>
</tr>
</tbody>
</table>

Course: Neurorehabilitation Technologies: Introduction and Applications (Lecture, Exercise)

Literature suggestion will be handed out at the beginning of each term.

<table>
<thead>
<tr>
<th>Examination: Written exam (90 min.) or presentation (approx. 25 min.) and written report (max. 10 pages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
</tr>
<tr>
<td>Successful completion of 50% of each exercise.</td>
</tr>
<tr>
<td>Examination requirements:</td>
</tr>
<tr>
<td>- Basic motor physiology</td>
</tr>
<tr>
<td>- The state of the art of Neurorehabilitation technologies</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic programming skills; basic algebra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dario Farina</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3136
Modul M.Inf.1501: Data Mining in der Bioinformatik

English title: Data Mining in Bioinformatics

Lernziele/Kompetenzen:

Arbeitsaufwand:
- **Präsenzzeit:** 56 Stunden
- **Selbststudium:** 124 Stunden

Lehrveranstaltungen:
1. **Data Mining in der Bioinformatik** (Vorlesung) 2 SWS
2. **Rechnerübung zu Data Mining in der Bioinformatik** (Blockveranstaltung) 2 SWS

Prüfung:
Mündlich (ca. 20 Minuten) 6 C

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
Algorithmen der Bioinformatik, Maschinelles Lernen in der Bioinformatik

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Dr. Peter Meinicke

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
15
Lernziele/Kompetenzen:
Es werden fortgeschrittene Konzepte aus Graphentheorie und Theoretischer Informatik sowie fortgeschrittene Stringalgorithmen eingeführt. Den Studierenden wird ein vertieftes Verständnis der entsprechenden Konzepte, Modelle und Algorithmen vermittelt, das zu einer Anwendung auf Fragestellungen aus den angewandten Wissenschaften befähigt. Im praktischen Teil lernen die Studierenden, die in der Vorlesung behandelten Algorithmen selbständig zu implementieren und anzuwenden.

Arbeitsaufwand:
| Präsenzzeit: | 56 Stunden |
| Selbststudium: | 124 Stunden |

Lehrveranstaltungen:
1. **Diskrete Algorithmen und Modelle** (Vorlesung) 2 SWS
2. **Übung Diskrete Algorithmen und Modelle** (Blockveranstaltung) 2 SWS

Prüfung: Mündlich (ca. 20 Minuten) 6 C

Zugangsvoraussetzungen: keine

Empfohlene Vorkenntnisse:
Algorithmen der Bioinformatik, Maschinelles Lernen in der Bioinformatik

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Burkhard Morgenstern

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
10
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Modul M.Inf.1503: Seminar Bioinformatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>English title: Seminar Bioinformatics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sollen lernen sich anhand von Originalarbeiten selbstständig in aktuelle Themen der Bioinformatik einarbeiten und den erarbeiteten Stoff vor einem kritischen Publikum vorzutragen. Hierzu gehört das gründliche Durcharbeiten und Beurteilen der betreffenden Originalarbeit sowie die Erarbeitung von Grundlagen, die für das Verstehen der Arbeit notwendig sind, dort aber aus Platzgründen nicht ausgeführt sind. Dabei sind im allgemeinen weitere Originalarbeiten oder Lehrbücher heranzuziehen, die notwendig sind, um die gewählte Originalarbeit vollständig zu verstehen und die gewonnenen Erkenntnisse anwenden zu können.</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td></td>
<td>28 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium:</td>
</tr>
<tr>
<td></td>
<td>122 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Literaturseminar Bioinformatik (Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte: Aktuelle Forschungsarbeiten der Bioinformatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung (max. 10 Seiten)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
</table>

Zugangsvoraussetzungen: keine

Empfohlene Vorkenntnisse: keine

Sprache: Deutsch, Englisch

Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern

Angebotshäufigkeit: unregelmäßig

Dauer: 1 Semester

Wiederholbarkeit: zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl: 10
Georg-August-Universität Göttingen

Modul M.Inf.1504: Algorithmen der Bioinformatik II

English title: Algorithms in Bioinformatics II

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erlernen Algorithmen zur Clusteranalyse und zur Analyse von RNA-Strukturen, Genvorhersage bei Eukaryoten, Mustererkennung auf Sequenzen und fortgeschrittene Methoden des Sequenzalignments.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
</tbody>
</table>

| Lehrveranstaltung: Algorithmen der Bioinformatik II (Vorlesung, Übung) | 4 SWS |
| Prüfung: Mündlich (ca. 20 Minuten) | 6 C |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sollen nach Absolvierung des Moduls befähigt sein, bekannte Verfahren aus der Informatik für bioinformatische Fragestellungen anzuwenden und die Grenzen der Anwendbarkeit kritisch zu beurteilen.</td>
<td>Grundlegende Kenntnisse aus den Bereichen Algorithmen der Bioinformatik, Maschinelles Lernen in der Bioinformatik und Molekularbiologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Deutsch, Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfehlte Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Prof. Dr. Burkhard Morgenstern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

Maximale Studierendenzahl:	

15	
Learning outcome, core skills:
The students
- know the principles of one existing or emerging advanced networking technology
- are able to implement these technologies in useful mobile applications
- ideally have advanced in their researching ability
- have improved their programming skills
- have improved their oral presentation skills
- have improved their scientific writing skills
- have improved their teamwork

Course: Practical Course Advanced Networking Lab (Internship)

Examination: Präsentation (ca. 30 min.) und Hausarbeit (max. 15 Seiten)

Examination requirements:
- advanced networking technology, mobile applications, programming, oral presentation, scientific writing, teamwork

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Admission requirements:
- none

Recommended previous knowledge:
- Basic knowledge in computer networks; basics of algorithms and data structures; basic programming skills

Language:
- English

Person responsible for module:
- Prof. Dr. Xiaoming Fu

Course frequency:
- unregelmäßig

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Recommended semester:

Maximum number of students:
- 30
Lernziele/Kompetenzen:
Die Studierenden verfügen über vertiefte Kenntnisse und Erfahrungen in Sprachen aus dem Bereich XML. Sie wissen, welche Sprachen und Werkzeuge ggf. bei Problemstellungen anwendbar sind und können Projekte in diesem Bereich umsetzen. Sie sind mit der Grundidee der W3C-Standards vertraut und können sich selber benötigte Informationen im Web zusammensuchen.

Vermittlung von praktischen Fähigkeiten aus dem Bereich XML, XPath, XQuery, XSLT und weiteren Sprachen aus dem XML-Bereich

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltung: Praktikum XML (Praktikum)

Prüfung: Praktische Prüfung (ca. 4 Übungs- und Programmieraufgaben) und mündliche Prüfung (ca. 20 Min.)

Prüfungsanforderungen:
Vertiefteten Kenntnisse und Erfahrungen in Sprachen aus dem Bereich XML. Kenntnisse darüber, welche Sprachen und Werkzeuge ggf. bei Problemstellungen anwendbar sind; Fähigkeit zum Umsetzen von Projekten in diesem Bereich; Kenntnisse des W3C-Standards; Fähigkeit zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Wolfgang May

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
50
Learning outcome, core skills:
The students
- learn to become acquainted with up-to-date methods and software tools
- learn to select methods and tools for given practical problems in software engineering
- learn to apply methods and tools for given practical problems in software engineering
- learn to assess methods and tools for given practical problems in software engineering by performing experiments

Course: Practical Course on Parallel Computing (Internship)
Contents:
This practical course includes practical exercises on:

Distributed memory architectures
- Cluster computing with Torque PBS
- Grid Computing with Globus Toolkit
- Message Passing Interface (MPI)
- MapReduce

Shared Memory architectures
- OpenMP
- Pthreads

Heterogeneous parallelism (GPU, CUDA, etc.)
- CUDA

Examination: Practical exercises in small groups (approx. 4-12 exercises) and oral examinations for the exercises (approx. 15 minutes each), not graded

Examination prerequisites:
Attendance in 90% of the classes

Examination requirements:
The students shall show that
- they are able to become acquainted with up-to-date methods and software tools
- they are able to select methods and tools for given practical problems in software engineering
- they are able to apply methods and tools for given practical problems in software engineering
- they are able to assess methods and tools for given practical problems by performing experiments

Admission requirements:
none

Recommended previous knowledge:
Foundations of software engineering.
<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>Duration:</td>
</tr>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td>15</td>
</tr>
</tbody>
</table>
Module M.Inf.1804: Practical Course in Software Quality Assurance

Learning outcome, core skills:
The students
- learn to become acquainted with up-to-date methods and software tools for software quality assurance
- learn to select methods and tools for given practical problems in software quality assurance
- learn to apply methods and tools for given practical problems in software quality assurance
- learn to assess methods and tools for given practical problems in software quality assurance by performing experiments

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Course: Practical Course on Software Evolution: Origin Analysis (Internship)

Contents:
Changes in the usage requirements and the technological landscape, among others, drive a continuous necessity for changes in software systems in order to sustain their existence and operability in changing environments. Origin analysis aims to determine the location of points of interest through time. For example, origin analysis aids on the one hand projecting the location of past changes into the current state of the code base, and on the other hand determining previous locations and origins of detected issues. In this course, we will build and extend an existing infrastructure for performing origin analysis and use it to perform studies on large software systems, such as Google Chrome, Mozilla Firefox, Amarok, and others.

Examination: Practical exercises in small groups (approx. 4-6 exercises) and oral examinations for the exercises (approx. 15 minutes each), not graded

Examination prerequisites:
Attendance in 90% of the classes

Examination requirements:
The students shall show that
- they are able to become acquainted with up-to-date methods and software tools for software quality assurance
- they are able to select methods and tools for given practical problems in software quality assurance
- they are able to apply methods and tools for given practical problems in software quality assurance
- they are able to assess methods and tools for given practical problems in software quality assurance by performing experiments

Admission requirements:
none

Recommended previous knowledge:
Foundations of software engineering.

Language:
English

Person responsible for module:
Prof. Dr. Jens Grabowski
<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of repeat</td>
<td>Recommended</td>
</tr>
<tr>
<td>examinations permitted:</td>
<td>semester:</td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of</td>
<td></td>
</tr>
<tr>
<td>students:</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
<td>Modul M.Inf.1806: Projektseminar Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>English title: Seminar and Project Databases</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
Die Studierenden können sich in ein Spezialgebiet moderner Datenbank- und Informationssysteme einarbeiten, Quellen und Dokumentationen im Web suchen und in Beziehung zu dem behandelten Gebiet setzen, Werkzeuge evaluieren sowie in einer Diskussion darstellen und bewerten.

Arbeitsaufwand:
- **Präsenzzeit:** 28 Stunden
- **Selbststudium:** 152 Stunden

Lehrveranstaltung: Projektseminar Datenbanken und Informationssysteme

Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung (max. 25 Seiten)

Prüfungsanforderungen:

Zugangsvoraussetzungen:
- Datenbanken

Empfohlene Vorkenntnisse:
keine

Sprache:
- Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Wolfgang May

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
16

6 C
2 SWS
Georg-August-Universität Göttingen

Modul M.Inf.1807: Großes Projektseminar Datenbanken und Informationssysteme

English title: Extended Seminar and Project Databases

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können sich in ein komplexes Spezialgebiet moderner Datenbank- und Informationssysteme einarbeiten, Quellen und Dokumentationen im Web suchen und in Beziehung zu dem behandelten Gebiet setzen, Werkzeuge evaluieren sowie in einer Diskussion darstellen und bewerten.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 304 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Großes Projektseminar Datenbanken und Informationssysteme

Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung (max. 25 Seiten)

Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Wolfgang May

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

| Maximale Studierendenzahl: | 50 |

Zugangsvoraussetzungen:

<table>
<thead>
<tr>
<th>Datenbanken</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Wolfgang May

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

| Maximale Studierendenzahl: | 50 |
Learning outcome, core skills:
Successfully completing the module, students are able to:

- practically work with a cluster of computers (e.g., using a batch system)
- practically utilize grid computing infrastructures and manage their jobs (e.g., Globus toolkit)
- apply distributed memory architectures for parallelism through practical problem solving (MPI programming)
- utilize shared memory architectures for parallelism (e.g., OpenMP and pthreads)
- utilize heterogenous parallelism (e.g., OpenCL, CUDA and general GPU programming concepts)
- utilize their previous knowledge in data structures and algorithms to solve problems using their devised (or enhanced) parallel algorithms

Course: Practical Course on Parallel Computing (Internship)

Contents:
As a practical course, the focus will be on the hands-on session and problem solving. Students will get a brief introduction to the topic and then will use the laboratory equipment to solve assignments of each section of the course.

Examination: Oral examination (approx. 20 minutes), not graded

Examination requirements:
- understand how to manage computing jobs using a cluster of computers or using grid computing facilities
- understand the configuration of a PBS cluster through practical assignments
- practically use LRM clusters and POVRay examples
- understand cluster computing related topics (error handling, performance management, security) in more depth and using hands-on experience and practically using Globus toolkit
- design and implement solutions for parallel programs using distributed memory architectures (using MPI)
- design and implement solutions for parallel programs using shared memory parallelism (using OpenMP, pthreads)
- practically work with MapReduce programming framework and problem solving using MapReduce
- practically work with heterogenous parallelism environment (GPGPU, OpenCL, CUDA, etc.)

Workload:
Attendance time: 56 h
Self-study time: 124 h

Admission requirements:
- Data structures and algorithms
- Programming in C/C++

Recommended previous knowledge:
- Parallel Computing
- Computer architecture
- Basic knowledge of computer networks
- Basic know-how of computing clusters
<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Ramin Yahyapour</td>
</tr>
<tr>
<td>Course frequency:</td>
<td>Duration:</td>
</tr>
<tr>
<td>unregelmäßig</td>
<td>1 semester[s]</td>
</tr>
<tr>
<td>Number of repeat examinations permitted:</td>
<td>Recommended semester:</td>
</tr>
<tr>
<td>twice</td>
<td></td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.Inf.1809: Berufsspezifische Schlüsselkompetenzen in einer forschungsbezogenen Projektarbeit
English title: Advanced Research Training - Key Competency

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Erwerb von berufsspezifischen Schlüsselkompetenzen im Bereich der projektbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements im Rahmen eines forschungsbezogenen Projekts. | Präsenzzeit: 7 Stunden
Selbststudium: 173 Stunden |

| Lehrveranstaltung: Forschungsbezogene Projektarbeit |
|---|---|
| Prüfung: Hausarbeit (max. 12 Seiten), unbenotet | 0,5 SWS |
| Prüfungsanforderungen: | 6 C |
| Berufsspezifische Schlüsselkompetenzen im Bereich der projektbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements im Rahmen eines forschungsbezogenen Projekts. |

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Jens Grabowski</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
<td>Dauer:</td>
</tr>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

Zugangsvoraussetzungen:
- keine

Sprache:
- Deutsch, Englisch

Modulverantwortliche[r]:
- Prof. Dr. Jens Grabowski

Angebotshäufigkeit:
- unregelmäßig

Dauer:
- 1 Semester

Wiederholbarkeit:
- zweimalig
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Modul M.Inf.1810: Erweiterung berufsspezifischer Schlüsselkompetenzen in einer forschungsbezogenen Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>English title: Extended Advanced Research Training - Key Competency</td>
<td></td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Erwerb von erweiterten berufsspezifischen Schlüsselkompetenzen im Bereich der projektdbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements im Rahmen eines forschungsbezogenen Projekts.</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzzeit: 7 Stunden
Selbststudium: 173 Stunden |
| Lehrveranstaltung: | Forschungsbezogene Projektarbeit 0,5 SWS |
| Prüfung: Hausarbeit (max. 12 Seiten), unbenotet |
| Prüfungsanforderungen: | Erweiterte berufsspezifische Schlüsselkompetenzen im Bereich der projektdbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements im Rahmen eines forschungsbezogenen Projekts. |
| Zugangsvoraussetzungen: | M.Inf.1809 |
| Empfohlene Vorkenntnisse: | keine |
| Sprache: | Deutsch, Englisch |
| Modulverantwortliche[r]: | Prof. Dr. Jens Grabowski |
| Angebotshäufigkeit: | unregelmäßig |
| Dauer: | 1 Semester |
| Wiederholbarkeit: | zweimalig |
| Empfohlenes Fachsemester: |
Georg-August-Universität Göttingen
Module M.Inf.1820: Practical Course on Wireless Sensor Networks

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>On completion of the module students should be able to:</td>
<td>Attendance time: 56 h</td>
</tr>
<tr>
<td>• name the special characteristics of operating systems for wireless sensor networks with a special focus on TinyOS</td>
<td>Self-study time: 124 h</td>
</tr>
<tr>
<td>• develop applications for real hardware sensor nodes such as IRIS motes and Advanticsys motes</td>
<td></td>
</tr>
<tr>
<td>• gather data using the hardware sensor nodes</td>
<td></td>
</tr>
<tr>
<td>• conduct software-based simulations using the TOSSIM framework for testing and debugging TinyOS applications</td>
<td></td>
</tr>
<tr>
<td>• implement applications that are able to collect, disseminate and process sensor data in WSNs</td>
<td></td>
</tr>
<tr>
<td>• make use of over the air programming using Deluge to deploy new sensor applications without connecting over a wire to a stationary computer</td>
<td></td>
</tr>
<tr>
<td>• apply encryption to the communication between the wireless motes</td>
<td></td>
</tr>
<tr>
<td>• design, plan, implement and test a final research project considering an individual WSN application e.g. detection of audio signals, visualization of sensed data or integration of WSNs with the cloud</td>
<td></td>
</tr>
</tbody>
</table>

Course: Practical Course on Wireless Sensor Networks (Internship)	4 WLH
Examination: Written report (max. 15 pages) and presentation (approx. 25 min.)	6 C
Examination requirements:	
special characteristics of operating systems for WSNs (TinyOS); application development for real hardware sensor nodes (IRIS motes, Advanticsys motes); data gathering using hardware motes; software-based simulations and debugging of TinyOS applications with TOSSIM; implementation of applications that collect, disseminate and process sensor data in WSNs; over the air programming of wireless motes (Deluge); encryption of communication in WSNs; design, planning, implementation and testing of individual application (final research project)	

| Admission requirements: | Recommended previous knowledge: |
| Basic knowledge in telematics and computer networks | none |

| Language: | Person responsible for module: |
| English | Prof. Dr. Dieter Hogrefe |

| Course frequency: | Duration: |
| unregelmäßig | 1 semester[s] |

| Number of repeat examinations permitted: | Recommended semester: |
| twice | |

<p>| Maximum number of students: | |
| 12 | |</p>
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Abschluss des Praktikums sind die Studierenden in der Lage offensive und</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>defensive Sicherheitstechniken auszuwählen, zu analysieren und anzuwenden. Die</td>
<td>42 Stunden</td>
</tr>
<tr>
<td>Studierenden erlernen hierbei verschiedene Konzepte aus den Bereichen Rechner-,</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>System- und Netzsicherheit und können diese in der Praxis anwenden. Weiterhin</td>
<td>138 Stunden</td>
</tr>
<tr>
<td>vertiefen die Studierenden ihre Programmierkenntnisse im Bezug auf die IT-Sicherheit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Praktikum IT-Sicherheit (Praktikum)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
<td>3 SWS</td>
</tr>
<tr>
<td>• C. Eckert: IT-Sicherheit: Konzepte - Verfahren - Protokolle. Oldenbourg, 2006</td>
<td></td>
</tr>
<tr>
<td>• P. Szor: The Art of Computer Virus Research and Defense. Addison-Wesley, 2005</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Mündlich (ca. 20 Minuten), unbenotet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
<td>6 C</td>
</tr>
<tr>
<td>75% der praktischen Übungen müssen erfolgreich bearbeitet werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen behandelte Konzepte der Rechner-, System- und</td>
<td></td>
</tr>
<tr>
<td>Netzsicherheit und können diese selbstständig anwenden. Hierzu zählt die</td>
<td></td>
</tr>
<tr>
<td>Programmierung von Skripten zur Sicherheitsanalyse, die Untersuchung von</td>
<td></td>
</tr>
<tr>
<td>Schwachstellen in Webanwendungen und Software sowie die Beobachtung und</td>
<td></td>
</tr>
<tr>
<td>Aufbereitung von schädlichen Programmen (Schadcode).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Inf.1127</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Konrad Rieck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
After successful completion of the module, students are able to
- become acquainted with software tools and frameworks for data fusion
- work with modern sensors
- collect, process and analyze (sensor) data
- implement data fusion algorithms
- experimentally evaluate and compare data fusion algorithms
- apply data fusion algorithms in the context of localization, navigation, tracking, sensor networks and robotics

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Admission requirements:
- M.Inf.1185 or M.Inf.1187

Recommended previous knowledge:
- none

Language:
- English

Person responsible for module:
- Jun.-Prof. Dr. Marcus Baum

Course:
Practical Course in Data Fusion (Practical course)

Examination:
- Practical project in small groups, oral presentation of results (approx. 15 minutes each), scientific report (max. 6 pages each), not graded

Examination requirements:
- Implementation and evaluation of data fusion algorithms, oral presentation, scientific writing and teamwork.

Course frequency:
- irregular

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Maximum number of students:
- 15
Georg-August-Universität Göttingen

Modul M.Inf.1901: Einführung in die Digital Humanities

English title: Introduction to Digital Humanities

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erwerben Kenntnisse spezifisch geisteswissenschaftlicher Fragestellungen, Vorgehensweisen und Forschungsergebnisse auf Grundlage digitaler Datenverarbeitung sowie Methoden und Theoriebildungen in den Digital Humanities. Außerdem wird die Fähigkeit eingeübt, geisteswissenschaftliche Fragestellungen aus den Kernbereichen Text, Objekt, Bild und Informationswissenschaft mit computergestützten Methoden zu modellieren und diesen Prozess auch in ersten Ansätzen theoretisch und kritisch reflektieren zu können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ringvorlesung - Einführung in die Digital Humanities (Vorlesung) 2 SWS</td>
</tr>
<tr>
<td>2. Tutorium - Einführung in die Digital Humanities (Übung) 2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (90 Minuten), unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Die Studierenden weisen Kenntnisse spezifisch geisteswissenschaftlicher Fragestellungen, Vorgehensweisen und Forschungsergebnisse auf Grundlage digitaler Datenverarbeitung nach sowie die Fähigkeit, Methoden und Theoriebildungen in den Digital Humanities nachzuvollziehen und in Ansätzen zu reflektieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse der Informatik und Informationswissenschaften und mindestens einer Geisteswissenschaft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gerhard Lauer (Prof. Dr. Martin Langner, Dr. Heike Neuroth)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

Modul M.Inf.1901 - Version 1

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7

V10-SoSe17 Seite 3156
<table>
<thead>
<tr>
<th>Georg-August-Universität Göttingen</th>
<th>Modul M.Inf.1902: Werkzeuge und Methoden der Digital Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>English title: Tools and Methods of the Digital Humanities</td>
<td>6 C 4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden werden in die Lage versetzt, die Werkzeuge der Digital Humanities, d.h. das Erstellen, Verwalten und Verarbeiten digitaler Daten der Geisteswissenschaften (z.B. im Bereich Texterfassung, Bildverarbeitung, Datenbanken, CAD, GIS, Statistik und geisteswissenschaftliche Evidenz, Wissensrepräsentation), einzuüben und zu reflektieren.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Weiterhin soll der Umgang mit großen Materialmengen, Metadaten und kontrollierten Vokularystemen in bestehenden Corpora und Datenbanken erlernt werden mit dem Ziel, sich in die spezifisch geisteswissenschaftlichen Erfordernisse bei der Datenerfassung, -verwaltung und -verarbeitung praktisch einzuarbeiten.</td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Seminar (Seminar)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Übung (Übung)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Hausarbeit (max. 6 Seiten)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
<td>6 C</td>
</tr>
<tr>
<td>Regelmäßige, aktive Teilnahme an Seminar und Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden weisen die Fähigkeit nach, ausgewählte Werkzeuge der Digital Humanities anzuwenden und zu reflektieren. Dabei stellen sie Kenntnisse der spezifisch geisteswissenschaftlichen Erfordernisse bei der Datenerfassung, -verwaltung und -verarbeitung unter Beweis.</td>
<td></td>
</tr>
<tr>
<td>Die Hausarbeit ist im Rahmen des Seminars in Form von Stellungnahme, Essay, Wiki, Ausarbeitung einer praktischen Anwendung oder äquivalenten Leistungen in Schriftform zu erbringen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>M.Inf.1901</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Gerhard Lauer</td>
</tr>
<tr>
<td></td>
<td>(Prof. Dr. Martin Langner, Dr. Heike Neuroth)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Arbeitsaufwand:
Präsenzzeit:
- 56 Stunden

Selbststudium:
- 124 Stunden

Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Seminar (Seminar)</td>
<td>6 C</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Übung (Übung)</td>
<td>6 C</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfung:
Hausarbeit (max. 6 Seiten)

Prüfungsanforderungen:
Die Studierenden weisen nach, dass sie die Methoden der Digital Humanities (z.B. geisteswissenschaftliche Wissensressourcen, Textmining, Bilderkennung, Digitale Bibliotheken und Virtuelle Museen, Visualisierung, Nutzerführung, 3D-Modellierung, Georeferenzierung) besonders in Hinblick auf ihre webbasierte Umsetzung analysieren sowie die Folgen und Perspektiven ihrer Anwendung bestimmen können. Weiterhin sind sie in der Lage, eigene Corpora und wissenschaftliche Sammlungen zu erstellen und weiterzuverarbeiten, wobei sie ihre Fähigkeiten zur Datenanalyse und theoretischen Reflexion der damit verbundenen Konsequenzen unter Beweis stellen.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
M.Inf.1901

Sprache:
deutsch, englisch

Modulverantwortliche[r]:
Prof. Dr. Gerhard Lauer
(Prof. Dr. Martin Langner, Dr. Heike Neuroth)

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximaler Studierendenzahl:
25
Module M.Inf.1904: From written manuscripts to big humanities data

Learning outcome, core skills:
This course is designed for both students of Computer Science and of the Humanities. By working in groups of up to four people and solving problems as a team, students are involved in the entire process of transforming assets of our cultural heritage into digital data (Digital Transformation). The students will work in particular with the transcriptions of manuscripts, by analysing digitally available texts with text mining and information retrieval techniques. Students will also gain knowledge and experience with the problems that arise because of information overload and information poverty. If on the one hand digitisation leads to an 'information overload' of digitally available data, on the other, the 'information poverty' embodied by the loss of books and the fragmentary state of texts form an incomplete and biased view of our past. Students will understand that in a digital ecosystem this coexistence of data overload and poverty adds considerable complexity to scholarly research. Students will, therefore, learn how to deal with uncertain data.

Workload:
- **Attendance time:** 56 h
- **Self-study time:** 124 h

Courses:
1. **The letters and tales of the brothers Grimm** *(Seminar)*
 Contents:
 This course specialises on handwritten texts by the brothers Grimm.
 Course frequency: irregular

2. **Cultural Heritage Programming** *(Practical course)*
 Contents:
 The object of this course is for students to develop and implement a team project related to historical data. Students will gain knowledge and experience in versioning and building systems, as well as managing a project and working with historical data, which is often fragmentary or hard to attribute to a specific author or line of transmission.
 The project that students will work on will depend on their programming skills. Students will be able to pick an area of interest, spanning from linguistic acquisition to visualisations of historical data, to the natural language processing of texts, OCR processing and handwriting recognition or infrastructural development.
 Course frequency: irregular

Examination:
Seminar work of about 20 pages
Examination prerequisites:
Regular and active participation in the courses; students commit to a project and actively contribute.
Examination requirements:
With the examination students will prove their knowledge of the content, background and context history of the chosen text, as well as showing their capability of transcribing, processing and visualizing historical data. Students will also demonstrate whether they are able to work as part of a team on common problem solving activities.
The knowledge and skills of the student will be tested with written essays, wiki, blog entries, a position statement, or an written equivalent.

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Dr. Marco Büchler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>irregular</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.Inf.1909: Digital Humanities in einer forschungsbezogenen Projektarbeit
English title: Advanced Research Training - Digital Humanities

Lernziele/Kompetenzen:

Arbeitsaufwand:

| Präsenzzeit: | 14 Stunden |
| Selbststudium: | 346 Stunden |

Lehrveranstaltung: Projektarbeit in einem laufenden Forschungsprojekt

Inhalte:

Angebotshäufigkeit: jedes Semester

Prüfung: Hausarbeit (max. 24 Seiten), unbenotet

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Martin Langner
(Prof. Dr. Johannes Bergemann, Prof. Dr. Gerhard Lauer, Dr. Heike Neuroth)

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlene Vorkenntnisse:
keine

Empfohlenes Fachsemester:
Lernziele/Kompetenzen:

Die Studierenden

- kennen Arbeitsgebiete und Geschichte der Klassischen Archäologie
- sind mit den Fragestellungen der Klassischen Archäologie vertraut
- verfügen über archäologisches Grundwissen über die griechische und die römische Kultur
- wissen um die historische Einbettung der griechischen und der römischen Kultur
- sind mit Umfang und Art der Verbindungen und Kontakte zu den zeitgleichen Nachbarkulturen vertraut

Arbeitsaufwand:

| Präsenzzeit: | 84 Stunden |
| Selbststudium: | 186 Stunden |

Lehrveranstaltungen:

1. **Einführung in die griechische/römische Archäologie** (Vorlesung)

 Inhalte:

 Die Studierenden
 - kennen Arbeitsgebiete und Geschichte der griechischen Archäologie
 - sind mit den Fragestellungen der griechischen Archäologie vertraut
 - verfügen über archäologisches Grundwissen über die griechische Kultur
 - wissen um die historische Einbettung der griechischen Kultur
 - sind mit Umfang und Art der Verbindungen und Kontakte zu den zeitgleichen Nachbarkulturen vertraut

 2 SWS

2. **Tutorium zur Einführung in die griechische / römische Archäologie** (Übung)

 2 SWS

3. **Übung zu einem ausgewählten Bereich der Klassischen Archäologie** (Übung)

 Inhalte:

 Die Studierenden
 - kennen ausgewählte Fundgattungen aus dem Bereich der griechischen oder römischen Kulturen
 - können archäologische Objekte, Monumente und Befunde klassifizieren
 - haben die Fähigkeit zur Klassifikation und regionalen Einordnung des archäologischen Materials
 - kennen Methoden, archäologische Zeugnisse in ihrem zeitlichen und kulturräumlichen Kontext zu verorten
 - können spezifische regionale und stilistische Eigenarten antiker materieller Kultur erkennen und/oder selbständig herausarbeiten

 2 SWS

Prüfung:

Klausur (90 Minuten), unbenotet

Prüfungsvorleistungen:

Regelmäßige und aktive Teilnahme an Tutorium und Übung.

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie...
Zugangsvoraussetzungen: keine

Empfohlene Vorkenntnisse: keine

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Sprache: Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
<th>Modulverantwortliche[r]: Prof. Dr. Johannes Bergemann (Prof. Dr. Martin Langner, Dr. Daniel Graepler)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Angebotshäufigkeit: unregelmäßig</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
<th>Dauer: 1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Wiederholbarkeit: zweimalig</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th>Maximale Studierendenzahl: 40</th>
</tr>
</thead>
</table>
Lernziele/Kompetenzen:

Die Studierenden
- können archäologische Objekte, Monumente und Befunde wissenschaftlich deuten
- sind in der Lage, ausgewählte archäologische Themenbereiche im Bereich der Klassischen Archäologie selbständig zu erarbeiten
- besitzen die Fähigkeit zur Analyse archäologischer Objekte, Monumente und Befunde in ihrem topographischen, gattungsspezifischen und kulturellen Kontext
- verstehen Gemeinsamkeiten ebenso wie kulturspezifische Differenzen zwischen den betrachteten Phänomenen

Arbeitsaufwand:

Präsenzzeit:
84 Stunden

Selbststudium:
186 Stunden

Lehrveranstaltungen:

1. *Vorlesung zu einem ausgewählten Bereich der Klassischen Archäologie* (Vorlesung)
2 SWS

2. *Seminar zu einem ausgewählten Bereich der Klassischen Archäologie* (Seminar)
2 SWS

3. *Übung zu einem ausgewählten Bereich der Klassischen Archäologie* (Übung)
2 SWS

Prüfung:

Referat (ca. 45 Min.) und Hausarbeit (max. 20 Seiten)

Prüfungsvorleistungen:

Regelmäßige, aktive Teilnahme an Seminar und Übung

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie
- die behandelten Gattungen, Epochen oder Regionen im Bereich der griechisch / römischen Antike in ihren spezifischen Eigenarten einordnen und deuten können.
- vertieftes Wissen über die behandelten Gattungen, Epochen oder Regionen im Bereich der griechischen oder römischen Kulturen und ihrer Nachbarn besitzen
- ausgewählte Themenbereiche und Fragestellungen im Bereich der Klassischen Archäologie selbständig erarbeiten, Probleme analysieren und wissenschaftliche Argumentationszusammenhänge nachvollziehen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Johannes Bergemann (Prof. Dr. Martin Langner)

Angebotshäufigkeit:

unregelmäßig

Dauer:

1 Semester

Wiederholbarkeit:

zweimalig

Empfohlenes Fachsemester:
| Maximale Studierendenzahl: | 40 |
Georg-August-Universität Göttingen
Modul M.Inf.1921: Historische und systematische Aspekte von Sprache und Literatur
English title: Historical and systematic aspects of language and literature

Lernziele/Kompetenzen:
Die Studierenden erwerben historische und systematische Kenntnisse spezifisch literatur- und sprachwissenschaftlicher Fragestellungen, Vorgehensweisen und Forschungsergebnisse. Eingeübt wird die Fähigkeit, Fragestellungen aus den beiden textwissenschaftlichen Fächern zu verstehen, selbst zu konzipieren und historisch wie systematisch differenziert entwickeln zu können. Sie können diese Fragestellungen auch kritisch reflektieren.

Arbeitsaufwand:
- **Präsenzzeit**: 56 Stunden
- **Selbststudium**: 124 Stunden

Lehrveranstaltungen:
1. **Vorlesung oder Seminar**
 2 SWS
2. **Seminar oder Übung**
 2 SWS

Prüfung:
- Referat (ca. 45 Min.) und Hausarbeit (max. 20 Seiten) oder Klausur (90 Min.)

Prüfungsvorleistungen:
Regelmäßige und aktive Teilnahme an Seminar und Übung

Prüfungsanforderungen:
Die Studierenden weisen Kenntnisse historischer und systematischer Fragestellungen in den Textwissenschaften nach und können diese kritisch reflektieren.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
Kenntnisse der Sprach- und Literaturwissenschaft

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Gerhard Lauer

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
25
Georg-August-Universität Göttingen
Modul M.Inf.1922: Theorie und Methodologie der Textwissenschaften I

English title: Theory and Methodology of Linguistics and Literary Studies I

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erlernen zentrale Begriffe und Konzepte der sprach- und literaturwissenschaftlichen Theorie und werden in die Lage versetzt, die Methoden in den Textwissenschaften anzuwenden, einzuüben und zu reflektieren.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen: | | |
|----------------------|-----------------|
| 1. Vorlesung oder Seminar | 2 SWS |
| 2. Seminar oder Übung | 2 SWS |

<table>
<thead>
<tr>
<th>Prüfung: Referat (ca. 45 Min.) und Hausarbeit (max. 20 Seiten) oder Klausur (90 Min.)</th>
<th>6 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistungen:</td>
<td></td>
</tr>
<tr>
<td>Regelmäßige, aktive Teilnahme an Seminar und Übung</td>
<td></td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden belegen ihre Fähigkeiten und Kenntnisse in den zentralen Theorien und Methoden der Sprach- und Literaturwissenschaft.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Kenntnisse der Sprach- und Literaturwissenschaft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Gerhard Lauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.Inf.1923: Theorie und Methodologie der Textwissenschaften II

English title: Theory and Methodology of Linguistics and Literary Studies II

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erlernen zentrale Begriffe und Konzepte der sprach- und literaturwissenschaftlichen Theorie und werden in die Lage versetzt, die Methoden in den Textwissenschaften anzuwenden, einzuüben und zu reflektieren. Der Anwendung als Vorbereitung für die Masterarbeit kommt hierbei besondere Bedeutung zu.</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vorlesung oder Seminar oder Übung</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Seminar oder Übung</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfung: Hausarbeit (max. 6 Seiten)
Prüfungsvorleistungen:
Regelmäßige, aktive Teilnahme an Seminar und Übung
Prüfungsanforderungen:

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Kenntnisse der Sprach- und Literaturwissenschaft</td>
</tr>
</tbody>
</table>

Sprache:
Deutsch, Englisch

Modulverantwortliche[r]:
Prof. Dr. Gerhard Lauer

Angebotshäufigkeit:
unregelmäßig

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
25
Learning outcome, core skills:

Learning outcome:
The successful completion of the module enables students to learn methods, concepts, theories and applications in the area of the theory of operations research. Depending on the current course offer the following content-related competencies may be pursued.

Students

- are able to identify problems of operations research in application-oriented problems and formulate them as optimisation problems;
- know methods for the modelling of application-oriented problems and are able to apply them;
- evaluate the target function included in a model and the side conditions on the basis of their particular important characteristics;
- analyse the complexity of the particular resulting optimisation problem;
- are able to develop optimisation methods for the solution of a problem of operation research or adapt general methods to special problems;
- know methods with which the quality of optimal solutions can be estimated to the upper and lower and apply them to the problem in question;
- differentiate between accurate solution methods, approximation methods with quality guarantee and heuristics and evaluate different methods on the basis of the quality of the found solutions and their computing time;
- interpret the found solutions for the underlying practical problem and evaluate the model and solution method on this basis.

Core skills:
After having successfully completed the module, students will be able to

- discuss basic concepts of the area "Operations research";
- explain basic ideas of proof in the area "Operations research";
- identify typical applications in the area "Operations research".

Workload:

Attendance time: 84 h

Self-study time: 186 h

Courses:

1. **Lecture course** (Lecture) 4 WLH
2. **Exercise session** (Exercise) 2 WLH

Examination:

Oral examination, appr. 20 minutes, alternatively written examination, 120 minutes

Examination prerequisites:
M_MAT.3130.Ue: Achievement of at least 50% of the exercise points and presentation, twice, of solutions in the exercise sessions

Examination requirements:
Successful proof of the acquired skills and competencies in the area "Operations research"
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>B.Mat.2310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Programme coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>once a year</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>Master: 1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th>Instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td>Lecturers at the Institute of Numerical and Applied Mathematics</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.Mat.4639: Aspects of scientific computing / applied mathematics

Learning outcome, core skills:
Learning outcome:
The successful completion of modules of the cycle “Scientific computing / Applied mathematics” enables students to learn and apply methods, concepts, theories and applications in the area of “Scientific computing / Applied mathematics”. During the course of the cycle students will be successively introduced to current research topics and able to carry out independent contributions to research (e.g. within the scope of a practical course in scientific computing or a Master's thesis). Depending on the current course offer the following content-related competencies may be pursued. Students

- are familiar with the theory of basic mathematical models of the corresponding subject area, especially about the existence and uniqueness of solutions;
- know basic methods for the numerical solution of these models;
- analyse stability, convergence and efficiency of numerical solution strategies;
- apply available software for the solution of the corresponding numerical methods and evaluate the results sceptically;
- evaluate different numerical methods on the basis of the quality of the solutions, the complexity and their computing time;
- are informed about current developments of scientific computing, like e.g. GPU computing and use available soft- and hardware;
- use methods of scientific computing for solving application problems, like e.g. of natural and business sciences.

Core skills:
After having successfully completed the module, students will be able to

- conduct scholarly debates about problems of the area “Scientific computing / Applied mathematics”;
- carry out scientific work under supervision in the area “Scientific computing / Applied mathematics”.

Workload:
Attendance time:
56 h
Self-study time:
124 h

Course: Lecture course (4 WLH); alternatively lecture course (2 WLH) with exercises/seminar (2 WLH)

Examination: Oral examination (approx. 20 minutes)

Examination requirements:
Proof of the acquisition of special skills and the mastery of advanced competencies in the area “Scientific computing / applied mathematics”

Admission requirements:
none

Recommended previous knowledge:
B.Mat.3339

Language:
Person responsible for module:
<table>
<thead>
<tr>
<th>English</th>
<th>Programme coordinator</th>
</tr>
</thead>
</table>
| **Course frequency:**
Usually subsequent to the module M.Mat.4539
"Specialisation in scientific computing / applied mathematics" | **Duration:**
1 semester[s] |
| **Number of repeat examinations permitted:**
twice | **Recommended semester:**
Master: 1 - 3 |
| **Maximum number of students:**
not limited | |

Additional notes and regulations:
Instructor: Lecturers at the Institute of Numerical and Applied Mathematics
Module M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatics

Learning outcome, core skills:
After successful completion of the module, students should ...
- have deepened their knowledge of computational neuroscience / neuroinformatics by an independent elaboration of a topic;
- have learned methods of presentation of topics from computer science;
- be able to deal with (English-language) literature;
- be able to present an informatic topic;
- be able to lead a scientific discussion.

Workload:
- Attendance time: 28 h
- Self-study time: 92 h

Course:
Seminar (Seminar)

Examination:
Seminartalk (approx. 45 Min.) with written report (max. 7 S.)

Examination prerequisites:
Active Participation

Examination requirements:
Independent preparation and presentation of research-related topics from the area of computational neuroscience / neuroinformatics as well as biophysics of neuronal systems.

Admission requirements:
none

Recommended previous knowledge:
B.Phys.5614

Language:
English

Person responsible for module:
Studiendekan In der Fakultät für Physik

Course frequency:
each semester

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
Master: 1 - 3

Maximum number of students:
14
Lernziele/Kompetenzen:
Nach dem erfolgreichen Absolvieren des Moduls sollten die Studierenden:

- einen vertieften Überblick über die grundlegenden Fragen der betrieblichen Finanzwirtschaft besitzen
- zentrale Methoden zur Beurteilung von Investitionen verstehen, anwenden und kritisch reflektieren können.
- zentrale Theorien zur Marktbewertung riskanter Zahlungsströme kennen und diskutieren können.
- die Hypothesen zur Informationseffizienz von Kapitalmärkten verstehen und deren Konsequenzen für Investoren und Unternehmen beurteilen können.
- Theorien zur optimalen Kapitalstruktur und Dividendenpolitik von Unternehmen verstehen und vor dem Hintergrund verschiedener Marktfriktionen analysieren und im Hinblick auf ihre praktischen Implikationen bewerten können.

Lehrveranstaltungen:
1. Finanzwirtschaft (Vorlesung)
Inhalte:
- 1. Grundlegende Fragestellungen der betrieblichen Finanzwirtschaft
- 2. Investitionsentscheidungen unter Risiko: Risikoanalyse und subjektive Bewertung
- 4. Investitionsentscheidungen unter Risiko: Marktbewertung – Vollständig eigenfinanziertes Unternehmen
- 5. Finanzierungsinstrumente, Finanzierungsentcheidungen und effiziente Kapitalmärkte
- 6. Kapitalstrukturentscheidungen
- 7. Investitionsentscheidungen unter Risiko: Marktbewertung – Teilweise fremdfinanziertes Unternehmen
- 8. Dividendenentscheidungen

2. Finanzwirtschaft (Übung)
Inhalte:
Im Rahmen der begleitenden Übung vertiefen und erweitern die Studierenden die in der Vorlesung erworbenen Kenntnisse und Fähigkeiten

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:
- Darlegung eines übergreifenden Verständnisses grundlegender finanzwirtschaftlicher Fragestellungen.
- Nachweis der Kenntnis zentraler Methoden zur Beurteilung von Investitionen unter Risiko sowie der Fähigkeit diese anzuwenden.
- Nachweis des Verständnisses zentraler Theorien zur Marktbewertung riskanter Zahlungsströme und der Fähigkeit zur kritischen Beurteilung dieser Theorien.
- Fähigkeit zur Analyse von Fragen der optimalen Kapitalstruktur und der Dividendenpolitik von Unternehmen vor dem Hintergrund verschiedener Marktfraktionen.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Olaf Korn

Empfohlene Vorkenntnisse:
keine

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
1 - 2

Maximale Studierendenzahl:
nicht begrenzt
Learning outcome, core skills:
After a successful completion of the course students should be able to

- understand and explain how risk management is related to other issues in corporate finance.
- critically assess different motivations for corporate risk management.
- understand and critically assess different risk measures and how they are applied in practice.
- understand and explain how international risks can be managed and how the management of international risks is related to various economic parity conditions.
- understand, analyze and critically apply measures and methods to manage interest rate risk.
- understand, analyze and critically apply measures and methods to manage credit risk.
- understand, analyze and critically apply hedging strategies for commodity price risk.

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Courses:

1. Financial Risk Management (Lecture)

Contents:
1. Introduction
2. Risk Management: Motivation and Strategies
3. Managing International Risks
4. Managing Interest Rate Risk
5. Managing Credit Risk
6. Managing Commodity Price Risk

Parts of the material covered by the lectures will be transmitted via recordings that students have to work through on their own. Parts of the contact hours during lectures will be used by the students to discuss open issues and to work on specific cases and applications of the main concepts.

2. Financial Risk Management (Tutorial)

Contents:
In the accompanying practice sessions students deepen and broaden their knowledge from the lectures.

Examination: Written examination (90 minutes)

Examination requirements:
- Demonstrate a profound knowledge of how risk management is related to other issues in corporate finance.
- Document an understanding of viable reasons for corporate risk management and how corporate risk management can create value.
- Demonstrate the ability to analyze and apply different risk measures.
- Show a profound understanding of methods and techniques used to manage international risks, interest rate risk, credit risk, and commodity price risk.

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Modul "Finanzwirtschaft"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Olaf Korn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generally every winter semester during the first half of the semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>2 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>

Language: English
Person responsible for module: Prof. Dr. Olaf Korn
Recommended semester: 2 - 3
Duration: 1 semester[s]
Number of repeat examinations permitted: twice
Admission requirements: none
Recommended previous knowledge: Modul "Finanzwirtschaft"
Learning outcome, core skills:
The aim of this course is to familiarize students with contemporary methods of financial statement analysis and accounting-based valuation. Special emphasis will be put on (1) the interrelation between valuation theory and accounting, (2) relevant characteristics of financial statements prepared on the basis of International Financial Reporting Standards (IFRS), and (3) application of the valuation and analysis framework to real world cases and examples. The course will discuss several approaches to valuation of equity and debt investments and their respective merits. Based on the concept of accounting-based valuation, an analytical framework for analysis of financial statements will be developed, with an emphasis on ratio analysis of profitability and growth. The role of accounting and accounting quality in general, and with respect to International Financial Reporting Standards (IFRS), will be assessed throughout the course. Successful participants of this course are expected to be familiar with contemporary methods of equity valuation, the use of financial statement information to that end, and the application of that knowledge to real-world valuation cases.

Workload:
- **Attendance time:** 56 h
- **Self-study time:** 124 h

Courses:

1. **Analysis of IFRS Financial Statements (Lecture)**

 Contents:

 I. *Foundations of Financial Statement Analysis*

 II. *IFRS Financial Statements*

 III. *Valuation Methods*

 IV. *Analysis of Financial Statements*

 V. *Forecasting and Valuation Analysis*

2. **Analysis of IFRS Financial Statements (Tutorial)**

Examination:
- **Written examination (90 minutes)**

Examination requirements:
In order to accomplish successfully this course, students are expected to be familiar

- with contemporary methods of equity valuation,
- the use of financial statement information to that end, and
- the application of that knowledge to real-world valuation cases.

Admission requirements:
- none

Recommended previous knowledge:
- Modul "Rechnungslegung"

Language:
- English

Person responsible for module:
- Prof. Dr. Jörg-Markus Hitz

Course frequency:
- every second semester

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- 1
<table>
<thead>
<tr>
<th>twice</th>
<th>2 - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of students:</td>
<td>not limited</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.WIWI-BWL.0023: Management Accounting
English title: Management Accounting

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Die Studierenden sollen die grundlegende Ziele einer wertorientierten Unternehmensführung und die Konzepte (z.B. Value Based Management-Systeme) zu ihrer Implementierung in Unternehmen kennenlernen. Sie sollen die Ansätze des Wertmanagements in Verbindung mit traditionellen Kennzahlen und Aspekten der Investitionsrechnung bzw. der Unternehmensbewertung setzen können anwenden können. | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Management Accounting (Vorlesung)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Inhalte:</td>
<td></td>
</tr>
<tr>
<td>2. Management Accounting (Übung)</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfung: Klausur (90 Minuten)

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
</table>

Zugangsvoraussetzungen: keine

Empfohlene Vorkenntnisse: Grundkenntnisse in Controlling

Sprache: Deutsch

Modulverantwortliche[r]: Prof. Dr. Michael Wolff

Angebotshäufigkeit: jedes Wintersemester

Dauer: 1 Semester

Wiederholbarkeit: zweimalig

Empfohlenes Fachsemester: 1 - 2

Maximale Studierendenzahl: nicht begrenzt
Georg-August-Universität Göttingen
Modul M.WIWI-BWL.0024: Unternehmensplanung
English title: Corporate Planning

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td>- kennen wichtige Standortfaktoren und damit verbundene Problemstellungen</td>
<td></td>
</tr>
<tr>
<td>- können Standort- und Transportfragen mit Hilfe verschiedener Algorithmen (z.B. Tripel-, Kruskal- oder Dijkstra-Algorithmus) bearbeiten</td>
<td></td>
</tr>
<tr>
<td>- kennen Instrumente zur Herleitung von Strategien</td>
<td></td>
</tr>
<tr>
<td>- können Absatzprognosen mit Hilfe von Gompertz- und Pearl-Kurven erstellen</td>
<td></td>
</tr>
<tr>
<td>- können Fragestellungen des Projektmanagements mit Hilfe von MPM- und CPM-Netzplänen bearbeiten</td>
<td></td>
</tr>
<tr>
<td>- können Entscheidungsunterstützungsmethoden bei mehreren Zielsetzungen anwenden</td>
<td></td>
</tr>
<tr>
<td>- kennen wichtige Aspekte der Transport- und Supply Chain Planung sowie der Entsorgungslogistik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unternehmensplanung (Vorlesung)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Unternehmensplanung (Übung)</td>
<td>1 SWS</td>
</tr>
<tr>
<td>Prüfung: Klausur (90 Minuten)</td>
<td>6 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Systemtheorie als Planungsansatz</td>
<td></td>
</tr>
<tr>
<td>2. Strategische Planung</td>
<td></td>
</tr>
<tr>
<td>3. Auswahl geeigneter Produktionsprozesse und –verfahren</td>
<td></td>
</tr>
<tr>
<td>4. Forschungs- und Entwicklungsplanung im Industriebetrieb</td>
<td></td>
</tr>
<tr>
<td>5. Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>6. Produktions- und Entsorgungslogistik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Modul "Produktion und Logistik", Modul "Logistikmanagement" oder Modul "Produktionsmanagement"</td>
</tr>
<tr>
<td>Sprache: Deutsch</td>
<td>Modulverantwortliche[r]: Prof. Dr. Jutta Geldermann</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Angebotshäufigkeit: jedes Wintersemester</td>
<td>Dauer: 1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig</td>
<td>Empfohlenes Fachsemester: 1 - 2</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Modul M.WIWI-BWL.0034: Logistik- und Supply Chain Management

English title: Logistics and Supply Chain Management

<table>
<thead>
<tr>
<th>6 C</th>
<th>3 SWS</th>
</tr>
</thead>
</table>

Lernziele/Kompetenzen:

Die Studierenden

- kennen die Teilbereiche und Funktionen der Logistik sowie des Supply Chain Managements und können diese klassifizieren
- kennen den Begriff "Standortplanung", können dessen Teilgebiete definieren und verschiedene OR-Modelle und Verfahren zur Standortbestimmung anwenden
- können das klassische Transportproblem erläutern und kennen dessen graphentheoretische Grundlagen
- kennen verschiedene Lösungsalgorithmen für das Transportproblem und können diese auch auf Sonderformen des klassischen Transportproblems anwenden
- kennen die Ausgestaltungsformen von Supply Chains und das SCOR-Modell
- können Produkt- und Prozessdesign voneinander abgrenzen
- kennen mögliche Formen der Vertragsgestaltung im Supply Chain Management
- kennen die verschiedenen Modelle der Bestellplanung und die Bestellregeln
- können statische Lagerhaltungsmodelle interpretieren und anwenden
- können dynamische Modelle voneinander abgrenzen und anwenden

Lehrveranstaltungen:

1. **Logistik- und Supply Chain Management** *(Vorlesung)*
 Inhalte:
 Inhaltlicher Schwerpunkt der Veranstaltung ist die Betrachtung der verschiedenen logistischen Strukturen und Probleme in und zwischen produzierenden Unternehmen. Dazu werden Quantitative Modelle vorgestellt und auf die Bereiche der Standortwahl, der Transportplanung, des Supply Chain Management und der Lagerhaltung angewendet.

 2 SWS

2. **Logistik- und Supply Chain Management** *(Übung)*

 1 SWS

Prüfung: Klausur *(90 Minuten)*

Prüfungsanforderungen:

Die Studierenden weisen in der Prüfung Kenntnisse in den folgenden Bereichen nach:

- Grundlagen logistischer Problemstellungen
- Standortplanung
- Transportplanung
- Supply Chain Management
- Lagerhaltungsmodelle

6 C
<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Modul "Unternehmensplanung"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Jutta Geldermann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes 4. Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.WIWI-BWL.0036: Produktionsplanung und -steuerung
English title: Production and Operations Management

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
Selbststudium: 138 Stunden |

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vorlesung Produktionsplanung und -steuerung (Vorlesung)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>2. Übung Produktionsplanung und -steuerung</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

| Prüfung: Klausur (90 Minuten) | 6 C |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Funktionen und Komponenten von Produktionsplanungs- und -steuerungssystemen (PPS)</td>
<td></td>
</tr>
<tr>
<td>2. Produktionssysteme innerhalb der Supply Chain</td>
<td></td>
</tr>
<tr>
<td>3. Abstimmung zwischen Absatz, Produktion, Produktionsdurchführung, Materialbereitstellung und Abruf</td>
<td></td>
</tr>
<tr>
<td>4. Erscheinungsformen von Supply Chain Management und PPS-Systemen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>PD Dr. Anke Daub</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Angabe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul M.WIWI-BWL.0055: Distribution
English title: Distribution

Lernziele/Kompetenzen:
- Begriffliche Grundlagen der Distribution
- Analyserahmen für distributionspolitische Entscheidungen
- Einschaltung des Handels
- Betriebsformen des Handels
- Koordinationsformen zwischen Industrie und Handel
- Mehrkanal-Systeme
- Internationale Aspekte der Distribution

Die Studierenden sollen Lösungsansätzen für eine koordinierte Ausgestaltung des Distributionskanals kennenlernen. Zugleich sollen sie an aktuelle Forschungsergebnisse (in Form von Theorien und Modellen) herangeführt werden, die sich mit Fragen der Distribution beschäftigen. Die kritische Auseinandersetzung mit Hypothesen und Methoden zu ihrer Überprüfung soll die Studierenden darauf vorbereiten, selber wissenschaftlich zu arbeiten.

Arbeitsaufwand:
- Präsenzzeit: 28 Stunden
- Selbststudium: 152 Stunden

Lehrveranstaltung: Distribution *(Vorlesung)*
2 SWS

Prüfung: Klausur *(90 Minuten)*
6 C

Prüfungsanforderungen:

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Angebotshäufigkeit:
jedes Sommersemester

Wiederholbarkeit:
zweimalig

Maximale Studierendenzahl:
nicht begrenzt

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Waldemar Toporowski

Dauer:
1 Semester

Empfohlenes Fachsemester:
1 - 2

Angebotshäufigkeit:
iedes Sommersemester

Dauer:
1 Semester

Empfohlenes Fachsemester:
1 - 2

Maximale Studierendenzahl:
nicht begrenzt
Georg-August-Universität Göttingen

Modul M.WIWI-BWL.0059: Projektstudium

English title: Research Project

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| · Einübung von Methoden, insbesondere in der Datenerhebung und –auswertung, um die erforderliche methodische Qualität zu erreichen oder Erstellung von Software-Prototypen (unter enger Betreuung durch die wissenschaftlichen Mitarbeiter)
· Eigenständige theoretische und empirische Arbeit, bevorzugt in kleinen Gruppen (unter enger Betreuung, Anleitung und Überprüfung durch die wissenschaftlichen Mitarbeiter)
· Regelmäßige Besprechung der Zwischenschritte mit den betreuenden wissenschaftlichen Mitarbeitern
· Einweisung und Betreuung durch die wissenschaftlichen Mitarbeiter beim Literaturstudium, der Aufstellung von Hypothesen über die Wirkungszusammenhänge, bei der Datenerhebung und der Überprüfung der Hypothesen anhand von multivariaten Analyseverfahren | Präsenzzeit: 56 Stunden
Selbststudium: 484 Stunden |

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Präsenzzeit: | 56 Stunden
| Selbststudium: | 484 Stunden |

Lehrveranstaltung: Projektstudium

Inhalte:

Konkrete Schritte/Ablauf des Projektstudiums:

- Vorstellung des Themas und der Meilensteine
- Problemdefinition
- Identifikation und Vorstellung der notwendigen Maßnahmen für die Problemlösung
- Informationsauswertung (Aufbereitung, Analyse und Komprimierung auf ein für die Entscheidungsfindung notwendiges Maß) oder Entwicklung eines Prototyps
- Finale Präsentation
- Erstellung und Abgabe des Projektberichtes inkl. Dokumentation der durchgeführten Schritte

Die Studierenden sollen ein komplexes Thema mit wissenschaftlichen Methoden analysieren und ihre Arbeitsergebnisse auf wissenschaftlichem Niveau präsentieren, diskutieren und dokumentieren. Die Studierenden sollen durch eine eigenständige Bearbeitung eines umfassenden Forschungsprojektes eine Verknüpfung zwischen Theorie und Praxis schaffen und sich durch die Gruppenarbeit zusätzliche soziale Kompetenzen aneignen.

Prüfung: Präsentation (ca. 45 Minuten) mit schriftlicher Ausarbeitung (max. 15 Seiten pro Teilnehmer bei Gruppenarbeit)

Prüfungsvorleistungen:

- Laufende Projektarbeit
<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchführen des Projekts, schriftliche Dokumentation des Projekts, Präsentation der Ergebnisse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marktforschung I oder Marktforschung II (nur für Studierende des Master MDM)</td>
<td>2 Module, der Module "Finanzwirtschaft", "Rechnungslegung", "Finanzcontrolling" und "Unternehmensbesteuerung"</td>
</tr>
<tr>
<td></td>
<td>(Die Kenntnisse zum Wissenschaftlichen Arbeiten werden erwartet und sind nicht nochmal Gegenstand der Veranstaltung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Yasemin Boztug</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Till Dannewald, Prof. Dr. Maik</td>
</tr>
<tr>
<td></td>
<td>Hammerschmidt, Prof. Dr. Matthias Schumann, Prof. Dr. Waldemar Toporowski, Prof. Dr. Lutz Kolbe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>2 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul M.WIWI-BWL.0106: Topics in Quantitative Marketing and Economics

English title: Topics in Quantitative Marketing and Economics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul gliedert sich in zwei Abschnitte: Im 1. Abschnitt werden im Kontext einer Vorlesung folgende Inhalte vermittelt:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>- Grundlagen zum Einsatz mikroökonomischer Modelle im Marketing</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>- Einführung in die dynamische Modellierung von Marketingproblemen</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>- Empirische Analyseverfahren der aktuellen Marketingforschung</td>
<td>152 Stunden</td>
</tr>
<tr>
<td>Auf Basis der im 1. Abschnitt behandelten Themengebiete werden im 2. Teil ausgewählte wissenschaftliche Beiträge in Kleingruppen erarbeitet und in Form von Gruppenpräsentationen diskutiert.</td>
<td></td>
</tr>
<tr>
<td>Nach erfolgreicher Teilnahme</td>
<td></td>
</tr>
<tr>
<td>- Sind die Studierenden in der Lage, aktuelle Fragestellungen des quantitativen Marketing zu bearbeiten</td>
<td></td>
</tr>
<tr>
<td>- Besitzen die Kompetenz, geeignete empirische Verfahren zur Lösung von komplexen Problemstellungen der aktuellen Marketingforschung auszuwählen und eigenständig einzusetzen</td>
<td></td>
</tr>
<tr>
<td>- Können eine schriftliche Arbeit zum Thema anfertigen, die wissenschaftlichen Standards genügt</td>
<td></td>
</tr>
<tr>
<td>- Können im Rahmen einer Diskussion Fragen zum Thema beantworten und die Problematik auch in ihrer gesellschaftlichen Relevanz kritisch reflektieren.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Vorlesung und Gruppenarbeit: Topics in Quantitative Marketing and Economics (Vorlesung) | 2 SWS |

Prüfung: Präsentation (ca. 30 Min) mit schriftlicher Ausarbeitung (max. 5 Seiten) | 6 C |

Prüfungsanforderungen:
Selbstständige wissenschaftliche Bearbeitung eines ausgewählten Themas aus dem Bereich des quantitativen Marketings unter Verwendung geeigneter empirischer Verfahren und Präsentation.

Zugangsvoraussetzungen: keine
Sprache: Deutsch
Angebotshäufigkeit: jedes Wintersemester
Dauer: 1 Semester
Wiederholbarkeit: Empfohlenes Fachsemester:

Empfohlene Vorkenntnisse: Vertiefende Statistik-Kenntnisse
Modulverantwortliche[r]: Prof. Dr. Till Dannewald

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zweimalig</td>
<td>2 - 3</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.WIWI-BWL.0109: International Human Resource Management

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students get insights into major topics of Human Resource Management (HRM) in an international context. The course will introduce the context international managers need to consider, e.g. cultural differences, and major HRM functions, e.g. global staffing. The course consists of lectures and tutorials. Lectures will provide an introduction to relevant aspects of HRM in an international context. Tutorials will help students to discuss and transfer knowledge between theory and practice.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time:</td>
<td>42 h</td>
</tr>
<tr>
<td>Self-study time:</td>
<td>138 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. International Human Resource Management (Lecture)</td>
<td>2 WLH</td>
</tr>
<tr>
<td>2. International Human Resource Management (Tutorial)</td>
<td>1 WLH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Written examination (120 minutes)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements:</td>
<td></td>
</tr>
<tr>
<td>Demonstrate a profound knowledge of and ability to manage challenges in international HRM.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Fabian Froese</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every winter semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.WIWI-BWL.0112: Corporate Development

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students…</td>
<td>Attendance time: 56 h</td>
</tr>
<tr>
<td>• are familiar with different perspectives and drivers of corporate development.</td>
<td>Self-study time: 124 h</td>
</tr>
<tr>
<td>• can identify and define options of action and strategies for the development of companies and the conditions necessary to obtain success.</td>
<td></td>
</tr>
<tr>
<td>• know tools and measures important for the control of innovative activities in companies.</td>
<td></td>
</tr>
<tr>
<td>• apply the tools and concepts that have been acquired in order to analyze as well as to tackle case studies.</td>
<td></td>
</tr>
<tr>
<td>• are able to deal with the ambiguity of real situations and make reasonable decisions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Corporate Development (Lecture)</td>
<td>2 WLH</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>This course introduces models and strategies of corporate development:</td>
<td></td>
</tr>
<tr>
<td>• Core topics and practical relevance of corporate development</td>
<td></td>
</tr>
<tr>
<td>• Models and processes of corporate development</td>
<td></td>
</tr>
<tr>
<td>• Strategies of corporate development in a globalized world, direction of growth and shift of boundaries of companies</td>
<td></td>
</tr>
<tr>
<td>• Innovation strategies and management</td>
<td></td>
</tr>
<tr>
<td>2. Corporate Development (Exercise)</td>
<td>2 WLH</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>The tutorial complements the lecture. Students learn how to apply tools and concepts in order to analyze and tackle case studies and how to deal with the ambiguity of real situations.</td>
<td></td>
</tr>
</tbody>
</table>

Examination: Written examination (90 minutes)	6 C
Examination requirements:	
Demonstrate a profound knowledge of and ability to manage challenges in corporate development.	

| Admission requirements: | Recommended previous knowledge: |
| none | none |

| Language: | Person responsible for module: |
| English | Prof. Dr. Indre Maurer |

| Course frequency: | Duration: |
| every summer semester | 1 semester[s] |

| Number of repeat examinations permitted: | Recommended semester: |
| twice | 1 - 3 |
| **Maximum number of students:** |
|-------------------------------|---|
| **not limited** | |
Georg-August-Universität Göttingen

Module M.WIWI-BWL.0116: Asian Business and Management

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
</table>
| Due to the rapid growth of Asian countries in the modern economy and intense business ties between Europe and Asia knowledge about Asian business and management has become important. | **Attendance time:** 28 h
Self-study time: 152 h |

This course aims at increasing the understanding of Asian business and management. Students will learn about the economic environments, success factors of major Asian companies and how foreign companies and managers can succeed in selected Asian countries, e.g. China, South Korea, and Japan.

<table>
<thead>
<tr>
<th>Course: Asian Business and Management (Lecture)</th>
<th>2 WLH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination: Written examination (90 minutes)</th>
<th>6 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements:</td>
<td>Demonstrate knowledge of Asian business and management.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Fabian Froese</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every summer semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.WIWI-BWL.0130: Doing Business in Asia

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
</table>
| Students are brought closer to the business activities, as well as their influence, of the latest developments within the legal framework for market entry in the countries of South and East Asia. Furthermore, strategic and operational management measures for the Asian region are taught and supported with practical examples. Predominantly, the focus is going to be on China (winter semester 2015/2016). Beside the acquisition of theoretical knowledge of the management of Asian companies, the students should be prepared for a future career in companies that have business relations with Asia. | Attendance time: 28 h
Self-study time: 152 h |

<table>
<thead>
<tr>
<th>Course: Doing Business in Asia (lecture)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 WLH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Written examination (90 minutes)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of knowledge of the various characteristics, methods and problems in Asian Business.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Yingying Zhang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every second semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.WIWI-BWL.0134: Panel Data Analysis in Marketing

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>After successful attendance the students will understand the methodological principles of panel data modeling, especially in the context of consumer behavior and marketing-mix models. Further, they will be able to conduct own panel data analyses using the statistical programming language R.</td>
<td>Attendance time: 28 h Self-study time: 152 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Panel Data Analysis in Marketing (Lecture with exercise)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>2 WLH</td>
</tr>
<tr>
<td>- Introduction to R</td>
<td></td>
</tr>
<tr>
<td>- Refreshment in Regression Analysis</td>
<td></td>
</tr>
<tr>
<td>- Fixed Effects Models</td>
<td></td>
</tr>
<tr>
<td>- Random Effects Models</td>
<td></td>
</tr>
<tr>
<td>- Dynamic Panel Models</td>
<td></td>
</tr>
<tr>
<td>The course is open to Master and Ph.D. students.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Term Paper (max. 12 pages)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination requirements:</td>
<td>6 C</td>
</tr>
<tr>
<td>The term paper will contain a self-conducted empirical project. Students will be provided with empirical data, but are welcome to analyze own projects. Students are advised to use the statistical programming language R, but can be allowed to use different statistics software in exceptional cases. Theoretical, methodological and empirical elaboration of a selected topic in panel data analysis with focus on consumer behavior and/or marketing-mix modeling.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Basics in inferential statistics</td>
</tr>
<tr>
<td>Language:</td>
<td>Person responsible for module:</td>
</tr>
<tr>
<td>English</td>
<td>Dr. Ossama Elshiewy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every summer semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>2 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Examination requirements: The term paper will contain a self-conducted empirical project. Students will be provided with empirical data, but are welcome to analyze own projects. Students are advised to use the statistical programming language R, but can be allowed to use different statistics software in exceptional cases. Theoretical, methodological and empirical elaboration of a selected topic in panel data analysis with focus on consumer behavior and/or marketing-mix modeling.
Learning outcome, core skills:
At the end of this active-learning based course, the student is expected to:
- Comprehend the opportunities created by digital innovations
- Understand and apply the process for design thinking
- Design digital solutions to meet customer needs
- Design and evaluate entrepreneurial action

Course: Digital Innovations and Design Thinking (Lecture)
Contents:
With technology disrupting firms and increasingly, entire industries, the imperative is for students to have a deep understanding of digital innovations that are likely to shape the future and have the capacity to innovate.

This project-based interdisciplinary course positioned at the intersection of digital innovations, design thinking and entrepreneurship is aimed at delivering the competencies demanded by businesses, non-profits and government agencies alike – an understanding of transformational opportunities created by digital technologies and the capacity to innovate.

To help students build the capacity to innovate, the course uses the design thinking framework developed at Stanford University and widely used across the world today.

Examination: Presentation (approx. 30 minutes) with written elaboration (max. 12 pages total, divided into three parts)

Examination requirements:
To pass the course, students have to write a seminar paper and give a related presentation. They have to demonstrate that they are able to systematically apply their knowledge of digital innovations and design thinking.

Admission requirements: none
Language: English
Recommended previous knowledge: Basic knowledge of Business Administration and Information Management.
Person responsible for module: Prof. Balaji Rajagopalan, PhD.
Course frequency: each second semester
Duration: 1 semester[s]
Number of repeat examinations permitted: twice
Recommended semester: 1 - 4
Maximum number of students:
Module M.WIWI-BWL.0136: Digital Transformation

Georg-August-Universität Göttingen
Module M.WIWI-BWL.0136: Digital Transformation

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course aims to develop a cross-functional and managerial understanding of digital transformation of business. Specifically, participants in this course are expected to learn about:</td>
</tr>
<tr>
<td>- What concepts, frameworks, and tools can guide the general manager in executing a digital transformation initiative?</td>
</tr>
<tr>
<td>- How can digital capabilities inside an incumbent firm facing potential digital disruption be built and fostered to compete?</td>
</tr>
<tr>
<td>- What are the main digital drivers (e.g., cloud, social, mobile, big data) that underlie current changes in society/business?</td>
</tr>
<tr>
<td>- What is the business impact of these digital drivers at the level of markets, business models, and individual work practices?</td>
</tr>
<tr>
<td>- How should managers reinforce existing and foster new capabilities to be able to drive digital transformation initiatives?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time: 28 h</td>
</tr>
<tr>
<td>Self-study time: 152 h</td>
</tr>
</tbody>
</table>

Course: Digital Transformation (Lecture)

Contents:

Until recently, the knowledge of Information Technology (IT) and its application in the enterprise had been confined to the IT department. Not anymore. Today—in the Digital Age—successful business manager must not only know how to interpret a P&L statement and read a balance sheet, but also understand "digital" and anticipate its impact on business.

The Digital Age, fueled by the drastic reduction in the cost of processing, storage, and communication, is creating a high-density digital. Technology today is both available and affordable. This creates a new phenomenon where individuals incorporate cutting-edge digital technologies in their personal lives before businesses get a chance to adopt and implement them. In a way, this leads to a new kind of digital divide —that between society and business. Customers and employees of the younger generation come with new expectations that companies are not prepared to meet.

To address this challenge, today's business leaders must be able to think digital. Thinking digital does not equal thinking IT. Digital focuses much less on process automation, transactions, and efficiency, and much more on creating new value-added experiences and interactions with customers, employees and business partners. Ultimately, it enables the firm to generate new revenue by finding unique ways to combine its physical and digital resources.

Examination: Written examination (90 minutes)

Examination requirements:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3199
In order to accomplish successfully this course, students are expected to document an understanding of:

- Main digital drivers and their impact on society/business
- Digital capabilities needed to face potential digital disruptions
- Concepts and frameworks of digital transformation initiatives
- Managerial capabilities needed to address digital transformation initiatives

Admission requirements: none

Recommended previous knowledge: Basic knowledge of Business Administration and Information Management

Language: English

Person responsible for module: Prof. Dr. Robert Wayne Gregory

Course frequency: every second semester

Duration: 1 semester[s]

Number of repeat examinations permitted: twice

Recommended semester: 1 - 4

Maximum number of students: 30

Additional notes and regulations:
Teilnehmerbegrenzung der "Vorlesung" aufgrund der Fallstudien.
Georg-August-Universität Göttingen
Module M.WIWI-BWL.0137: Electronic Commerce Systems

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completing this course the student will be able to:</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>1. Explain the characteristics and functions of electronic commerce including mobile commerce.</td>
<td>28 h</td>
</tr>
<tr>
<td>2. Describe the process of developing electronic commerce sites and mobile commerce applications.</td>
<td>Self-study time:</td>
</tr>
<tr>
<td>3. Implement an electronic commerce site using open source software.</td>
<td>152 h</td>
</tr>
<tr>
<td>4. Explain fundamental characteristics of electronic markets.</td>
<td></td>
</tr>
<tr>
<td>6. Describe security and payment in electronic commerce including mobile commerce.</td>
<td></td>
</tr>
<tr>
<td>7. Describe the technology used in mobile commerce.</td>
<td></td>
</tr>
<tr>
<td>8. List common applications in mobile commerce.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course: Electronic Commerce Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
</tr>
<tr>
<td>This course examines the concepts, technology, and applications of electronic commerce, or e-commerce. Students are to work in teams to plan an e-commerce site for a real or hypothetical business and implement the site using PrestaShop. Students are to present their plan and implementation in a written report and in an oral presentation using PowerPoint.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination: Written examination (60 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination prerequisites:</td>
</tr>
<tr>
<td>Practical examination and presentation (approx. 45 minutes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To pass the course, students have to demonstrate that they are able to systematically apply their knowledge of the conceptual and technological foundations of e-commerce.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Students should have a basic understanding of information systems, the Internet, and the Web.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Robert C. Nickerson</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every second semester</td>
<td>1 semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Maximum number of students:</td>
<td>20</td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
The students
- gain an overview on extended regression modelling techniques that allow to analyse data with non-normal responses.
- learn about approaches for modeling nonlinear effects in scatterplot smoothing.
- get an introduction to additive models for complex regression analyses.
- learn how to implement these approaches using statistical software packages.

Workload:
Attendance time:
56 h

Self-study time:
124 h

Courses:

1. **Generalized Linear Models (Lecture)**
 Contents:
 Generalized linear models (binary and Poisson regression, exponential families, maximum likelihood estimation, iteratively weighted least squares regression, tests of hypotheses, confidence intervals, model selection and model checking, categorical regression models), nonparametric smoothing techniques (penalized spline smoothing, local smoothing approaches, general properties of scatterplot smoothers, choosing the smoothing parameter, bivariate and spatial smoothing, generalized additive models)

2. **Generalized Linear Models (Tutorial)**

Examination:
Written examination (90 minutes) or oral examination (approx. 20 minutes)

Examination prerequisites:
Presentation (approx. 40 minutes) or Exercises (50% successful completion)

Examination requirements:
In the exam, the students demonstrate their ability to choose, fit and interpret extended regression modeling techniques. They show a general understanding of the derived estimates and their interpretation in various contexts. The students are able to implement complex regression models using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercise class.

Admission requirements:
none

Recommended previous knowledge:
Lineare Modelle

Language:
English

Person responsible for module:
Prof. Dr. Thomas Kneib

Course frequency:
every summer semester

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
2

Maximum number of students:
not limited
Additional notes and regulations:
The actual examination will be published at the beginning of the semester.
Georg-August-Universität Göttingen

Module M.WIWI-QMW.0002: Advanced Statistical Inference (Likelihood & Bayes)

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time: 56 h</td>
</tr>
<tr>
<td>• learn about the foundations and general properties of likelihood-based inference in statistics.</td>
<td></td>
</tr>
<tr>
<td>• get familiar with the Bayesian approach to statistical learning and its properties.</td>
<td></td>
</tr>
<tr>
<td>• learn how to implement both approaches in statistical software using appropriate numerical procedures.</td>
<td>Self-study time: 124 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Advanced Statistical Inference (Likelihood & Bayes) (Lecture)</td>
<td>2 WLH</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>The likelihood function and likelihood principles, maximum likelihood estimates and their properties, likelihood-based tests and confidence intervals (derived from Wald, score, and likelihood ratio statistics), expectation maximization algorithm, Bootstrap procedures (estimates for the standard deviation, the bias and confidence intervals), Bayes theorem, Bayes estimates, Bayesian credible intervals, prior choices, computational approaches for Bayesian inference.</td>
<td></td>
</tr>
<tr>
<td>2. Advanced Statistical Inference (Likelihood & Bayes) (Tutorial)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

Examination: Written examination (90 minutes) or oral examination (approx. 20 minutes)	6 C
Examination prerequisites:	
Presentation (approx. 40 minutes) or Exercises (50% successful completion)	
Examination requirements:	
The students demonstrate their general understanding of likelihood-based and Bayesian inference for different types of applications and research questions. They know about the advantages and disadvantages as well as general properties of both approaches, can critically assess the appropriateness for specific problems, and can implement them in statistical software. The exam covers contents of both the lecture and the exercise class.	

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Thomas Kneib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every year</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 2</td>
</tr>
</tbody>
</table>

Maximum number of students:	

not limited	
Additional notes and regulations:
The actual examination will be published at the beginning of the semester.
Module M.WIWI-QMW.0007: Selected Topics in Statistics and Econometrics

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td>Attendance time:</td>
</tr>
<tr>
<td>• learn about a specific current strand of statistical and/or econometric research.</td>
<td>56 h</td>
</tr>
<tr>
<td>• learn how to implement these approaches in statistical software packages and how to interpret the corresponding results.</td>
<td>Self-study time:</td>
</tr>
<tr>
<td></td>
<td>124 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Selected topics in Statistics and Econometrics (Lecture)</td>
<td>2 WLH</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>Current topics in statistics and/or econometrics.</td>
<td></td>
</tr>
<tr>
<td>2. Selected topics in Statistics and Econometrics (Tutorial)</td>
<td>2 WLH</td>
</tr>
</tbody>
</table>

| Examination: Written exam (90 minutes) | 6 C |

<table>
<thead>
<tr>
<th>Examination requirements:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The students demonstrate their general understanding of the topics dealt with in the lecture and the exercise class. They know how to interpret results from the corresponding models and how to implement these models in statistical software. The exam covers contents of both the lecture and the exercise class.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Thomas Kneib</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every 4. semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
The students
- learn concepts and techniques related to the analysis of time series and forecasting.
- gain a solid understanding of the stochastic mechanisms underlying time series data.
- learn how to analyse time series using statistical software packages and how to interpret the results obtained.

Workload:
- **Attendance time:** 56 h
- **Self-study time:** 124 h

Courses:
1. **Introduction to Time Series Analysis (Lecture)**
 Contents:
 Classical time series decomposition analysis (moving averages, transformations of time series, parametric trend estimates, seasonal and cyclic components), exponential smoothing, stochastic models for time series (multivariate normal distribution, autocovariance and autocorrelation function), stationarity, spectral analysis, general linear time series models and their properties, ARMA models, ARIMA models, ARCH and GARCH models.

2. **Introduction to Time Series Analysis (Tutorial)**

Examination:
- **Written examination (90 minutes)**
- **Examination requirements:**
The students show their ability to analyse time series using specific statistical techniques, can derive and interpret properties of stochastic models for time series, and can decide on appropriate models for given time series data. The students are able to implement time series analyses using statistical software and to interpret the corresponding results. The exam covers contents of both the lecture and the exercise class.

Admission requirements:
none

Recommended previous knowledge:
Statistics

Language:
English

Person responsible for module:
Prof. Dr. Helmut Herwartz

Course frequency:
every year

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
2 - 3

Maximum number of students:
not limited
Learning outcome, core skills:

The students:
- learn the basic concepts of multivariate data analysis
- know how to apply the most common methods of multivariate statistics in practice
- learn how to implement multivariate statistical approaches using the software package R
- know how to interpret the results of multivariate data analyses

Workload:
- Attendance time: 56 h
- Self-study time: 124 h

Courses:

1. **Multivariate Statistics** (Lecture)
 - **Contents:**
 - Multivariate distributions and their properties,
 - multivariate normal distribution,
 - principal component analysis,
 - factor analysis,
 - discriminant analysis,
 - cluster analysis
 - **Hours:** 2 WLH

2. **Multivariate Statistics** (Exercise)
 - Hours: 2 WLH

Examination:

- **Written examination (90 minutes) or oral examination (approx. 20 minutes)**
- **Examination prerequisites:**
 - Presentation (approx. 40 minutes) or Exercises (50% successful completion)
- **Examination requirements:**
 - In the exam, the students demonstrate that they are able to apply the basic concepts of multivariate statistics. They can decide for a suitable procedure given an applied problem, implement the approach in statistical software and interpret the results. The exam consists of material from both the lecture and the exercise class.

Admission requirements:
- none

Recommended previous knowledge:
- none

Language:
- English

Person responsible for module:
- Prof. Dr. Thomas Kneib

Course frequency:
- once a year

Duration:
- 1 semester[s]

Number of repeat examinations permitted:
- twice

Recommended semester:
- 2 - 3

Maximum number of students:
- not limited
Georg-August-Universität Göttingen
Module M.WIWI-QMW.0011: Statistical Programming with R

Learning outcome, core skills:
The students learn how to independently implement and optimize advanced statistical methodology with the statistical software package R

Workload:
Attendance time: 56 h
Self-study time: 124 h

Course: Statistical Programming with R (Lecture with tutorial)
Contents:
The students work on advanced statistical programming projects using methods and techniques they got to know in the "Introduction to R". This involves implementation of advanced statistical methodology, utilising tools for debugging and profiling code and documenting the code. The progress of the projects is documented in a presentation and a written report.

Examination: Term paper (max. 15 pages)
Examination prerequisites:
Practical examination and presentation (approx. 15 minutes)

Examination requirements:
The students work on a programming project and document their work in a written report and a presentation.

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English

Person responsible for module:
Prof. Dr. Thomas Kneib

Course frequency:
once a year

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
2

Maximum number of students:
30
Georg-August-Universität Göttingen
Module M.WIWI-WIN.0001: Modeling and System Development

Learning outcome, core skills:
Upon successful completion, students are able to
- describe and explain the principles and elements of modeling techniques and design possibilities of systems
- apply selected methods for modeling systems independently,
- select an appropriate method for modeling a task and delineate versus the benefits of other methods,
- outline the development of systems in the business environment and to evaluate and to transfer this to related situations,
- analyze and reflect critically selected current trends in the field of system development in group work and
- work in groups on tasks with the help of acquired communication and organizational skills.

Workload:
- Attendance time: 28 h
- Self-study time: 152 h

Course: Modeling and System Development (Lecture)
Contents:
- Basics
- System survey
- Process modeling
- Object modeling
- Design of systems
- Implementation
- Integration of systems
- Quality management in system development
- Configuration management
- Cost estimate of system developments

Examination: Written examination (120 minutes)
Examination prerequisites: successfully passed term paper and case study (max. 12 pages)
Examination requirements: Students show in the exam that they
- can explain, evaluate and apply theories and concepts for modeling processes, application systems and software, evaluate and apply,
- can explain and assess what they learned in the lectures regarding aspects of system development,
- can analyze complex problems in system development in a short time and can identify both challenges and solutions,
- are able to transfer the approaches taught in the lectures to similar problems.

Admission requirements: none
Recommended previous knowledge: none
<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Matthias Schumann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>each winter semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not limited</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>English title: Integrated Application Systems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
</tr>
<tr>
<td>Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• die theoretischen Grundlagen im Zusammenhang mit der Integrationstheorie zu beschreiben und zu erläutern,</td>
</tr>
<tr>
<td>• wesentliche Aspekte der horizontalen und der vertikalen Integration zu unterscheiden und die Umsetzung in Integrationskonzepte zu erklären,</td>
</tr>
<tr>
<td>• die wichtigsten Anwendungssystemtypen zu erläutern und zu analysieren,</td>
</tr>
<tr>
<td>• anhand von praktischen Beispielen die integrierte Informations-verarbeitung in verschiedenen wirtschaftlichen Anwendungen zu erläutern und zu bewerten sowie diese auf verwandte Situationen anzuwenden und zu transferieren,</td>
</tr>
<tr>
<td>• ausgewählte aktuelle Trends aus dem Bereich der integrierten Informationsverarbeitung zu analysieren und kritisch zu reflektieren und</td>
</tr>
<tr>
<td>• in Gruppenarbeit mit Hilfe angeeigneter Kommunikations- und Organisationsfähigkeiten Aufgabenstellungen zu bearbeiten.</td>
</tr>
<tr>
<td>Lehrveranstaltung: Integrierte Anwendungssysteme (Vorlesung)</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Prüfung: Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Die Studierenden weisen in der Modulprüfung nach, dass sie</td>
</tr>
<tr>
<td>• Theorien und Konzepte zur Integration von Anwendungssystemen erläutern und beurteilen können.</td>
</tr>
<tr>
<td>• Komplexe Aufgabenstellungen im Rahmen der integrierten Informationsverarbeitung in kurzer Zeit analysieren und sowohl Herausforderungen als auch Lösungsansätze aufzeigen können.</td>
</tr>
<tr>
<td>• In der Vorlesung kennengelernte Ansätze auf vergleichbare Problemstellungen übertragen können.</td>
</tr>
<tr>
<td>Zugangsvoraussetzungen:</td>
</tr>
<tr>
<td>keine</td>
</tr>
<tr>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Angebotshäufigkeit: jedes Sommersemester</td>
</tr>
<tr>
<td>Wiederholbarkeit: zweimalig</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:
Die Studierenden
- kennen die zentralen Veränderungen der Rolle und Aufgaben der IT-Organisation innerhalb von Unternehmen innerhalb der letzten Jahrzehnte,
- kennen die unternehmensinternen, unternehmensexternen und unternehmens-übergreifenden Anforderungen an ein modernes Informationsmanagement und können darlegen, welche Defizite in der Praxis häufig existieren,
- kennen detailliert das Modell, die Grundsätze und die Ziele des integrierten Informationsmanagements mit seinen Domänen:
 - Strategisches IT-Management,
 - IT-Beschaffungsmanagement,
 - IT-Produktionsmanagement,
 - IT-Absatzmanagement,
 - IT-Querschnittsfunktionen
- können die Konzepte und Werkzeuge des integrierten Informationsmanagements reflektieren, auf eine Problemstellung anwenden und schriftlich dokumentieren,
- können wissenschaftliche Artikel aus dem Kontext des Informationsmanagements verstehen und diskutieren,
- können wissenschaftliche Fragestellungen des Informationsmanagements mit den Methoden der Wirtschaftsinformatik eigenständig und adäquat bearbeiten.

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden

Lehrveranstaltungen:
1. Informationsmanagement (Vorlesung) 2 SWS
2. Informationsmanagement (Übung) 2 SWS

Prüfung: Klausur (120 Minuten)
Prüfungsvorleistungen:
Die Anwesenheit bei Gastvorträgen, die im Rahmen des Moduls stattfinden können, ist verpflichtend und gilt als Prüfungsvorleistung. Nichtteilnahme/Abwesenheit bei der Erbringung von Prüfungsvorleistungen kann zum Ausschluss von der Prüfung führen.

Prüfungsanforderungen:

Dies beinhaltet insbesondere den Transfer von Wissen über das Informationsmanagement auf Anwendungsfälle sowie die Anwendung von Werkzeugen aus dem
Spektrum des Informationsmanagements. Ebenso sind die Studierenden in der Lage kritisch das in den Modellen vorgeschlagene Vorgehen zu würdigen und während der Anwendung auf ein Problemfeld geeignet zu adaptieren.

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Sprache: | Modulverantwortliche[r]: |
| | Prof. Dr. Lutz M. Kolbe |

| Angebotshäufigkeit: | Dauer: |
| | 1 Semester |

| Wiederholbarkeit: | Empfohlenes Fachsemester:|
| | 1 - 2 |

| Maximale Studierendenzahl: | |
| | nicht begrenzt |

<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul wird in jedem Semester angeboten. Im Sommersemester wird die Vorlesung und Übung regulär gehalten. Im Wintersemester findet nur die Übung statt. Die Vorlesung ist im Selbststudium zu erarbeiten. Grundlage dafür ist die aufgezeichnete Vorlesung des jeweils vorhergehenden Sommersemesters.</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Module M.WIWI-WIN.0004: Crucial Topics in Information Management

Learning outcome, core skills:

- The students:
 - know the state of the art as well as future challenges regarding a current research theme in Information Management
 - have profound knowledge within the research field they worked upon
 - know and understand methods and approaches in order to elaborate on Information Management topics in a scientific manner
 - can elaborate research questions systematically by means of scientific methods

Workload:

- **Attendance time:** 28 h
- **Self-study time:** 332 h

Course: Crucial Topics in Information Management (Seminar)

- **Examination:** Presentation (approx. 30 minutes) with written elaboration (max. 8000 words)

Examination prerequisites:
- regular attendance; participation on possibly excursions.

Examination requirements:
- Scientific and solution-oriented elaboration of current topics in Information Management
- Writing a seminar paper
- Oral presentation of the seminar paper’s findings
- Collaboration with other students in teams

Admission requirements:

- none

Recommended previous knowledge:
- Modul "Informationsmanagement"

Language:
- English

Person responsible for module:
- Prof. Dr. Lutz M. Kolbe

Course frequency:
- every winter semester

Duration:
- 1 semester(s)

Number of repeat examinations permitted:
- twice

Recommended semester:
- 2 - 3

Maximum number of students:
- 20
Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- die Grundlagen eines ausgewählten Themas der Wirtschaftsinformatik zu beschreiben und zu erklären,
- in der Literatur existierende Erkenntnisse zu einem ausgewählten Themengebiet der Wirtschaftsinformatik auf eine gegebene Problemstellung anzuwenden und bzgl. dieser Problemstellung zu diskutieren,
- auf Basis existierender Literatur eigene Erkenntnisse und Lösungsansätze zu einer Problemstellung der Wirtschaftsinformatik zu entwerfen,
- gewonnene Erkenntnisse zu einer Problemstellung der Wirtschaftsinformatik zu bewerten,
- eine wissenschaftliche Ausarbeitung in Form einer Seminararbeit zu erstellen,
- die Arbeitsergebnisse vor einem Auditorium zu präsentieren und
- kritische Fragen zum erarbeiteten Themengebiet ad hoc beantworten und in einer Diskussion bestehen zu können.

Arbeitsaufwand:

- Präsenzzeit: 28 Stunden
- Selbststudium: 332 Stunden

Lehrveranstaltung: Seminar zur Wirtschaftsinformatik (Seminar)

Inhalte:

- selbständiges Anfertigen einer wissenschaftlichen Hausarbeit
- Präsentation der Hausarbeit vor einem Auditorium

Prüfung: Hausarbeit (max. 40 Seiten)

Prüfungsvorleistungen:

Präsentation (ca. 20 Minuten + ca. 20 Minuten Diskussion)

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

- selbstständig in der Lage sind, eine gegebene Problemstellung der Wirtschaftsinformatik zu analysieren und mit Hilfe wissenschaftlicher Literatur sowie wissenschaftlicher Vorgehensweisen zu lösen,
- eigene Lösungen kritisch reflektieren und Alternativen aufzeigen können,
- die erarbeiteten Ergebnisse in Form einer Seminararbeit verfassen sowie in Form eines Vortrags präsentieren können,
- kritische Fragen zum gehaltenen Vortrag beantworten können und somit zu einem intensiven und konstruktiven akademischen Diskurs beitragen können und
- bei allen Seminarterminen anwesend sind.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch, Englisch

Modulverantwortliche[r]:

Prof. Dr. Matthias Schumann
<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcome, core skills:
The students

- know the central differences between production and service provision as well as the possibility of bundling both areas to hybrid products,
- know the fundamentals and key concepts of IT service management and information management,
- know the contents of the ITIL framework and its core elements in detail:
 - service strategy
 - service design
 - service transition
 - service operation
 - continual service improvement
- participate in the business simulation Fort Fantastic, and thereby learn about different aspects of application scenarios for the ITIL- and other management frameworks,
- know the success factors of (IT-) project management,
- have a fundamental knowledge of the two basic project management frameworks PRINCE2 und PMBoK,
- know tools and methods of project management, e.g. critical path method and gantt chart,
- are able to critically reflect on the concepts and methods of IT service management and project management, apply these to concrete problems and document them.

Workload:

| Attendance time: | 56 h |
| Self-study time: | 124 h |

Courses:

1. Change and Run IT (Lecture)
2. Change and Run IT (Tutorial)

Examination: Written examination (120 minutes)

Examination prerequisites:
Participation in the simulation game Fort Fantastic. The attendance of guest lectures which may be part of the module are obligatory and are considered as precondition to take the examination.

Examination requirements:
In the module examination, the students demonstrate that they are able to reproduce fundamental knowledge and basic concepts of IT service management and project management. Besides, they are able to apply acquired knowledge within case studies in a solution-oriented manner. In particular, this includes transferring knowledge from the ITIL framework to different fields of application and the utilization of IT service management methods. In addition, the students are able to critically assess the proposed procedures and adapt these to specific problem areas.
<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Lutz M. Kolbe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>every semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>1 - 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Additional notes and regulations:
The module is offered in each semester. In the summer term, lecture and tutorial take place regularly, whereas in the winter term only the tutorial is offered and the lecture has to be prepared through self-study which is based on the recorded lecture of the respective previous summer semester.
Georg-August-Universität Göttingen

Modul M.WIWI-WIN.0009: Internet Economics

English title: Internet Economics

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>· die Prinzipien der Internetökonomie aus theoretischer und</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>anwendungsorientierter Sicht zu beschreiben und zu erläutern,</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>· die Eigenschaften von digitalen Gütern, Netzwerken und Netzefekten zu</td>
<td>92 Stunden</td>
</tr>
<tr>
<td>erläutern und anhand von praktischen Beispielen zu erklären,</td>
<td></td>
</tr>
<tr>
<td>· die wesentlichen ökonomischen Prinzipien der Musikindustrie und die Grundlagen</td>
<td></td>
</tr>
<tr>
<td>der Wertschöpfung in der Musikindustrie darzulegen,</td>
<td></td>
</tr>
<tr>
<td>· mögliche Preisstrategien in der Musikindustrie zu bewerten und zukünftige</td>
<td></td>
</tr>
<tr>
<td>Lösungen aufzuzeigen</td>
<td></td>
</tr>
<tr>
<td>· sowie strategische und organisatorische Aspekte des Offshoring der</td>
<td></td>
</tr>
<tr>
<td>Softwareentwicklung zu reflektieren.</td>
<td></td>
</tr>
<tr>
<td>· in Gruppenarbeit mit Hilfe angeeigneter Kommunikations- und Orga-</td>
<td></td>
</tr>
<tr>
<td>nisationsfähigkeiten Aufgabenstellungen zu bearbeiten.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Internet Economics (Online-Vorlesung)</th>
<th>2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte:</td>
<td></td>
</tr>
<tr>
<td>· Grundlagen der digitalen Netzökonomie</td>
<td></td>
</tr>
<tr>
<td>· Eigenschaften digitaler Güter</td>
<td></td>
</tr>
<tr>
<td>· Chancen und Risiken beim Angebot digitaler Güter</td>
<td></td>
</tr>
<tr>
<td>· Anwendungsbeispiel: Digitale Güter</td>
<td></td>
</tr>
<tr>
<td>· Die Softwareindustrie</td>
<td></td>
</tr>
<tr>
<td>· Überblick und ökonomische Prinzipien</td>
<td></td>
</tr>
<tr>
<td>· Strategien für die Softwareindustrie</td>
<td></td>
</tr>
<tr>
<td>· Spezielle Themen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (120 Minuten)</th>
<th>4 C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden weisen in der Modulprüfung nach, dass sie</td>
<td></td>
</tr>
<tr>
<td>· Theorien und Konzepte zur Integration von Anwendungssystemen erläutern und beurteilen können,</td>
<td></td>
</tr>
<tr>
<td>· komplexe Aufgabenstellungen im Rahmen der integrierten Informationsverarbeitung in kurzer Zeit analysieren und sowohl Herausforderungen als auch Lösungsansätze aufzeigen können.</td>
<td></td>
</tr>
<tr>
<td>· in der Vorlesung kennengelernte Ansätze auf vergleichbare Problemstellungen übertragen können.</td>
<td></td>
</tr>
</tbody>
</table>
Modul M.WIWI-WIN.0009 - Version 3

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Empf. Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Matthias Schumann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul M.WIWI-WIN.0009 - Version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugangsvoraussetzungen:</td>
</tr>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Matthias Schumann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul M.WIWI-WIN.0009 - Version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugangsvoraussetzungen:</td>
</tr>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Matthias Schumann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>
Modul M.WIWI-WIN.0011: Entrepreneurship 1 - Theoretische Grundlagen

English title: Entrepreneurship 1 - Theoretical introduction

Lernziele/Kompetenzen:

Am Ende der Veranstaltungen sollen die Studierenden Wissen über die Zusammenhänge zwischen Geschäfts-Konzept, Produktdesign, Marktgröße und Finanzierungsoptionen erworben haben und mit den grundlegenden Faktoren, welche Startups beeinflussen, vertraut sein.

In the end of the lecture the students should have acquired the coherences between the business concept, product design, market size and financing options and be familiar with basic factors which influence the start-up business.

Lehrveranstaltung: Vorlesung Entrepreneurship 1 - Theoretische Grundlagen

(Vorlesung)

Inhalte:

The lecture covers economic relevant aspects in the foundation of an enterprise resp. leadership of an start-up business. Planned focus: Foundation of an enterprise and characteristics (product/service), foundation analysis (market, unique features of the value proposition, distribution channels, distribution strategies and selling, scalability of the business and financing options).

Prüfung: Hausarbeit (max. 8000 Wörter)

Prüfung: drei Präsentationen (je ca. 10 Minuten)

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Bachelor BWL, Bachelor VWL, Bachelor Wirtschaftsinformatik

Sprache:

Englisch, Deutsch

Modulverantwortliche[r]:

Prof. Dr. Lutz M. Kolbe

Lehrbeauftragter Dr. Erik Oldekop

Angebotshäufigkeit:

Dauer:
<table>
<thead>
<tr>
<th>jedes Wintersemester</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholbarkeit:</td>
<td></td>
</tr>
<tr>
<td>zweimalig</td>
<td></td>
</tr>
<tr>
<td>Empfohlenes Fachsemester:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - 3</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module M.WIWI-WIN.0019: Business Intelligence and Decision Support Systems

Learning outcome, core skills:
- This course aims to enable students to understand the basic principles of business intelligence (BI) and decision support systems (DSS).
- Provide a skillset suited for addressing unstructured decision situations that require advanced data processing and analysis.
- Give an overview of methods and tools required in modern performance reporting.
- Provide an introduction to data visualization and the application / value of these methods.
- Provide an understanding of how to apply data and text mining methods.

Workload:
Attendance time: 42 h
Self-study time: 138 h

Courses:
1. Business Intelligence and Decision Support Systems (Lecture)
 Contents:
 - Conceptual, methodological and technical foundations of BI and DSS.
 - Decision support processes and their phases.
 - System components needed for the collection, analysis and visualization of structured and unstructured, as well as semi-structured data.
 - Data and text mining methods such as decision trees, neural networks and support vector machines.

2. Business Intelligence and Decision Support Systems (Tutorial)

Examination: Written examination (90 minutes)
Examination requirements:
Students have to demonstrate profound knowledge of the theoretical and methodological foundations of the material. They have to show an understanding of relevant system components providing managerial decision support.

Admission requirements:
none

Recommended previous knowledge:
none

Language:
English

Person responsible for module:
Prof. Dr. Jan Muntermann

Course frequency:
every winter semester

Duration:
1 semester[s]

Number of repeat examinations permitted:
twice

Recommended semester:
2 - 3

Maximum number of students:
not limited
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Grundkurs II im Bürgerlichen Recht" haben die Studierenden grundlegende Kenntnisse im Leistungsstörungsrecht, Gewährleistungsrecht und im Bereicherungsrecht erlangt; haben die Studierenden gelernt, zwischen vertraglichen und gesetzlichen Rückabwicklungsregeln zu differenzieren; kennen die Studierenden das Kaufrecht; kennen die Studierenden die dogmatischen Konzeptionen des allgemeinen und besonderen Schuldrechts in ihrer systematischen, ideellen und praktischen Bedeutung; kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden; können die Studierenden die spezifische zivilrechtliche Technik der Falllösung anwenden; sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

| Präsenzzeit: | 84 Stunden |
| Selbststudium: | 186 Stunden |

Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grundkurs II im Bürgerlichen Recht (Vorlesung)</td>
<td>6</td>
</tr>
<tr>
<td>2. Begleitkolleg für Grundkurs II im Bürgerlichen Recht</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfung:

- Klausur (120 Minuten)

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie, grundlegende Kenntnisse im Leistungsstörungsrecht und Gewährleistungsrecht aufweisen, ausgewählte Tatbestände des Kaufrechts und des Bereicherungsrecht (= konkretes Rechtsgebiet) beherrschen, die zugehörigen methodischen Grundlagen beherrschen und systematisch an einen einfachen zivilrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse im Umfang des Stoffs der Vorlesung Grundkurs BGB I</td>
</tr>
</tbody>
</table>

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Joachim Münch

Angebotshäufigkeit:

Dauer:

amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
<table>
<thead>
<tr>
<th>jedes Semester</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Modul S.RW.0115K: Grundkurs III im Bürgerlichen Recht

English title: Civil Law III (Basic Course)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Grundkurs III im Bürgerlichen Recht"</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse im Bereich der gesetzlichen Schuldverhältnisse erlangt;</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, zwischen der Geschäftsführung ohne Auftrag und dem Bereicherungsrecht zu differenzieren;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• kennen die Studierenden die dogmatischen Konzeptionen des Bereicherungsrechts in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
<td>92 Stunden</td>
</tr>
<tr>
<td>• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
<td></td>
</tr>
<tr>
<td>• können die Studierenden die spezifische zivilrechtliche Technik der Falllösung anwenden;</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Grundkurs III im Bürgerlichen Recht (Vorlesung)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Klausur (120 Minuten)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Modulprüfung weisen die Studierenden nach, dass sie,</td>
<td></td>
</tr>
<tr>
<td>• grundlegende Kenntnisse im Recht der Geschäftsführung ohne Auftrag und im Bereicherungsrecht aufweisen,</td>
<td></td>
</tr>
<tr>
<td>• ausgewählte Tatbestände des Bereicherungsrechts beherrschen,</td>
<td></td>
</tr>
<tr>
<td>• die zugehörigen methodischen Grundlagen beherrschen und</td>
<td></td>
</tr>
<tr>
<td>• systematisch an einen einfachen zivilrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Kenntnisse im Umfang des Stoffs der Vorlesung Grundkurs BGB II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
<td>Prof. Dr. Joachim Münch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
</table>

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7

V10-SoSe17 Seite 3229
nicht begrenzt
Georg-August-Universität Göttingen

Modul S.RW.0212K: Staatsrecht II

English title: Constitutional Law II

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Staatsrecht II":</td>
</tr>
<tr>
<td>- haben die Studierenden grundlegende Kenntnisse über die Grundrechte des Grundgesetzes erlangt;</td>
</tr>
<tr>
<td>- haben die Studierenden gelernt, zwischen Freiheits- und Gleichheitsrechten zu differenzieren;</td>
</tr>
<tr>
<td>- kennen die Studierenden die verfassungsrechtlichen Grundlagen der deutschen Grundrechte;</td>
</tr>
<tr>
<td>- kennen die Studierenden die dogmatischen Konzeptionen der Grundrechte in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
</tr>
<tr>
<td>- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
</tr>
<tr>
<td>- können die Studierenden die spezifische grundrechtliche Technik der Falllösung anwenden;</td>
</tr>
<tr>
<td>- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 154 Stunden</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen:

1. **Staatsrecht II** (Vorlesung) 4 SWS
2. **Begleitkolleg für Staatsrecht II** 2 SWS

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Staatsrecht II aufweisen,
- ausgewählte Tatbestände des Staatsrechts II beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen grundrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Dr. h. c. Werner Heun

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

keine

Empfohlene Vorkenntnisse:

keine

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Dr. h. c. Werner Heun

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester
<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>
Modul S.RW.0311K: Strafrecht I

English title: Criminal Law I

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Strafrecht I" haben die Studierenden grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts und im Hinblick auf Straftaten gegen Leib und Leben erlangt;</td>
<td>Präsenzzeit: 98 Stunden</td>
</tr>
<tr>
<td>haben die Studierenden gelernt, die verschiedenen Typen von Straftaten sowie die verschiedenen Stufen des Straftatbegriffs zu differenzieren;</td>
<td>Selbststudium: 142 Stunden</td>
</tr>
<tr>
<td>kennen die Studierenden die rechtsstaatlichen Grundlagen des Strafrechts;</td>
<td></td>
</tr>
<tr>
<td>kennen die Studierenden die dogmatischen Konzeptionen des Strafrechts in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
<td></td>
</tr>
<tr>
<td>kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
<td></td>
</tr>
<tr>
<td>können die Studierenden die spezifische strafrechtliche Technik der Falllösung anwenden;</td>
<td></td>
</tr>
<tr>
<td>sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen:

1. **Strafrecht I** (Vorlesung) 5 SWS
2. **Begleitkolleg für Strafrecht I** 2 SWS

Prüfung:

Klausur (120 Minuten)

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Allgemeinen Teil des Strafrechts sowie bezüglich der rechtsstaatlichen Grundlagen des Strafrechts aufweisen,
- ausgewählte Tatbestände des Besonderen Teils (Straftaten gegen das Leben und Körperverletzungsdelikte) beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen einfachen strafrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Dr. h. c. Jörg-Martin Jehle

Angebotshäufigkeit:

jährlich

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
| Maximale Studierendenzahl: | nicht begrenzt |
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Handelsrecht" haben die Studierenden:

- Grundlegende Kenntnisse des Handelsrechts erlangt.
- Gelernt, zwischen Kaufleuten und Privaten, insbesondere den verschiedenen Handelsgeschäften zu differenzieren.
- Die Grundlagen des Handelsrechts und dessen Kernprinzipien kennen.
- Die dogmatischen Konzeptionen des Handelsrechts in ihrer systematischen, ideellen und praktischen Bedeutung kennen.
- Die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden.
- Die spezifische handelsrechtliche Technik der Falllösung anwenden.
- Die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Lehrveranstaltung: Handelsrecht (Vorlesung)

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie:

- grundlegende Kenntnisse im Handelsrecht aufweisen,
- ausgewählte Tatbestände des Handelsrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen handelsrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Sprachliche Bedingungen:

Modulverantwortliche[r]:
Prof. Dr. Gerald Spindler

Angebotsfähigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
nicht begrenzt
Georg-August-Universität Göttingen

Modul S.RW.1131a: Grundzüge des Gesellschaftsrechts (Personengesellschaftsrecht)

English title: Basic Principles of Company Law (Partnership Law)

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Grundzüge des Gesellschaftsrechts"

• haben die Studierenden Grundlagen des Systems des Gesellschaftsrechts insgesamt und der Personengesellschaften im Besonderen (OHG, KG, BGB-Gesellschaft) erlangt,
• haben die Studierenden gelernt, zwischen den verschiedenen Gesellschaftsformen und den Verhältnissen von Geschäftsführung und Vertretung zu differenzieren,
• kennen die Studierenden die rechtlichen Grundlagen der verschiedenen Gesellschaftsformen
• kennen die Studierenden die dogmatischen Konzeptionen Personengesellschaftsrechts sowie der Grundzüge der Kapitalgesellschaften in ihrer systematischen, ideellen und praktischen Bedeutung,
• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden,
• können die Studierenden die spezifische gesellschaftsrechtliche Technik der Falllösung anwenden,
• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden

Lehrveranstaltung: Grundzüge des Gesellschaftsrechts (Personengesellschaftsrecht) (Vorlesung)

2 SWS

Prüfung: Klausur (90 Minuten)

6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie,

• grundlegende Kenntnisse im Personengesellschaftsrecht und in Grundzügen des Kapitalgesellschaftsrechts aufweisen,
• ausgewählte Tatbestände des Personengesellschaftsrecht und in Grundzügen des Kapitalgesellschaftsrechts beherrschen,
• die zugehörigen methodischen Grundlagen beherrschen und
• systematisch an einen gesellschaftsrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Sprache: Deutsch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Gerald Spindler

Angebotshäufigkeit: Dauer:
<table>
<thead>
<tr>
<th>Wiederholbarkeit: gemäß Prüfungs- und Studienordnung</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl: nicht begrenzt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Grundzüge des Kapitalgesellschaftsrecht"</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse der Kapitalgesellschaften, insbesondere AG, GmbH erlangt,</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, zwischen den verschiedenen Gesellschaftsformen und ihren jeweiligen Innen- und Außenverhältnissen zu differenzieren,</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• kennen die Studierenden die jeweiligen Besonderheiten der Kapitalgesellschaften,</td>
<td>152 Stunden</td>
</tr>
<tr>
<td>• kennen die Studierenden die dogmatischen Konzeptionen des Kapitalgesellschaftsrechts in ihrer systematischen, ideellen und praktischen Bedeutung,</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden,</td>
<td></td>
</tr>
<tr>
<td>• können die Studierenden die spezifische gesellschaftsrechtliche Technik der Falllösung anwenden,</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltung: Grundzüge des Kapitalgesellschaftsrechts (Vorlesung)	2 SWS
Prüfung: Mündlich (ca. 15 Minuten)	6 C
Prüfungsanforderungen:	
Durch die Modulprüfung weisen die Studierenden nach, dass sie,	
• grundlegende Kenntnisse im Kapitalgesellschaftsrecht aufweisen,	
• ausgewählte Tatbestände des Kapitalgesellschaftsrechts beherrschen,	
• die zugehörigen methodischen Grundlagen beherrschen und	
• systematisch an einen kapitalgesellschaftsrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.	

| Zugangsvoraussetzungen: | Empfohlene Vorkenntnisse: |
| keine | Kenntnisse der Grundzüge des Gesellschaftsrechts |

| Sprache: | Modulverantwortliche[r]: |
| Deutsch | Alle |

| Angebotshäufigkeit: | Dauer: |
| jedes Sommersemester | 1 Semester |

| Wiederholbarkeit: | Empfohlenes Fachsemester: |
| gemäß Prüfungs- und Studienordnung | |

| Maximale Studierendenzahl: | |
| nicht begrenzt | |
Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Wettbewerbsrecht (UWG)"
- haben die Studierenden grundlegende Kenntnisse im Lauterkeitsrecht (UWG) erlangt,
- haben die Studierenden gelernt, verschiedene Tatbestände und Fallgruppen des UWG zu differenzieren,
- kennen die Studierenden die methodischen Fragen sowie Probleme bei der Anwendung der Tatbestände auf konkrete, insbesondere innovative Werbe- und Marketingpraktiken,
- kennen die Studierenden die dogmatischen Konzeptionen des Lauterkeitsrechts in ihrer systematischen, ideellen und praktischen Bedeutung,
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden,
- können die Studierenden die spezifischen lauterkeitsrechtlichen Besonderheiten bei der Technik der Falllösung anwenden,
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Lehrveranstaltung: Wettbewerbsrecht (UWG) (Vorlesung)

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>152 Stunden</td>
</tr>
</tbody>
</table>

Prüfung: Mündlich (ca. 15 Minuten)

| 6 C |

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,
- grundlegende Kenntnisse im Lauterkeitsrecht aufweisen,
- ausgewählte Tatbestände des Lauterkeitsrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen lauterkeitsrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Andreas Wiebe

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

- empirischen Fachsemester:

Maximale Studierendenzahl:

nicht begrenzt
Georg-August-Universität Göttingen
Modul S.RW.1136: Wirtschaftsrecht der Medien

English title: Media Commercial Law

6 C
2 SWS

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Wirtschaftsrecht der Medien":

- haben die Studierenden grundlegende ausgewählter wirtschaftsrechtlicher Fragen im Bereich Internet und neue Medien erlangt,
- haben die Studierenden gelernt, zwischen den verschiedenen Rechtsbereichen zu differenzieren,
- kennen die Studierenden Grundlagen der einschlägigen Rechtsbereiche sowie die Probleme internetspezifischer Fragestellungen,
- kennen die Studierenden die dogmatischen Konzeptionen der verschiedenen Bereiche des Wirtschaftsrechts der Medien in ihrer systematischen, ideellen und praktischen Bedeutung,
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden,
- können die Studierenden die spezifische Technik der Falllösung im Bereich des Wirtschaftsrechts der Medien anwenden,
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden

Lehrveranstaltung: Wirtschaftsrecht der Medien (Vorlesung) 2 SWS

Prüfung: Mündlich (ca. 15 Minuten) 6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Wirtschaftsrecht der Medien aufweisen,
- ausgewählte Tatbestände des Wirtschaftsrecht der Medien beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen wirtschaftsrechtlichen Fall im Bereich der neuen Medien herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Andreas Wiebe

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
| nicht begrenzt | |
Georg-August-Universität Göttingen

Modul S.RW.1137: Immaterialgüterrecht II (Gewerbliche Schutzrechte)

English title: Intangible Property Rights II (Industrial Property Rights)

6 C
2 SWS

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Immaterialgüterrecht II (Gewerbliche Schutzrechte)"

- haben die Studierenden grundlegende Kenntnisse des Systems des Immaterialgüterrechts sowie der einzelnen gewerblichen Schutzrechte erlangt;
- haben die Studierenden gelernt, zwischen den einzelnen gewerblichen Schutzrechten (Patent, Marke, Geschmacksmuster) zu differenzieren;
- kennen die Studierenden die Voraussetzungen, Grenzen und Lizenzierungsprobleme der einzelnen Schutzrechte
- kennen die Studierenden die dogmatischen Konzeptionen des gewerblichen Rechtsschutzes in ihrer systematischen, ideellen und praktischen Bedeutung;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- können die Studierenden die spezifischen Besonderheiten der Falllösung im Bereich der gewerblichen Schutzrechte anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:
Präsenzzeit:
28 Stunden
Selbststudium:
152 Stunden

Lehrveranstaltung: Immaterialgüterrecht II (Gewerbliche Schutzrechte) (Vorlesung)

Prüfung: Mündlich (ca. 15 Minuten)

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im gewerblichen Rechtsschutz aufweisen,
- ausgewählte Tatbestände des gewerblichen Rechtsschutzes beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen Fall im Bereich der gewerblichen Schutzrechte herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Sprache: Deutsch

Modulverantwortliche[r]:
Prof. Dr. Andreas Wiebe

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:
ab 5

Maximale Studierendenzahl:
nicht begrenzt
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Presserecht"</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse über die Presse- und Meinungsfreiheit, die äußerungsrechtlichen Ansprüche, sowie deren Durchsetzung erlangt;</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, die betroffenen Rechtsgüter und die jeweiligen Ansprüche zu differenzieren;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• kennen die Studierenden die verfassungsrechtlichen Grundlagen des Presserechts;</td>
<td>152 Stunden</td>
</tr>
<tr>
<td>• kennen die Studierenden die dogmatischen Konzeptionen des Presserechts in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
<td></td>
</tr>
<tr>
<td>• können die Studierenden die spezifische Technik der Falllösung aufgrund der äußerungsrechtlichen Ansprüche anwenden;</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Presserecht (Vorlesung)</th>
<th>2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Mündlich (ca. 15 Minuten)</td>
<td>6 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Modulprüfung weisen die Studierenden nach, dass sie,</td>
<td></td>
</tr>
<tr>
<td>• grundlegende Kenntnisse im Presserecht aufweisen,</td>
<td></td>
</tr>
<tr>
<td>• ausgewählte Tatbestände des Presserechts beherrschen,</td>
<td></td>
</tr>
<tr>
<td>• die zugehörigen methodischen Grundlagen beherrschen und</td>
<td></td>
</tr>
<tr>
<td>• systematisch an einen Presserechts-Fall herangehen und diesen in vertretbarer Weise lösen können.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Grundlagen Verfassungsrecht und Grundrechte, zivilrechtliche Module abgeschlossen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Roger Mann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

| Maximale Studierendenzahl: | |
|---------------------------| |
nicht begrenzt
Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls „Immaterialgüterrecht I (Urheberrecht)“

- haben die Studierenden grundlegende Kenntnisse des Urheberrechts und des Systems der Immaterialgüterrechte erlangt;
- haben die Studierenden gelernt, zwischen den verschiedenen Arten der Immaterialgüterrechte zu differenzieren;
- kennen die Studierenden die Grundlagen des Urheberrechts und seiner Bedeutung für die digitale Gesellschaft;
- kennen die Studierenden die dogmatischen Konzeptionen des Urheberrechts in ihrer systematischen, ideellen und praktischen Bedeutung;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- können die Studierenden die spezifische immaterialgüterrechtliche Technik der Falllösung anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Lehrveranstaltung: Immaterialgüterrecht I (Urheberrecht) (Vorlesung) 2 SWS

Prüfung: Mündlich (ca. 15 Minuten) 6 C

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Urheberrecht und in den Grundlagen des Immaterialgüterrechts aufweisen,
- ausgewählte Tatbestände des Urheberrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen urheberrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Kenntnisse des Bürgerlichen Rechts, insbesondere Allgemeinen Teil, Schuldrecht und Sachenrecht im Umfang des Stoffs der Vorlesung

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Gerald Spindler
Wiebe, Andreas, Prof. Dr.

Angebotshäufigkeit:

jedes Wintersemester

Dauer:

1 Semester
<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Jugendmedienschutzrecht mit Bezügen zum Medienstrafrecht"

- haben die Studierenden grundlegende Kenntnisse in der Medienwirkungsforschung sowie in den verfassungsrechtlichen und einfachgesetzlichen Grundlagen des Jugendmedienschutzrechts erlangt;
- haben die Studierenden gelernt, die verschiedenen Schutzgrade im Jugendmedienschutzrecht zu differenzieren;
- kennen die Studierenden die rechtsstaatlichen Grundlagen des Jugendmedienschutzrechts;
- kennen die Studierenden die dogmatischen Konzeptionen des Jugendmedienschutzrechts in ihrer systematischen, ideellen und praktischen Bedeutung;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- können die Studierenden die spezifische jugendmedienschutzrechtliche Technik der Falllösung anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Prüfungskomponente</th>
<th>Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>28</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>152</td>
</tr>
</tbody>
</table>

Lehrveranstaltung:

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Jugendmedienschutzrecht (Vorlesung)</th>
<th>2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Mündlich (ca. 15 Minuten)</td>
<td>6 C</td>
</tr>
</tbody>
</table>

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,
- grundlegende Kenntnisse im Jugendmedienschutzrecht aufweisen,
- ausgewählte Tatbestände des Jugendmedienschutzrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen jugendmedienschutzrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Grundlegende Kenntnisse im Staats- und Verwaltungsrechts sowie im Allgemeinen Teil des Strafrechts

Sprache:

Deutsch

Modulverantwortliche[r]:

Prof. Dr. Murad Erdemir

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester
<table>
<thead>
<tr>
<th>Wiederholbarkeit</th>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul S.RW.1223K: Verwaltungsrecht I
English title: Administrative Law I

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Verwaltungsrecht I" haben die Studierenden grundlegende Kenntnisse vom Allgemeinen Verwaltungsrecht und haben die Studierenden gelernt, die Verwaltungsorganisation und die Rechtsquellen des Verwaltungsrechts zu erfassen.
Kennen die Studierenden die Grundbegriffe des Verwaltungsrechts und kennen die Studierenden die verschiedenen Formen des Verwaltungsverfahrens und der Verwaltungsvollstreckung.
Kennen die Studierenden zwischen den verschiedenen Formen staatlicher Ersatzleistungen differenzieren.
Kennen die Studierenden die häufigsten prozessrechtlichen Konstellationen im Bereich des Verwaltungsrechts (nach der VwGO) erfassen und fallbezogen anwenden.
Sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

| Präsenzzeit: | 84 Stunden |
| Selbststudium: | 126 Stunden |

Lehrveranstaltung:

| Begleitkolleg für Verwaltungsrecht I | 2 SWS |
| Verwaltungsrecht I (Vorlesung) | 4 SWS |

Prüfung:
Klausur (120 Minuten)

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie
- grundlegende Kenntnisse im allgemeinen Verwaltungsrecht aufweisen
- ausgewählte prozessrechtliche Konstellationen beherrschen,
- systematisch an einen Fall im allgemeinen Verwaltungsrecht herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Dr. h. c. Werner Heun

Angebotshäufigkeit:
jedes Semester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

<p>| Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 | V10-SoSe17 Seite 3251 |</p>
<table>
<thead>
<tr>
<th>nicht begrenzt</th>
</tr>
</thead>
</table>

Bemerkungen:
Georg-August-Universität Göttingen	6 C
Modul S.RW.1229: Internationales und europäisches Wirtschaftsrecht	2 SWS
English title: International and European Economic Law	
Lernziele/Kompetenzen:	
Nach erfolgreichem Absolvieren des Moduls “Internationales und europäisches Wirtschaftsrecht”;	
• haben die Studierenden grundlegende Kenntnisse im internationalen Handels- und Investitionsrecht sowie im europäischen Wirtschaftsrecht (Grundfreiheiten, Kartellrecht) und im internationalen und europäischen Recht des geistigen Eigentums erlangt;	
• kennen die Studierenden die dogmatischen Konzeptionen des Internationales und europäisches Wirtschaftsrecht in ihrer systematischen, ideellen und praktischen Bedeutung und ihrer ökonomischen Dimension;	
• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;	
• können die Studierenden die spezifische Technik der Falllösung anwenden;	
• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einfacher Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.	
Arbeitsaufwand:	
Präsenzzeit: 28 Stunden	
Selbststudium: 152 Stunden	
Lehrveranstaltung: Internationales und europäisches Wirtschaftsrecht (Vorlesung)	2 SWS
Prüfung: Mündlich (ca. 15 Minuten)	6 C
Prüfungsanforderungen:	
Durch die Modulprüfung weisen die Studierenden nach, dass sie,	
• grundlegende Kenntnisse im internationalen und europäischen Wirtschaftsrecht aufweisen,	
• die zugehörigen methodischen Grundlagen beherrschen und	
• systematisch an einen einfachen Fall aus dem internationalen oder europäischen Fall herangehen und diesen in vertretbarer Weise lösen können.	
Zugangsvoraussetzungen:	
keine	
Empfohlene Vorkenntnisse:	
Europarecht und Völkerrecht, Englisch	
Sprache:	
Deutsch	
Modulverantwortliche[r]:	
Prof. Dr. Peter-Tobias Stoll	
Angebotshäufigkeit:	
jedes Wintersemester	
Dauer:	
1 Semester	
Wiederholbarkeit:	
gemäß Prüfungs- und Studienordnung	
Empfohlenes Fachsemester:	
nicht begrenzt	
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Cases and Developments in International Economic Law"

- haben die Studierenden grundlegende Kenntnisse im internationalen Wirtschaftsrecht, insbesondere im Recht der WTO und im internationalen Investitionsrecht erlangt;
- kennen die Studierenden wesentliche Rechtsgrundlagen und ausgewählte Entscheidungen;
- kennen die Studierenden die dogmatischen Konzeptionen des internationalen Wirtschaftsrechts in ihrer systematischen, ideellen und praktischen Bedeutung und seine ökonomische Dimension;
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Lehrveranstaltung: Cases and Developments in International Economic Law
(Vorlesung)

2 SWS

Prüfung: Mündlich (ca. 15 Minuten)

6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse internationalen Wirtschaftsrecht aufweisen,
- die zugehörigen methodischen Grundlagen beherrschen,
- bekannte Fälle mit Sachverhalt und Gründen wiedergeben und analysieren und
- systematisch an einen einfachen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:
keine

Sprache:
Englisch

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Peter-Tobias Stoll

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:
icht begrenzt
Georg-August-Universität Göttingen

Modul S.RW.1231: Datenschutzrecht

English title: Data Protection Law

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls Datenschutzrecht;</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse im allgemeinen Datenschutzrecht (BDSG) sowie im bereichsspezifischen Datenschutzrecht (TKG, TMG, SGB) erlangt;</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, die verschiedenen Typen von Erlaubnisnormen sowie die verschiedenen Rechte der Betroffenen zu differenzieren;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• kennen die Studierenden die verfassungsrechtlichen Grundlagen des Rechts auf informationelle Selbstbestimmung und seine Legistlative Ausgestaltung in den wichtigsten Spezialgesetzen;</td>
<td>152 Stunden</td>
</tr>
<tr>
<td>• kennen die Studierenden die dogmatischen Konzeptionen des Datenschutzrechts in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
<td></td>
</tr>
<tr>
<td>• können die Studierenden die spezifische datenschutzrechtliche Technik der Falllösung anwenden;</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrveranstaltung: Datenschutzrecht (Vorlesung) | 2 SWS |

| Prüfung: Klausur (90 Minuten) |

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Modulprüfung weisen die Studierenden nach, dass sie,</td>
</tr>
<tr>
<td>• grundlegende Kenntnisse im allgemeinen Datenschutzrecht (BDSG) und bei den verfassungsrechtlichen Grundlagen des Datenschutzrechts aufweisen,</td>
</tr>
<tr>
<td>• ausgewählte Tatbestände des bereichsspezifischen Datenschutzrechtes (Arbeitnehmer-Datenschutz, Datenschutz bei Telekommunikation und Telemedien) beherrschen,</td>
</tr>
<tr>
<td>• die zugehörigen methodischen Grundlagen beherrschen und</td>
</tr>
<tr>
<td>• systematisch an einen datenschutzrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Dr. Fritjof Börner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul S.RW.1232: Rundfunkrecht (mit Bezügen zum Recht der Neuen Medien)
English title: Broadcasting Law (Including Law Governing Modern Media)

<table>
<thead>
<tr>
<th>6 C 2 SWS</th>
</tr>
</thead>
</table>

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Rundfunkrecht" mit Bezügen zum Recht der Neuen Medien, haben die Studierenden:

- grundlegende Kenntnisse vom Rundfunkrecht und vom Recht der Neuen Medien als Teilgebiete des Medienrechts erlangt;
- gelernt, zwischen verschiedenen medialen Angeboten rechtlich zu differenzieren und die Konsequenzen hieraus für die rechtliche Regulierung zu ziehen;
- kennen die rechtlichen Regulierungsrahmen für den öffentlichen und privaten Rundfunk in Deutschland;
- kennen die dogmatischen Konzeptionen der Mediengrundrechte des Grundgesetzes und des europäischen Rechts in ihrer systematischen, ideellen und praktischen Bedeutung;
- sind in der Lage, den bestehenden rechtlichen Rahmen für die Regulierung des Rundfunks und der Neuen Medien kritisch zu reflektieren;
- kennen die häufigsten prozessrechtlichen Konstellationen im Bereich des Rundfunks zur Anwendung bringen;
- sind in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:
- Präsenzzeit: 28 Stunden
- Selbststudium: 152 Stunden

Lehrveranstaltung: Rundfunkrecht (mit Bezügen zum Recht der Neuen Medien)
(Vorlesung)
2 SWS

Prüfung: Mündlich (ca. 15 Minuten)
6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie

- grundlegende Kenntnisse im materiellen Rundfunkrecht aufweisen;
- ausgewählte prozessrechtliche Konstellationen beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen Fall im Rundfunkrecht herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen: keine
Empfohlene Vorkenntnisse: keine

Sprache: Deutsch
Modulverantwortliche[r]: Prof. Dr. Christine Langenfeld

Angebotshäufigkeit: jedes Wintersemester
Dauer: 1 Semester

Wiederholbarkeit:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3257
<table>
<thead>
<tr>
<th>gemäß Prüfungs- und Studienordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Studierendenzahl:</td>
</tr>
<tr>
<td>nicht begrenzt</td>
</tr>
</tbody>
</table>
Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls "Telekommunikationsrecht" haben die Studierenden grundlegende Kenntnisse des Telekommunikationsrechts (wirtschaftliche und verfassungsrechtliche Grundlagen, Zugangs- und Entgeltregulierung sowie weitere Regelungsgehalte des Telekommunikationsgesetzes) erlangt.

- haben die Studierenden gelernt, die verschiedenen Phasen der Zugangsregulierung und die Arten der Entgeltregulierung zu differenzieren,
- kennen die Studierenden die verfassungsrechtlichen Grundlagen des Telekommunikationsrechts, Grundzüge der Organisation der Bundesnetzagentur und des regulierungsbehördlichen Verfahrens, Grundzüge der besonderen Missbrauchsaufsicht, des Kundenschutzes sowie der Nummern- und Frequenzordnung,
- kennen die Studierenden die dogmatischen Konzeptionen des Telekommunikationsrechts in ihrer systematischen, ideellen und praktischen Bedeutung,
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden,
- können die Studierenden die spezifische regulierungsrechtliche Technik der Falllösung anwenden,
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

Präsenzzeit:
- 28 Stunden

Selbststudium:
- 152 Stunden

Lehrveranstaltung: Telekommunikationsrecht (Vorlesung)

2 SWS

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Telekommunikationsrecht aufweisen,
- ausgewählte Tatbestände der Zugangs- und Entgeltregulierung sowie sonstiger Regelungsgegenstände des Telekommunikationsrechts beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen telekommunikationsrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

Kennen des Allgemeinen Verwaltungsrechts im Umfang des Stoffs der Vorlesung Verwaltungsrecht I

Sprache:

Modulverantwortliche[r]:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3259
<table>
<thead>
<tr>
<th>Deutsch</th>
<th>Prof. Dr. Marcel Kaufmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit:</td>
<td>Dauer:</td>
</tr>
<tr>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
<td></td>
</tr>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul S.RW.1317: Kriminologie I
English title: Criminology I

| 6 C
| 2 SWS |

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Kriminologie I":

- haben die Studierenden grundlegende Kenntnisse über den Gegenstand und die Aufgaben der Kriminologie erlangt;
- haben die Studierenden gelernt, kriminalstatistische Daten zu interpretieren und deren Aussagegehalt zu verstehen;
- haben die Studierenden Hintergründe und Auswirkungen der strafrechtlichen Selektion kennengelernt;
- kennen die Studierenden die wichtigsten Theorien zur Entstehung von Kriminalität und ihre praktische Bedeutung für die Kriminalprävention;
- kennen die Studierenden empirisch-kriminologische Forschungsmethoden und haben Grundkenntnisse über Persönlichkeitsmerkmale und Sozialdaten registrierter Straftäter erlangt;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse für eine Analyse von Kriminalitätsstruktur und -entwicklung sowie für kriminalpräventive Überlegungen fruchtbar zu machen.

Arbeitsaufwand:

- Präsenzzeit: 28 Stunden
- Selbststudium: 152 Stunden

Lehrveranstaltung: Kriminologie I (Vorlesung)
2 SWS

Prüfung: Klausur (90 Minuten)
6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie

- grundlegende Kenntnisse im Bereich der Kriminologie aufweisen,
- ausgewählte Kriminalitätstheorien beherrschen und in der Lage sind, deren Reichweite und Aussagekraft zu bewerten und auf einen konkreten Sachverhalt zu übertragen,
- die Interpretation kriminalstatistischer Daten beherrschen und
- Grundlagen der empirisch-kriminologische Forschungsmethoden mit ihren jeweilige Stärken und Schwächen kennen und Forschungsergebnisse entsprechend interpretieren können.

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
keine

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Dr. h. c. Jörg-Martin Jehle

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

Maximale Studierendenzahl:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7
V10-SoSe17
Seite 3261
Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls "Angewandte Kriminologie" haben die Studierenden grundlegende Kenntnisse über die Anwendung kriminologischer Erkenntnisse im Strafrecht erlangt; haben die Studierenden strafrechtlichen Sanktionen einschl. der Maßregeln der Besserung und Sicherung in ihrer Bedeutung und Wirkung kennengelernt; kennen die Studierenden empirisch-kriminologische Forschungs-methoden und haben Grundkenntnisse über Persönlichkeitsmerkmale und Sozialdaten registrierter Straftäter erlangt; kennen die Studierenden Grundlagen der Criminalprognose; besitzen die Studierenden Grundkenntnisse im Bereich der Viktimologie und des Umgangs mit Opfern im Strafverfahren; beherrschen die Studierenden die Grundlagen der Strafzumessung, Schuldfähigkeit und Schuldfähigkeitsbegutachtung und sind in der Lage, dieses Wissen bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen kriminologischen Fragen kritisch auseinanderzusetzen.

Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden

Lehrveranstaltung: Angewandte Kriminologie (Vorlesung)
2 SWS

Prüfung: Mündlich (ca. 15 Minuten)
6 C

Prüfungsanforderungen:
Durch die Modulprüfung weisen die Studierenden nach, dass sie

- grundlegende Kenntnisse im Bereich der angewandten Kriminologie aufweisen,
- die methodischen Grundlagen der Strafzumessung und der Beurteilung der Schuldfähigkeit beherrschen und damit
- systematisch an einen konkreten Sachverhalt herangehen und rechtlich zulässige Sanktionen ermitteln sowie in Einzelfällen eine angezeigte Sanktion vorschlagen können.

Zugangsvoraussetzungen:
keine

Sprache:
Deutsch

Angebotshäufigkeit:
jedes Sommersemester

Dauer:
1 Semester

Wiederholbarkeit:
gemäß Prüfungs- und Studienordnung

Maximale Studierendenzahl:
kein begrenzter

Empfohlene Vorkenntnisse:
keine

Modulverantwortliche[r]:
Prof. Dr. Dr. h. c. Jörg-Martin Jehle

Empfohlenes Fachsemester:

Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7 V10-SoSe17 Seite 3263
Georg-August-Universität Göttingen

Modul S.RW.1320: Jugendstrafrecht

English title: Criminal Law in Relation to Young Offenders

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Jugendstrafrecht";</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse im Bereich des</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>Jugendstrafrechts mit Bezügen zur Jugendkriminologie erlangt;</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, verschiedene Alters- und</td>
<td>152 Stunden</td>
</tr>
<tr>
<td>Reifestufen zu differenzieren;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Rechtsfolgen des Jugendstrafrechts sowie das</td>
<td></td>
</tr>
<tr>
<td>Jugendgerichtsverfahren einschließlich Vollstreckung und Vollzug;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Geschichte des Jugendstrafrechts, die dogmatischen</td>
<td></td>
</tr>
<tr>
<td>Konzeptionen des JGG sowie aktuelle Entwicklungen und Reformbestrebungen;</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen jugendstrafrechtlichen</td>
<td></td>
</tr>
<tr>
<td>Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den</td>
<td></td>
</tr>
<tr>
<td>aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

| **Lehrveranstaltung:** Jugendstrafrecht (Vorlesung) | 2 SWS |

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im Jugendstrafrecht aufweisen,
- die Anwendungsvoraussetzungen und die Rechtsfolgen des JGG beherrschen,
- die zugehörigen methodischen Grundlagen beherrschen und
- systematisch an einen jugendstrafrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache: Deutsch

Modulverantwortliche[r]:

Prof. Dr. Dr. h. c. Jörg-Martin Jehle

Angebotshäufigkeit:

jedes Sommersemester

Dauer:

1 Semester

Wiederholbarkeit:

gemäß Prüfungs- und Studienordnung

Empfohlenes Fachsemester:

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Modul S.RW.2220: Seminare Wettbewerbsrecht und Immaterialgüterrecht
English title: Seminar on Competition Law and Intangible Property Law

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Absolvieren des Moduls "Seminare Wettbewerbsrecht und Immaterialgüterrecht";</td>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden grundlegende Kenntnisse im Wettbewerbs- und Immaterialgüterrecht erlangt;</td>
<td>Selbststudium: 318 Stunden</td>
</tr>
<tr>
<td>• haben die Studierenden gelernt, zwischen Wettbewerbs- und Immaterialgüterrecht sowie den verschiedenen gewerblichen Schutzsystemen zu differenzieren;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Grundlagen von Wettbewerbs- und Immaterialgüterrecht und ihre Bedeutung für die digitale Gesellschaft;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die dogmatischen Konzeptionen des Wettbewerbs- und Immaterialgüterrecht in ihrer systematischen, ideellen und praktischen Bedeutung;</td>
<td></td>
</tr>
<tr>
<td>• kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;</td>
<td></td>
</tr>
<tr>
<td>• sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminare Wettbewerbsrecht und Immaterialgüterrecht (Vorlesung)</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung:</th>
<th>12 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vortrag mit schriftlicher Ausarbeitung (max. 30 Seiten) und Diskussion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsanforderungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Modulprüfung weisen die Studierenden nach, dass sie,</td>
<td></td>
</tr>
<tr>
<td>• grundlegende Kenntnisse im Wettbewerbs- und Immaterialgüterrecht aufweisen,</td>
<td></td>
</tr>
<tr>
<td>• ausgewählte Tatbestände des Wettbewerbs- und Immaterialgüterrecht beherrschen,</td>
<td></td>
</tr>
<tr>
<td>• die zugehörigen methodischen Grundlagen beherrschen und</td>
<td></td>
</tr>
<tr>
<td>• systematisch an einen wettbewerbs- und immaterialgüterrechtlichen Fall herangehen und diesen in vertretbarer Weise lösen können.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Kenntnisse des Wettbewerbsrechts sowie der gewerblichen Schutzrechte im Umfang des Stoffs der Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. Gerald Spindler</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Andreas Wiebe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>gemäß Prüfungs- und Studienordnung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen

Modul S.RW.2410: Seminare E-Commerce-Recht und Regulierung

English title: Seminar on E-Commerce-Law and Regulation

<table>
<thead>
<tr>
<th>12 C</th>
<th>3 SWS</th>
</tr>
</thead>
</table>

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls „Seminare E-Commerce-Recht und Regulierung“

- haben die Studierenden grundlegende Kenntnisse im E-Commerce- und den verschiedenen Bereichen des Regulierungsrechts (insbes. Rundfunkrecht, Wirtschaftsrecht der Medien, Telekommunikationsrecht, Jugendmedienschutzrecht, Datenschutzrecht, Presserecht, E-Commerce and Cyberspace Law, European ICT and Media Law, Europäisches und internationales Wirtschaftsrecht) erlangt;
- kennen die Studierenden die Grundlagen von E-Commerce- und Regulierungsrecht und ihre Bedeutung für die digitale Gesellschaft,
- kennen die Studierenden die dogmatischen Konzeptionen des E-Commerce- und Regulierungsrechts in ihrer systematischen, ideellen und praktischen Bedeutung,
- kennen die Studierenden die Methoden der Gesetzesauslegung (Wortlaut, systematische, historische, teleologische Auslegung) und können diese anwenden;
- sind die Studierenden in der Lage, die erworbenen Kenntnisse bei der Lösung einschlägiger Fälle umzusetzen und sich mit den aufgeworfenen Rechtsfragen kritisch auseinanderzusetzen.

Arbeitsaufwand:

| Präsenzzeit: | 42 Stunden |
| Selbststudium: | 318 Stunden |

Lehrveranstaltung: Seminare Rechtsgestaltung und Durchsetzung (Vorlesung) | 3 SWS |

Prüfung: Vortrag mit schriftlicher Ausarbeitung (max. 30 Seiten) und Diskussion

Prüfungsanforderungen:

Durch die Modulprüfung weisen die Studierenden nach, dass sie,

- grundlegende Kenntnisse im gewählten Teilgebiet des E-Commerce- und Regulierungsrechts (insbes. Rundfunkrecht, Wirtschaftsrecht der Medien, Telekommunikationsrecht, Jugendmedienschutzrecht, Datenschutzrecht, Presserecht, E-Commerce and Cyberspace Law, European ICT and Media Law, Europäisches und internationales Wirtschaftsrecht) aufweisen,
- ausgewählte Tatbestände des gewählten Teilgebiets des Öffentlichen Rechts beherrschen,
- die zugehörigen methodischen und theoretischen Grundlagen beherrschen,
- die Grundlagen des wissenschaftlichen Arbeitens beherrschen,
- eine Fragestellung bearbeiten und in Form eines wissenschaftlichen Textes darstellen können und
- ein erarbeitetes Thema vorzutragen und im Rahmen einer Diskussion zu verteidigen wissen.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

[Amtliche Mitteilungen II der Georg-August-Universität Göttingen vom 29.03.2017/Nr. 7] V10-SoSe17 Seite 3267
<table>
<thead>
<tr>
<th>Sprache: Deutsch</th>
<th>Modulverantwortliche[r]: Prof. Dr. Christine Langenfeld, Prof. Dr. Gerald Spindler, Prof. Dr. Andreas Wiebe, Prof. Dr. Torsten Körber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit: jedes Semester</td>
<td>Dauer: 1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit: gemäß Prüfungs- und Studienordnung</td>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>Maximale Studierendenzahl: nicht begrenzt</td>
<td></td>
</tr>
</tbody>
</table>
Georg-August-Universität Göttingen
Module SK.Bio-NF.7001: Neurobiology

<table>
<thead>
<tr>
<th>Learning outcome, core skills:</th>
<th>Workload:</th>
</tr>
</thead>
</table>
| The students should acquire comprehension in form and function of neurons and their anatomical and physiological features (genetics, subcellular organization, resting membrane potential, action potential generation, stimulus conduction, transmitter release, ion channels, receptors, second messenger cascades, axonal transport). The students acquire knowledge of the physiological basics of sensory systems (olfactory, gustatory, acoustic, mechanosensory and visual perception) as well as motor control. Based on this the students educe understanding for the relation between neuronal circuits and simple modes of behavior (central pattern generators, reflexes, and taxis movements). The students should conceptually learn how neuronal connections are modified by experience (cellular mechanisms of learning and memory) and should learn different types of modification of behavior based on experience and neuronal substrates. The students should acquire fundamental insight into the organization and function of brains and autonomous nervous systems of mammals and invertebrates. The neurobiological basis of behavioral control (orientation, communication, circadian rhythm and sleep as well as motivation and metabolism) is explained. The students will learn physiological and cellular mechanisms of aging and of neurodegenerative diseases. | Attendance time: 30 h
Self-study time: 60 h |

| Course: Neurobiology (Lecture) |
| Examination: Written examination (90 minutes) |
| Examination requirements: |
| The students should be able to assess coherence and facts of statements in neurobiology and to answer questions on the structure and function of neurons and neuronal circuits. They should have the ability to describe and compare neuronal basics of behavioral control, their experience-dependent modification and conceptual mechanisms of complex behavior. They should be able to describe and compare physiological mechanisms of sensory perception and different sensory modalities as well as physiological and cellular mechanisms of aging and of neurodegenerative diseases. |

<table>
<thead>
<tr>
<th>Admission requirements:</th>
<th>Recommended previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Basic knowledge in Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language:</th>
<th>Person responsible for module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. Andre Fiala</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course frequency:</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>each summer semester</td>
<td>1 semester[s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of repeat examinations permitted:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice</td>
<td>4 - 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
Modul SK.Bio.305: Grundlagen der Biostatistik mit R

English title: Biostatistics with R

Lernziele/Kompetenzen:
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden den Umgang mit der freien Statistik-Sprache R und die Anwendung der Sprache auf biologische Datensätze erlernt. Sie können die statistischen Verfahren wie deskriptive Statistik, parametrische und nicht parametrische Zweistichprobentests, Chi-Quadrat Test, Korrelationsanalyse, lineare Regressionsanalyse und ANOVA anwenden.

Arbeitsaufwand:

| Präsenzzeit: | 30 Stunden |
| Selbststudium: | 60 Stunden |

Lehrveranstaltung: Einführung in die Biostatistik mit R (Seminar)

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:
regelmäßige Kursteilnahme und Abgabe der Lösungen zu den Übungszetteln

Prüfungsanforderungen:
Eigenständige Analyse biologischer Datensätze mit Hilfe der Sprache R; Beurteilung und praktische Anwendung grundlegender Testverfahren der Statistik

Zugangsvoraussetzungen:
keine

Empfohlene Vorkenntnisse:
Mathematische und statistische Grundkenntnisse

Sprache:
Deutsch

Modulverantwortliche[r]:
Prof. Dr. Burkhard Morgenstern

Angebotshäufigkeit:
jedes Wintersemester

Dauer:
1 Semester

Wiederholbarkeit:
zweimalig

Empfohlenes Fachsemester:
5 - 6

Maximale Studierendenzahl:
23
Georg-August-Universität Göttingen

Modul SK.Bio.355: Biologische Psychologie I
English title: Biological psychology I

<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sind in der Lage zentrale Konzepte und Forschungsmethoden der Biopsychologie; Neuro-, Sinnes- und Motorphysiologie, Lernen, Gedächtnis, Aufmerksamkeit, Psychopathologie und Sexualität zu überblicken.</td>
</tr>
<tr>
<td>Neben dem Wissenserwerb lernen die Studierenden analytisch zu denken, methodisch zu reflektieren sowie kritisch wissenschaftliche Theorien auf die ihnen zu Grunde liegenden empirische Befunde zu untersuchen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 28 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 62 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung: Biopsychologie I (Vorlesung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung: Klausur (30 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Die Studierenden erbringen den Nachweis, dass sie in der Lage sind, zentrale Konzepte und Forschungsmethoden der Biopsychologie; Neuro-, Sinnes- und Motorphysiologie, Lernen, Gedächtnis, Aufmerksamkeit, Psychopathologie und Sexualität zu überblicken.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundkenntnisse in Biologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugangsvoraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für 2-F-BA: mindestens 20 C aus den Orientierungsmoduln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundkenntnisse in Biologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stefan Treue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotshäufigkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Angebotshäufigkeit:

| jedes Wintersemester |

<table>
<thead>
<tr>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederholbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>zweimalig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlenes Fachsemester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximale Studierendenzahl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>Modul SK.Bio.356 - Version 1</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>Modul SK.Bio.356: Biologische Psychologie II</td>
</tr>
<tr>
<td>English title: Biological psychology II</td>
</tr>
<tr>
<td>3 C</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Präsenzzeit: 28 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 62 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung: Biologische Psychologie II (Vorlesung)</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Prüfung: Klausur (30 Minuten)</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Die Studierenden sollen das in der Vorlesung vermittelte Grundwissen der Biopsychologie beherrschen können. Sie sollen die Fähigkeit besitzen, über die gelernten Fakten hinaus Zusammenhänge des Erwerbens von kognitiven Fähigkeiten, Verhaltensmustern und biologischen Grundlagen der Neurobiologie zu verstehen und darzustellen sowie das erworbene Wissen auf neue Situationen anzuwenden.</td>
</tr>
<tr>
<td>Zugangsvoraussetzungen:</td>
</tr>
<tr>
<td>Für 2-F-BA: mindestens 20 C aus den Orientierungsmodulen</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
</tr>
<tr>
<td>SK.Bio.355</td>
</tr>
<tr>
<td>Grundkenntnisse der Neurobiologie</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche[r]:</td>
</tr>
<tr>
<td>Prof. Dr. Stefan Treue</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
</tr>
<tr>
<td>jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer:</td>
</tr>
<tr>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
</tr>
<tr>
<td>zweimalig</td>
</tr>
<tr>
<td>Empfohlenes Fachsemester:</td>
</tr>
<tr>
<td>3 - 5</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Selbststudium:</td>
</tr>
<tr>
<td>Lehrveranstaltung: Biologische Psychologie III (Vorlesung)</td>
</tr>
<tr>
<td>Prüfung: Klausur (60 Minuten)</td>
</tr>
<tr>
<td>Prüfungsanforderungen:</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Angebotshäufigkeit:</td>
</tr>
<tr>
<td>Wiederholbarkeit:</td>
</tr>
<tr>
<td>Maximale Studierendenzahl:</td>
</tr>
</tbody>
</table>