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SUMMARY

We study the class of penalized spline estimators, which enjoy similarities to both regression
splines, without penalty and with less knots than data points, and smoothing splines, with knots
equal to the data points and a penalty controlling the roughness of the fit. Depending on the num-
ber of knots, sample size and penalty, we show that the theoretical properties of penalized regres-
sion spline estimators are either similar to those of regression splines or to those of smoothing
splines, with a clear breakpoint distinguishing the cases.We prove that using less knots results in
better asymptotic rates than when using a large number of knots. We obtain expressions for bias
and variance and asymptotic rates for the number of knots andpenalty parameter.

Some key words: Mean squared error; Nonparametric regression; Penalty; Regression splines; Smoothing splines.
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2 G. CLAESKENS, T. KRIVOBOKOVA , J. D. OPSOMER

1. INTRODUCTION

Penalized spline smoothing has gained much popularity overthe last decade. This smoothing

technique with flexible choice of bases and penalties can be viewed as a compromise between

regression and smoothing splines. In this paper we obtain asymptotic properties of such estima-

tors and relate them to known asymptotic results for regression splines and smoothing splines,

which can be seen as the two extreme cases, with penalized splines situated in between.

The combination of regression splines, with number of knotsless than the sample size, and a

penalty has been studied by several authors. O’Sullivan (1986) used penalized fitting with cubic

B-splines for inverse problems. He used a set of knots different from the data and a penalty

equal to the integrated squared second derivative of the spline function. O’Sullivan splines are

discussed by Ormerod & Wand (2008). Kelly & Rice (1990) and Besse et al. (1997) used B-

spline approximations to the smoothing splines, which theycalled hybrid splines. Schwetlick

& Kunert (1993) decoupled the order of the B-spline and the derivative in the penalty function.

This same idea has been promoted by Eilers & Marx (1996) who used a difference penalty on

the spline coefficients. Many applications and examples of penalized splines are presented in

Ruppert et al. (2003).

There is a rich literature on smoothing splines, which we shall only briefly touch here. Ref-

erence books are Wahba (1990), Green & Silverman (1994) and Eubank (1999). For smoothing

splines, the penalty is the integrated squaredqth derivative of the function, leading to a smoothing

spline of degree2q − 1, with q = 2 a common choice. Rice & Rosenblatt (1981, 1983) study the

estimator’s integrated mean squared error and effects of boundary bias, see also Oehlert (1992)

and Utreras (1988). Wahba (1975) and Craven & Wahba (1978) investigated the averaged mean

squared error, in connection with the choice of the smoothing parameter. Cox (1983) studied

convergence rates for robust smoothing splines. Speckman (1985) obtained the optimal rates of
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Asymptotic properties of penalized spline estimators 3

convergence for smoothing spline estimators, and Nychka (1995) obtained local properties of

smoothing splines.

For regression splines, the integrated mean squared error was studied by Agarwal & Stud-

den (1980), and Huang (2003a,b) who obtained local asymptotic results by considering the least

squares estimator as an orthogonal projection. Important theoretical results on unpenalized re-

gression splines are obtained by Zhou et al. (1998).

Theoretical properties of penalized spline estimators areless explored. Some first results can

be found in Hall & Opsomer (2005), who used a white noise representation of the model to

obtain the mean squared error and consistency of the estimator. Kauermann et al. (2008) work

with generalized linear models. Li & Ruppert (2008) used an equivalent kernel representation for

piecewise constant and linear B-splines and first or second order difference penalties. Their as-

sumption on the relative large number of knots, thus close tothe smoothing splines case, allowed

them to ignore the approximation bias.

In this paper we provide a general treatment, any order of spline and general penalty, and we

study with one theory the two asymptotic situations, eitherclose to regression splines or close to

smoothing splines. One of our main results is that we find a clear “breakpoint” in the asymptotic

properties of the penalized splines, with the boundary between the two types of behavior de-

pending on an explicitly defined function of the number of knots, the sample size and the penalty

parameter. Depending on the value of this function, the asymptotic results are related to those of

regression splines or to those of smoothing splines. An interesting finding is that it is better to

use a smaller number of knots, thus close to the regression splines case, since that results in a

smaller mean squared error.
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4 G. CLAESKENS, T. KRIVOBOKOVA , J. D. OPSOMER

2. ESTIMATION WITH SPLINES

2·1. Notation and model assumptions

Based on data(Yi, xi), with fixedxi ∈ [a, b], i = 1, . . . , n anda, b < ∞ with true relationship

Yi = f(xi) + εi, (1)

we aim to estimate the unknown smooth functionf(·) ∈ Cp+1([a, b]), ap + 1 times continuously

differentiable function, with penalized splines. The residualsεi are assumed to be uncorrelated

with zero mean and varianceσ2 > 0.

2·2. Penalized splines with B-spline basis functions

The idea of penalized spline smoothing with B-spline basis functions traces back to O’Sullivan

(1986), see also Schwetlick & Kunert (1993). Classically, B-splines are defined recursively, see

de Boor (2001, ch. IX). Let the valuep denote the degree of theB-spline, implying that the

order equalsp + 1. On an interval[a, b], define a sequence of knotsa = κ0 < κ1 < · · · < κK <

κK+1 = b. In addition, definep knots κ−p = κ−p+1 = · · · = κ−1 = κ0 and another set ofp

knotsκK+1 = κK+2 = · · · = κK+p+1. The B-spline basis functions are defined as

Nj,1(x) =






1, κj ≤ x < κj+1

0, otherwise

,

Nj,p+1(x) =
x − κj

κj+p − κj
Nj,p(x) +

κj+p+1 − x

κj+p+1 − κj+1
Nj+1,p(x),

for j = −p, . . . ,K. Thereby the convention0/0 = 0 is used. With the use of the additional knots,

this gives preciselyK + p + 1 basis functions.

We define the penalized spline estimator as the minimizer of

n∑

i=1

{Yi −
K∑

j=−p

βjNj,p+1(xi)}
2 + λ

∫ b

a
[{

K∑

j=−p

βjNj,p+1(x)}(q)]2dx, (2)
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Asymptotic properties of penalized spline estimators 5

where the penalty is the integrated squaredqth order derivative of the spline function, which is

assumed to be finite. Since the(p + 1)st derivative of a spline function of degreep + 1 contains

Dirac delta functions, it is a natural condition to haveq ≤ p. However, in Section 5 we treat the

case of truncated polynomial basis functions whereq = p + 1. The penalty constantλ plays the

role of a smoothing parameter. For a fixedn, letting λ → 0 implies an unpenalized estimate,

while λ → ∞ forces convergence of theqth derivative of the spline function to zero, with the

consequence that the limiting estimator is a(q − 1)th degree polynomial. From the derivative

formula for B-spline functions (de Boor (2001), ch. X),

{
K∑

j=−p

βjNj,p+1(x)}(q) =
K∑

j=−p+q

Nj,p+1−q(x)β
(q)
j ,

where the coefficientsβ(q)
j are defined recursively via

β
(1)
j = p(βj − βj−1)/(κj+p − κj),

β
(q)
j = (p + 1 − q)(β

(q−1)
j − β

(q−1)
j−1 )/(κj+p+1−q − κj), q = 2, 3, . . . . (3)

We rewrite the penalty term in (2) asλβt∆t
qR∆qβ, where the matrixR has elementsRij =

∫ b
a Nj,p+1−q(x)Ni,p+1−q(x)dx, for i, j = −p + q, . . . ,K and ∆q denotes the matrix corre-

sponding to the weighted difference operator defined in (3),i.e. β(q) = ∆qβ. For the special

case of equidistant knots, i.e.κj − κj−1 = δ for any j = −p + 1, . . . ,K, there is an explicit

expression of the matrix∆q in terms of the matrix∇q, corresponding to theqth difference op-

erator, defined recursively viaβ(1)
j = βj − βj−1, β

(q)
j = β

(q−1)
j − β

(q−1)
j−1 , q = 2, 3, . . .. In this

case,∆q = δ−q∇q.

Further, define the spline basis vector of dimension1 × (K + p + 1) as N(x) =

{N−p,p+1(x), . . . , NK,p+1(x)}, then × (K + p + 1) spline design matrixN = {N (x1)
t, . . . ,

N(xn)t}t, and letDq = ∆t
qR∆q. With this notation, the penalized spline estimator takes the
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6 G. CLAESKENS, T. KRIVOBOKOVA , J. D. OPSOMER

form of a ridge regression estimator

f̂ = N(N tN + λDq)
−1N tY , (4)

wheref̂ = {f̂(x1), . . . , f̂(xn)}t andY = (Y1, . . . , Yn)t. This estimator has been considered in

Ormerod & Wand (2008), who gave it the name O’Sullivan spline, or just O-spline, estimator and

presented an efficient algorithm for computation of the matrix Dq. A slightly modified version

of (4), known as the P-spline estimator, has been introducedby Eilers & Marx (1996). They

used equidistant knots and a combination of cubic splines (p = 3) and second order penalty (q =

2). Moreover, only the diagonal elements of the tridiagonal matrix R were taken into account,

resulting in the simpler penalty matrixcδ−4∇t
2∇2, with c =

∫ b
a{N j,2(x)}2dx. Sincec andδ are

constants, they can be absorbed in the penalty constant. Eilers & Marx (1996) motivated the

difference penalty as a good approximation to the penaltyDq. Since these simplifications do

not influence the asymptotic properties of the estimator, weuse the general estimator (4) for our

theoretical investigation.

2·3. Regression splines

An unpenalized estimator withλ = 0 in (4) is referred to as a regression spline estimator.

More precisely, the regression spline estimator of order(p + 1) for f(x) is the minimizer of

n∑

i=1

{Yi − f̂reg(xi)}
2 = min

s(x)∈S(p+1;κ)

n∑

i=1

{Yi − s(xi)}
2,

where

S(p + 1;κ) =
{
s(·) ∈ Cp−1[a, b] : s is a degreep polynomial on each[κj , κj+1]

}
, p > 0,

is the set spline functions of degreep with knotsκ = {a = κ0 < κ1 < · · · < κK < κK+1 = b}

andS(1;κ) is the set of step functions with jumps at the knots. SinceNj,p+1(·), j = −p, . . . ,K
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Asymptotic properties of penalized spline estimators 7

form a basis forS(p + 1;κ), see Schumaker (1981, ch. 4),

f̂reg(x) = N(x)(N tN)−1N tY ∈ S(p + 1, κ). (5)

Further, we denote withsf (·) = N(·)β ∈ S(p + 1, κ) the bestL∞ approximation to functionf .

The asymptotic properties of the regression spline estimator f̂reg(x) have been studied in Zhou

et al. (1998), where the following assumptions are stated.

(A1) Let δ = max0≤j≤K(κj+1 − κj). There exists a constantM > 0, such that

δ/min0≤j≤K(κj+1 − κj) ≤ M andδ = o(K−1).

(A2) For deterministic design pointsxi ∈ [a, b], i = 1, . . . , n, assume that there exists a distribution

function Q with corresponding positive continuous design densityρ such that, withQn the

empirical distribution ofx1, . . . , xn, supx∈[a,b] |Qn(x) − Q(x)| = o(K−1).

(A3) The number of knotsK = o(n).

Zhou et al. (1998) obtained the approximation bias and variance as

E{f̂reg(x)} − f(x) = ba(x) + o(δp+1), (6)

var{f̂reg(x)} =
σ2

n
N(x)G−1N t(x) + o{(nδ)−1}, (7)

whereG =
∫ b
a N(x)tN(x)ρ(x)dx and the approximation bias

ba(x; p + 1) = −
f (p+1)(x)

(p + 1)!

K∑

j=0

I[κj ,κj+1)(x)(κj+1 − κj)
p+1Bp+1

(
x − κj

κj+1 − κj

)

, (8)

with Bp+1(·) the(p + 1)th Bernoulli polynomial, see p. 804 of Abramowitz & Stegun (1972).

2·4. Smoothing splines

The smoothing spline estimator forf(·) in (1) arises as a solution of the minimization problem

min
f∈W q[a,b]

[
n∑

i=1

{Yi − f(xi)}
2 + λ

∫ b

a
{f (q)(x)}2dx

]

, (9)
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8 G. CLAESKENS, T. KRIVOBOKOVA , J. D. OPSOMER

whereλ > 0 andW q[a, b] denotes the Sobolev space of orderq, i.e.W q[a, b] = {f : f hasq −

1 absolute continuous derivatives,
∫ b
a{f

(q)(x)}2dx < ∞}. It turns out thatf̂ss(x), the solution

of (9), is the natural polynomial spline function of degree2q − 1 with knots atxi. Namely,

f̂ss(x) is a polynomial of degreeq − 1 on [x1, x2] and [xn−1, xn] and of degree2q − 1 on

(xi, xi+1), i = 2, . . . , n − 2 with jumps in the(2q − 1)st derivative only at the knots. It has

been proven, see e.g. Utreras (1985), that E{(f − f̂ss)
2} = O(λ/n) + σ2O(n1/(2q)−1λ−1/(2q)),

so thatλ = O(n1/(1+2q)) provides the optimal rate of convergence, as long asλn2q−1 → ∞.

The differentiability assumption for smoothing splines (f ∈ W q) is weaker compared to regres-

sion splines case (f ∈ Cp+1) if p ≥ q. We refer to Eubank (1999) for further discussion of the

theoretical properties of smoothing splines.

3. AVERAGE MEAN SQUARED ERROR OF THE PENALIZED SPLINE ESTIMATOR

We investigate the average mean squared error (AMSE) of the penalized spline estimator and

discuss the optimum choice of smoothing parameterλ and number of knotsK. Similar asymp-

totic results could be obtained using the mean integrated squared error (MISE) instead of the

average mean squared error. Compare, for example, Wahba (1975) for the average mean squared

error and Rice & Rosenblatt (1981) for the mean integrated squared error for smoothing splines

or Zhou et al. (1998) for the average mean squared error and Agarwal & Studden (1980) for the

mean integrated squared error for regression splines. Withthe Demmler & Reinsch (1975) de-

composition, the average bias and variance can be expressedin terms of the eigenvalues obtained

from the singular value decomposition

(N tN)−1/2Dq(N
tN)−1/2 = Udiag(s)U t, (10)

where U is the matrix of eigenvectors ands is the vector of eigenvaluessj. De-

note A = N(N tN)−1/2U . This matrix is semi-orthogonal withAtA = IK+p+1 and AAt =
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Asymptotic properties of penalized spline estimators 9

N(N tN)−1N t. We can rewrite the penalized spline estimator (4) as

f̂ = A{In + λ diag(s)}−1AtY (11)

= {In + λ Adiag(s)At}−1AAtY = {In + λ Adiag(s)At}−1f̂ reg. (12)

Equation (12) clearly shows the shrinkage effect of including the penalty term. Equality (11)

provides an expression that is straightforward to use to obtain the average mean squared error

AMSE(f̂) =
1

n
E{(f̂ − f)t(f̂ − f)}

=
σ2

n

K+p+1∑

j=1

1

(1 + λsj)2
+

λ2

n

K+p+1∑

j=1

s2
jb

2
j

(1 + λsj)2
+

1

n
f t(In − AAt)f ,

wheref = {f(x1), · · · , f(xn)}t andb = Atf with componentsbj . SinceAAt is idempotent and

AAtf = E(f̂ reg) we obtain that

AMSE(f̂) =
K+p+1∑

j=1

σ2

n(1 + λsj)2
+

K+p+1∑

j=1

λ2s2
jb

2
j

n(1 + λsj)2

+
1

n

n∑

j=1

[
E{f̂reg(xj)} − f(xj)

]2
. (13)

The first term in (13) is the average variance, the second termis the average squared shrinkage

bias which is due to the penalization, and the last term is theaverage squared approximation

bias, which can be obtained from (6) and is due to representing an arbitrary function by a linear

combination of spline functions.

We now study the optimal orders of the smoothing parameterλ and of the number of knotsK.

With the constant̃c1 introduced in Lemma 3 in the Appendix, define

Kq = (K + p + 1 − q)(λc̃1)
1/(2q)n−1/(2q). (14)

THEOREM 1. Under assumptions (A1)–(A3) the following statements hold:

(a) If Kq < 1 andf(·) ∈ Cp+1[a, b],

AMSE(f̂) = O

(
K

n

)
+ O

(
λ2

n2
K2q

)

+ O(K−2(p+1)),
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and forK ∼ C1n
1/(2p+3), with C1 a constant, andλ = O(nγ) with γ ≤ (p + 2 − q)/(2p +

3), the penalized spline estimator attains the optimal rate ofconvergence forf ∈ Cp+1[a, b]

with AMSE(f̂) = O(n−(2p+2)/(2p+3)).

(b) If Kq ≥ 1 andf(·) ∈ W q[a, b],

AMSE(f̂) = O

(
n1/(2q)−1

λ1/(2q)

)

+ O

(
λ

n

)
+ O(K−2q),

and forλ = O(n1/(2q+1)), such thatλn2q−1 → ∞ andK ∼ C2n
ν with ν ≥ 1/(2q + 1) and

C2 a constant, the penalized spline estimator attains the optimal rate of convergence for

f ∈ W q[a, b] with AMSE(f̂) = O(n−2q/(1+2q)).

Case (a) withKq < 1 results in the asymptotic scenario similar to that of regression splines.

The average mean squared error is determined by the average asymptotic variance and squared

approximation bias. The shrinkage bias becomes negligiblefor small λ, that is forγ < (p +

2 − q)/(2p + 3). The asymptotically optimal number of knots has the same order as that for

regression splines, that isK ∼ C1n
1/(2p+3). Case (b) withKq ≥ 1 results in the asymptotic

scenario close to that of smoothing splines. The average mean squared error is dominated by

the average asymptotic variance and squared shrinkage bias. The average squared approximation

bias is of the same asymptotic order as the average shrinkagebias forKq = 1 and of negligible

order forKq > 1. The asymptotic order of the average mean squared error depends only on the

order of the penaltyq and the bound of the average mean squared error is precisely the same as

known from the smoothing spline theory, up to the average squared approximation bias, which

is negligible forKq > 1.

The assumption on the smoothness of the functionf can be somewhat weakened in case (a).

The assumptionf ∈ Cp+1 can be replaced by a slightly weaker assumptionf ∈ W p+1, since
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Asymptotic properties of penalized spline estimators 11

according to Barrow & Smith (1978) the expression for the approximation bias (8) holds for

f(·) ∈ W p+1 as well. See also the discussion in Agarwal & Studden (1980),Remark 3.3.

The result of Theorem 1 suggests that the convergence rate ofpenalized spline estimators is

faster ifKq < 1, sinceq ≤ p is assumed. Thus, it is advisable to prefer a small number of knots

in practice. However, there is still a need for a practical guideline for choosingK andλ, so that

Kq < 1 is satisfied. This is planned to be addressed in a separate work.

4. ASYMPTOTIC BIAS AND VARIANCE

We derive the pointwise asymptotic bias and variance in bothasymptotic scenarios.

THEOREM 2. Under assumptions(A1) − (A3), the following statements hold:

(a) If Kq < 1 andf(·) ∈ Cp+1[a, b],

E{f̂(x)} − f(x) = ba(x; p + 1) + bλ(x) + o(δp+1) + o(λn−1δ−q),

var{f̂(x)} =
σ2

n
N(x)(G + λDq/n)−1G(G + λDq/n)−1N t(x) + o{(nδ)−1},

(b) If Kq ≥ 1 andf(·) ∈ W q[a, b],

E{f̂(x)} − f(x) = ba(x; q) + bλ(x) + o(δq) + o{(λ/n)1/2},

var{f̂(x)} =
σ2

n
N(x)(G + λDq/n)−1G(G + λDq/n)−1N t(x) + o(n−1(λ/n)−1/(2q)).

The shrinkage biasbλ is defined asbλ(x) = −λn−1 N(x)(G + λDq/n)−1Dqβ, whereG andβ

are given in Section 2·3.

To better understand the shrinkage biasbλ(x), we show in the Appendix thatbλ(x) =

−λ N(x)H−1∆t
qWs

(q)
f (τ)/n with H = G + λDq/n, W = diag

(∑j+p−q
l=j

∫ κl+1

κl
N j,q(t)dt

)

ands
(q)
f (τ ) = {s

(q)
f (τ−p+q), . . . , s

(q)
f (τK)}t for someτj ∈ [κj , κj+p+1−q], j = −p + q, . . . ,K.



529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

12 G. CLAESKENS, T. KRIVOBOKOVA , J. D. OPSOMER

For equidistant knots andp = q = 1, this simplifies to

bλ(x) =
λ

n
s
(1)
f

K∑

j=0

I[κj ,κj+1)(x)
[
(κj+1 − x)

{
(H−1)j+1,1 + (H−1)j+1,K+2

}

+(x − κj)
{
(H−1)j+2,1 + (H−1)j+2,K+2

} ]
,

where s
(1)
f (x) = s

(1)
f is a constant forsf (·) ∈ S(2;κ). Since |(H−1)i,j| = r|i−j|O(δ−1) for

somer ∈ (0, 1), see Lemma 1, the(H−1)j,1 decrease exponentially with growingj, while the

(H−1)j,K+2 increase with growingj. Thus, forj close to[K/2], both(H−1)j,K+2 and(H−1)j,1

are small, implying thatbλ(x) has much bigger values forx near the boundaries. Similar, but

somewhat more complicated expressions can be obtained for more general settings. In contrast

to the approximation bias, the shrinkage biasbλ(x) depends on the design densityρ(x).

As already discussed in the previous section, the approximation and shrinkage bias play differ-

ent roles in the two asymptotic scenarios. To show this, we plotted both bias terms together with

the standard deviation of the penalized spline estimator for scenarios withKq < 1 andKq ≥ 1 in

Figure 1. The true functionf(x) = cos(2πx) is evaluated atn = 15000 equally spaced points on

(0, 1) and the errors are taken to be independent with distributionN(0, 0.32). We used B-splines

of degree three and a second order penalty, based onK = 5 equidistant knots forKq < 1, and

based onK = 1000 for Kq ≥ 1. The penaltyλ was determined by Generalized Cross-Validation

(GCV) in both cases. ForKq < 1, one observes that the order of both bias components is the

same. IfKq ≥ 1, the approximation bias is extremely small, while the shrinkage bias is about

10 times larger than that forKq < 1. In both cases, the shrinkage bias has bigger values near the

boundaries. The variance of the estimator is bigger in caseKq ≥ 1. In general, the variance of

the penalized spline estimator is bigger near the boundaries, due to the structure of the matrix

H−1, see Lemma 1 in the Appendix.
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Asymptotic properties of penalized spline estimators 13

5. PENALIZED SPLINES USING TRUNCATED POLYNOMIAL BASIS FUNCTIONS

Ruppert & Carroll (2000) used truncated polynomials as basis functions. For truncated polyno-

mials of degreep based onK inner knotsa < κ1 < · · · < κK < b, the penalized spline estimator

is defined as the solution to the penalized least squares criterion

n∑

i=1

{Yi − F (xi)α}
2 + λp

K∑

j=1

α2
j+p,

(a) (b)
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Fig. 1. Example of pointwise bias and variance of two pe-

nalized spline estimators withKq < 1 (dashed line) and

Kq > 1 (solid line). Panel (a) shows the approximation

bias, (b) the shrinkage bias, (c) the standard deviation and

(d) the true mean functioncos(2πx).
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with F (x) = {1, x, . . . , xp, (x − κ1)
p
+, . . . , (x − κK)p+} andα = (α0, . . . , αK+p). The result-

ing estimator is a ridge regression estimator given by

f̂p = F (F tF + λpD̃p)
−1F tY , (15)

whereF = {F (x1)
t, . . . , F (xn)t}t and D̃p is the diagonal matrix diag(0p+1, 1K ), indicating

that only the spline coefficients are penalized.

The ridge penalty imposed on the spline coefficients can alsobe viewed as a penalty containing

the integrated squared(p + 1)th derivative of the spline function. Indeed,

{F (x)α}(p) = p! αp + p!
K∑

j=1

αk+pI[κj,∞)(x).

Since the derivative of an indicator function is a Dirac delta function (see e.g. Bracewell, 1999,

p. 94), which integrates to one, it follows that

∫ b

a

[
{F (x)α}(p+1)

]2
dx = (p!)2

K∑

j=1

α2
j+p.

In general, the results of Theorem 1 are not applicable to penalized splines with truncated poly-

nomials since Lemma 3 does not hold forq = p + 1. We use the equivalence of truncated poly-

nomial and B-spline basis functions to arrive at asymptoticbias and variance expressions, see

the appendix for more details. We obtain that forKq < 1,

E{f̂p(x)} − f(x) = ba(x; p + 1) −
λpδ

−p+1

(p!)2n
N(x)H−1∇t

p+1s
(p+1)
f (κ) + o(δp+1) + o(λn−1δ−p)

= O(δp+1) + O(λn−1δ−p), (16)

var{f̂p(x)} =
σ2

n
N(x)H−1GH−1N t(x) + o{(nδ)−1} = O{(nδ)−1}, (17)

wheres
(p+1)
f (κ) = δ−1{s

(p)
f (κ1), s

(p)
f (κ2) − s

(p)
f (κ1), . . . , s

(p)
f (κK) − s

(p)
f (κK−1)}

t. It follows

that takingK ∼ C1n
1/(2p+3) andλp = O(nγ) with γ ≤ 2/(2p + 3) leads to the optimal rate of
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Asymptotic properties of penalized spline estimators 15

convergence. ForKq ≥ 1, we obtain that

E{f̂p(x)} − f(x) = ba(x; p + 1) −
λpδ

−p+1

(p!)2n
N(x)H−1∇t

p+1s
(p+1)
f (κ) + o(δp+1)

+o{(λn−1)(p+1)/(2p+1)} = O(δp+1) + O{(λn−1)(p+1)/(2p+1)}, (18)

var{f̂p(x)} =
σ2

n
N(x)H−1GH−1N t(x) + o{n−1(λn−1)(2p)/(2p+1)} (19)

= O{n−1(λn−1)(2p)/(2p+1)},

Takingλ ∼ C3n
2/(2p+3) andK = O(nν̃) with ν̃ ≥ 1/(2p + 3) leads to the optimal rate of con-

vergence, which is the same as in caseKq < 1, that isn−(2p+2)/(2p+3). Thus, if the truncated

polynomials basis is used, there is no difference between two asymptotic scenarios and the opti-

mal rate of convergence is reached in either case.

6. DISCUSSION

The results in this paper and in particular Theorem 1 providea theoretical justification that a

smaller number of knots leads to a smaller averaged mean squared error. Moreover, we are able

to characterize throughKq in (14) the relation betweenK, λ andn which determines the break-

point between a “small” and “large” number of knots, or in other words, between the asymptotic

scenario close to that of regression splines on the one hand and that of smoothing splines on the

other hand. Results of this paper also show that using truncated polynomial basis functions leads

to the optimal rate of convergence independent of the assumption made on the number of knots.

Penalized splines gained a lot of their popularity because of the link to mixed models where

the spline coefficients are modeled as random effects, see Brumback et al. (1999), and earlier

Speed (1991) for the case of smoothing splines. An interesting topic of further research would

be a detailed study of the asymptotic properties of the estimators in this setting, building further

on Kauermann et al. (2008) who verified the use of the Laplace approximation for a generalized
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mixed model with a growing number of spline basis functions for Kq < 1, but not forKq ≥

1. Since mixed models are related to Bayesian models using a prior distribution on the spline

coefficients, this could also bring additional insight in Bayesian spline estimation, see e.g. Carter

& Kohn (1996); Speckman & Sun (2003).

The results of this paper are expected to hold for the more general class of likelihood based

models, in particular for the generalized linear models as in Kauermann et al. (2008); a detailed

study is interesting, though beyond the scope of the currentpaper. Other worthwhile routes of

further investigation include models for spatial data, incorporating correlated errors and het-

eroscedasticity.

APPENDIX. TECHNICAL DETAILS

For use in the subsequent proofs, we defineGK,n = (N tN)/n, HK,n = GK,n + λDq/n andH =

G + λDq/n and state the following results:

(R1) Lemmas 6.3 and 6.4 in Zhou et al. (1998).‖G−1
K,n‖∞ = max1≤i≤K+p+1

∑K+p+1
j=1 |{G−1

K,n}i,j| =

O(δ−1), max1≤i,j≤K+p+1 |{G
−1
K,n − G−1}i,j | = o(δ−1), max1≤i,j≤K+p+1 |{GK,n − G}i,j| =

o(δ).

(R2) Under (A1)–(A3),max−p+q≤j≤K

∫ b

a
Nj,p+1(u){f(u) − sf (u)}dQn(u) = o(δp+2), see Lemma 6.10

in Agarwal & Studden (1980) and thus E{f̂reg(x) − sf (x)} = N(x)G−1
K,n

1
nN(f − sf ) = o(δp+1),

with f = {f(x1), . . . , f(xn)}t andsf = {sf (x1), . . . , sf (xn)}t. If f ∈ W q[a, b], then E{f̂reg(x) −

sf (x)} = o(δq).

(R3) |{G−1
K,n}ij | ≤ cδ−1r|i−j| for some constantsc > 0 andr ∈ (0, 1), see Lemma 6.3 in Zhou et al. (1998).

Before proving the two Theorems, we need the following threeLemmas.

LEMMA 1. There exist some constantsr ∈ (0, 1) and c0 > 0 independent ofK and n such that

|{H−1
K,n}i,j | ≤ c0δ

−1r|i−j| for Kq < 1 and|{H−1
K,n}i,j | ≤ c0δ

−1(1 + K2q
q )−1r|i−j| for Kq ≥ 1.
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Proof. We apply Theorem 2.2 of Demko (1977) toh−1
maxHK,n, with hmax the maximum eigen-

value of HK,n. First we verify the necessary conditions. The band diagonal matrix HK,n has

{H−1
K,n}i,j = 0 for |i − j| > p, with p ≤ q. Since HK,n is a symmetric positive definite matrix,

its spectral norm equals its maximum eigenvaluehmax, so that ‖h−1
maxHK,n‖2 = h−1

max‖HK,n‖2 =

h−1
max(maxz:ztz=1 ztHt

K,nHK,nz)1/2 = 1. Similarly, ‖hmaxH
−1
K,n‖2 = hmax/hmin‖hminH−1

K,n‖2 =

hmax/hmin. Thus, Theorem 2.2 of Demko (1977) applies andhmax|{H
−1
K,n}i,j | ≤ c∗r|i−j| for some

c∗ > 0 which depends only onp andhmax/hmin. It remains to find the lower bound forhmax. The matrix

HK,n is similar to H̃K,n = GK,n(IK+p+1 + λ/nG
−1/2
K,n DqG

−1/2
K,n ) and thus has the same eigenvalues.

According to Corollary 2.4 of Lu & Pearce (2000) we can boundhmax from below with the product of the

minimum eigenvalue ofGK,n and the maximum eigenvalue of(IK+p+1 + λ/nG
−1/2
K,n DqG

−1/2
K,n ). The

minimum eigenvalue ofGK,n has the lower bound̃coδ for somec̃0 independent ofK andn, according

to Lemma 6.2 of Zhou et al. (1998). The maximum eigenvalue of(IK+p+1 + λ/nG
−1/2
K,n DqG

−1/2
K,n ) is

(1 + K2q
q ). With this we findhmax ≥ c̃0δ for Kq < 1 andhmax ≥ c̃0δ(1 + K2q

q ) for Kq ≥ 1. Setting

c0 = c∗/c̃0 proves the lemma. �

From Lemma 1, it immediately follows that‖H−1
K,n‖∞ = O(δ−1) for Kq < 1 and ‖H−1

K,n‖∞ =

O{δ−1(1 + K2q
q )−1} for Kq ≥ 1.

LEMMA 2. The following statements hold:max1≤i,j≤K+p+1 |{H
−1
K,n − H−1}i,j | = o(δ−1) for Kq <

1 andmax1≤i,j≤K+p+1 |{H
−1
K,n − H−1}i,j | = o{δ−1(1 + K2q

q )−1} for Kq ≥ 1.

Proof. First, we represent

(G + λDq/n)−1 = (G − GK,n + GK,n + λDq/n)−1

= (GK,n + λDq/n)−1 + (GK,n + λDq/n)−1(GK,n − G)

×{I − (GK,n + λDq/n)−1(GK,n − G)}−1(GK,n + λDq/n)−1.
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Applying Lemma 1 and (R1), one finds max1≤i,j≤K+p+1 |{H
−1
K,n − H−1}i,j| =

max1≤i,j≤K+p+1 |[H
−1
K,n(Gk,n − G){IK+p+1 − H−1

K,n(GK,n − G)}−1H−1
K,n]i,j |, from which the

result is immediate. �

A study of asymptotic properties of spline estimators via eigenvalues goes back to at least Utreras

(1980), see also Utreras (1981, 1983). Speckman (1981, 1985) extended these results and a version of that

we use below. Lemma 3 is adopted from Speckman (1985, eqn. 2.5d), see also Eubank (1999, p. 237).

LEMMA 3. Under design condition (A2) and for the eigenvalues obtained in (10),

s1 = · · · = sq = 0, sj = n−1(j − q)2q c̃1, j = q + 1, . . . , K + p + 1,

wherec̃1 = c1{1 + o(1)} with c1 is a constant that depends only onq and the design density ando(1) con-

verges to0 asn → ∞ uniformly forj1n ≤ j ≤ j2n for any sequencesj1n → ∞ andj2n = o(n2/(2q+1)).

With a slightly different assumption on the design density,namely that the design density is regular in the

sense that fori = 1, . . . , n,
∫ xi

a ρ(x)dx = (2i − 1)/(2n), Speckman (1985) obtained the exact expression

of the constant asc1 = π2q(
∫ b

a ρ(x)1/(2q)dx)−2q .

Proof of Theorem 1.Let us begin with case (a), that isKq < 1. First, we rewrite

K+p+1∑

j=1

1

(1 + λsj)2
= q +

K+p+1∑

j=q+1

1

{1 + λn−1c̃1(j − q)2q}2
(A1)

=

(
c̃1λ

n

)−1/(2q) ∫ Kq

0

du

(1 + u2q)2
+ q − 1 + rq, (A2)

with Kq defined in (14) andrq = O(1) as the remainder term of the Euler-Maclaurin formula. Now using

a series expansion around zero of(1 + x)−2 =
∑∞

j=0(−1)j(j + 1)xj for 0 < x < 1 we easily find

∫ Kq

0

du

(1 + u2q)2
= Kq

∞∑

j=0

(−1)j(j + 1)
K2qj

q

2qj + 1
= Kqc2,

wherec2 = 2F1(2, 1/(2q); 1 + 1/(2q),−K2q
q ) denotes the hypergeometricseries, see Abramowitz & Ste-

gun (1972, Ch. 15), converging for anyKq < 1 andq > 0. With this, we obtain that the average variance
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in case (a) equals

σ2

n

K+p+1∑

j=1

1

(1 + λsj)2
=

σ2

n
{c2(K + p + 1 − q) + q − 1 + rq} = O

(
K

n

)
.

Consider now the second term in (13). Bearing in mind thatK2q
q = λn−1c̃1(K + p + 1 − q)2q < 1 and

that the functionx(1 + x)−2 ≤ x for 0 < x < 1, we can bound the average squared shrinkage bias with

λ

n

K+p+1∑

j=1

sjb
2
j

λsj

(1 + λsj)2
≤

λ

n
K2q

q

K+p+1∑

j=1

sjb
2
j =

λ2

n2
(K + p + 1 − q)2qβt

fDqβf ,

with βf = (N tN)−1N tf . Further, adding and subtractingsf from f in βf we find

βt
fDqβf = βtDqβ + 2(f − sf )tN(N tN)−1Dq(N

tN)−1N tsf

+(f − sf )tN(N tN)−1Dq(N
tN)−1N t(f − sf )

= βtDqβ + o(δp+1) + o(δ2p+2),

where (R2) was applied to obtain the orders of two last terms.Since the penaltyβtDqβ was assumed to be

finite, see below (2), the average shrinkage bias in (13) has the orderO(λ2n−2K2q). Finally, the average

squared approximation bias in (13), has the asymptotic order O(K−2(p+1)) for a functionf ∈ Cp+1[a, b],

as follows from (8). We now choose orders ofK andλ, so that they ensure the best possible rate of

convergence. As shown in Stone (1982), ap + 1 times continuously differentiable function has the optimal

rate of convergencen−(2p+2)/(2p+3). It is straightforward to see that choosingK ∼ C1n
1/(2p+3), with

C1 a constant, implies the average variance and the average squared approximation bias to have the same

orderO(n−(2p+2)/(2p+3)). The shrinkage bias is controlled by the smoothing parameter λ. Choosing

λ = O(n(p+2−q)/(2p+3)) balances both bias components, whileλ values of a smaller asymptotic order

make the shrinkage bias negligible.

Let us now consider case (b) withKq ≥ 1 and first find the order of the average variance. Since the

expansion(1 + x)−2 diverges forx = 1, we first exclude this value from the sum in (A1) as follows

K+p+1∑

j=1

1

(1 + λsj)2
=

j∗−1∑

j=1

1

(1 + λsj)2
+

1

4
+

K+p+1∑

j=j∗+1

1

(1 + λsj)2
,
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wherej∗ is such thatλn−1c̃1(j
∗ − q)2q = 1. The integral representation of the average variance is

σ2

n

K+p+1∑

j=1

1

(1 + λsj)2
=

σ2

n

(
c̃1λ

n

)−1/(2q) ∫ 1−(λn−1c̃1)
1/(2q)

0

du

(1 + u2q)2
(A3)

+
σ2

n

(
c̃1λ

n

)−1/(2q) ∫ Kq

1+(λn−1 c̃1)1/(2q)

du

(1 + u2q)2
+

σ2

n
r̃q, (A4)

with r̃q = O(1) as a constant, including1/4 and two remainder terms of the Euler-Maclaurin formula. For

Kq = 1 only the first integral and a constant are present. If there isno suchj∗ thatλn−1c̃1(j
∗ − q)2q = 1,

then we obtain one integral with the upper bound less than oneand another integral with the lower bound

larger than one directly, with̃rq updated correspondingly. Since the upper limit of the integral is less than

one, we use the series expansion of(1 + x)−2 as in case (a) and obtain for the integral in (A3),

σ2

n

(
c̃1λ

n

)−1/(2q)
{

1 −

(
c̃1λ

n

)1/(2q)
}

c̃2 = O
(
n1/(2q)−1λ−1/(2q)

)
,

with c̃2 = 2F1(2, 1/(2q); 1 + 1/(2q),−{1 − (λn−1c̃1)
1/(2q)}2q) as a converging hypergeometric series.

Changing the integration variable to its reciprocal, one gets for the integral in (A4),

σ2

n

(
c̃1λ

n

)−1/(2q) [
K1−4q

q c3 − c̃3{1 − (λn−1c̃1)
1/(2q)}4q−1

]
(4q − 1)−1 = O

(
n1/(2q)−1λ−1/(2q)

)
,

where c3 = 2F1(2, (4q − 1)(2q)−1; (6q − 1)(2q)−1,−K−2q
q ) and c̃3 = 2F1(2, (4q − 1)(2q)−1; (6q −

1)(2q)−1,−{1 + (λn−1c̃1)
1/(2q)}−2q) both are hypergeometric series converging for anyKq >

1 and q > 0. Thus, for case (b) withKq ≥ 1 the average variance has the asymptotic order

O(n1/(2q)−1λ−1/(2q)). Sincex(1 + x)−2 ≤ 1/4 for any x ≥ 1, the average squared shrinkage bias for

Kq ≥ 1 is bounded by

λ

n

K+p+1∑

j=q+1

b2
jsj

λsj

(1 + λsj)2
≤

λ

4n

K+p+1∑

j=q+1

b2
jsj =

λ

4n
βfDqβf =

λ

4n
{βDqβ + o(δq)} .

With this, the average squared shrinkage bias is of orderO(λ/n) for Kq ≥ 1. It is straightforward to

see thatλ = O(n1/(2q+1)) balances the average squared shrinkage bias and the averagevariance. Finally

the average squared approximation bias will not dominate the average mean squared error if the number

of knots satisfiesK ∼ C2n
ν , with ν ≥ 1/(2q + 1) andC2 as a constant. This implies that the average
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approximation bias is of the same order as the average squared shrinkage bias ifKq = 1 and is negligible

with the orderO(n−ν′

), with ν′ > 2q/(2q + 1) for Kq > 1. Thus, AMSE(f̂) = O(n−2q/(1+2q)). �

Proof of Theorem 2.Let us first consider the bias. We represent

f̂(x) = f̂reg(x) −
λ

n
N(x)H−1

K,nDqGK,n
1

n
N tY

with f̂reg(x) defined in (5) and find

E{f̂(x)} − f(x) = {sf (x) − f(x)} + E{f̂reg(x) − sf (x)}

+
λ

n
N(x)H−1

K,nDqG
−1
K,nN t 1

n
(f − sf + sf ).

According to Barrow & Smith (1978), it holds thatsf (x) − f(x) = ba(x; p + 1) + o(δp+1) for Kq < 1

andba(x; q) + o(δq) for Kq ≥ 1, due to different smoothness assumptions made onf(·). The order of

the second component is given by (R2). Let us considerλN(x)H−1
K,nDqβ/n with β = G−1

K,nN tsf/n =

(N tN)−1N tsf . Using the definition of penaltyDq and noting thats(q)
f (x) = (N(x)β)(q) = Nq(x)∆qβ

with N q(x) = {N−p+q,p+1−q(x), . . . , NK,p+1−q(x)}, we can apply the mean value theorem and rewrite

−
λ

n
N(x)H−1

K,nDqβ = −
λ

n
N(x)H−1

K,n∆t
q

∫ b

a

N t
q(x)s

(q)
f (x)dx = −

λ

n
N(x)H−1

K,n∆t
qWs

(q)
f (τ ),

where W = diag
(∑j+p−q

l=j

∫ κl+1

κl
Nj,q(x)dx

)
and τ = (τ−p+q, . . . , τK)t with some τj ∈

[κj , κj+p+1−q], j = −p + q, . . . , K. Further, we represent

−
λ

n
N(x)H−1∆t

qWs
(q)
f (τ ) −

λ

n
N(x)(H−1

K,n − H−1)∆t
qWs

(q)
f (τ )

= −
λ

n
N(x)(G + λDq/n)−1Dqβ −

λ

n
N(x)(H−1

K,n − H−1)∆t
qWs

(q)
f (τ )

= bλ −
λ

n
N(x)(H−1

K,n − H−1)∆t
qWs

(q)
f (τ ).

It remains to show thatλN(x)(H−1
K,n − H−1)∆t

qWs
(q)
f (τ )/n and λH−1

K,nDqG
−1
K,nN t(f − sf )/n

are of negligible asymptotic order for bothKq < 1 and Kq ≥ 1. Since Nj,q(·) ≤ 1, one

finds ‖W‖∞ = O(δ). Moreover, by definition ‖∆q‖∞ = O(δ−q), see also Lemma 6.1 in

Cardot (2000). Thus, with Lemmas 1, 2 and‖s(q)
f (τ )‖∞ = O(1) it is straightforward to

see that for Kq < 1, λN(x)(H−1
K,n − H−1)∆t

qWs
(q)
f (τ )/n = o(λn−1δ−q) and for Kq ≥ 1,
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λN(x)(H−1
K,n − H−1)∆t

qWs
(q)
f (τ )/n = o{λn−1δ−q(1 + K2q

q )−1} = o{(λ/n)1/2Kq
q (1 + K2q

q )−1} =

o{(λ/n)1/2}, sinceKq
q (1 + K2q

q )−1 ≤ 1/2 for Kq ≥ 1. From (R2) follows thatG−1
K,nN t(f − sf )/n is

a vector with elements of ordero(δp+1) for f ∈ Cp+1[a, b] ando(δq) for f ∈ W q[a, b]. Using the same

arguments as above we obtainλN(x)H−1
K,nDqG

−1
K,nN t(f − sf )/n = o(λn−1δp+1−q) for Kq < 1 and

λN(x)H−1
K,nDqG

−1
K,nN t(f − sf )/n = o{(λ/n)1/2} for Kq ≥ 1. Thus, ifKq < 1,

E{f̂(x)} − f(x) = ba(x; p + 1) + bλ(x) + o(δp+1) + o(λn−1δ−q) = O(δp+1) + O(λn−1δ−q)

and ifKq ≥ 1,

E{f̂(x)} − f(x) = ba(x; q) + bλ(x) + o(δq) + o{(λ/n)1/2} = O(δq) + O{(λ/n)1/2}.

The differentiability assumption off is not crucial here and is made only for consistency with Theo-

rem 1. Finally, let us consider the variance var{f̂(x)} = σ2N(x)H−1
K,nGK,nH−1

K,nN t(x)/n. Adding and

subtracting in the same fashion as aboveH−1 andG, one finds forKq < 1,

var{f̂(x)} =
σ2

n
N(x)(G + λDq/n)−1G(G + λDq/n)−1N t(x) + o({nδ}−1) = O({nδ}−1)

and forKq ≥ 1,

var{f̂(x)} =
σ2

n
N(x)H−1GH−1N t(x) + o({n−1(λ/n)−1/(2q)Kq(1 + K2q

q )−2})

=
σ2

n
N(x)(G + λDq/n)−1G(G + λDq/n)−1N t(x) + o({n−1(λ/n)−1/(2q)})

= O({n−1(λ/n)−1/(2q)}). �

Proof of (16)–(19).From the alternative definition of B-splines as scaled(p + 1)th order divided dif-

ferences of truncated polynomials, see de Boor (2001, Ch. IX),

Nj,p+1(x) = (−1)(p+1)(κj+p+1 − κj)[κj , . . . , κj+p+1](x − ·)p
+, j = −p, . . . , K, (A5)

where [κj , . . . , κj+p+1](x − ·)p
+ denotes the(p + 1)th order divided difference of(x − ·)p

+ as a

function of knots κj for fixed x. In case of equidistant knots, (A5) simplifies toNj,p+1(x) =

(−1)(p+1)δ−p∇p+1(x − ·)p
+/p!. B-spline and truncated polynomial basis functions span the same set
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of spline functions (de Boor, 2001, Ch. IX), thus there exists a square and invertible transition matrixL,

such thatN = FL.

The equivalence of thepenalizedspline estimatorŝf andf̂p is not automatic, but will follow when there

is equality of the penalties. We work out the case of fitting with B-splines and obtaining the same penalized

estimator aŝfp in (15) withD̃p as penalty matrix. Using the equalityN = FL for the penalized estimator

f̂p implies that we can write it aŝfp = N(N tN + λpL
tD̃pL)−1N tY . Thus, fitting with B-splines yields

an equivalent estimator tôfp if we use the penalty termλpL
tD̃pL instead ofλDq. This penalty matrix can

be obtained as follows. By writing(N (x)β)(p) =
∑K

j=0 Nj,1(x)β
(p)
j =

∑K
j=1 I[κj ,∞)(x)(β

(p)
j − β

(p)
j−1)

we find that

∫ b

a

[
{N(x)β}(p+1)

]2
dx =

K∑

j=1

(β
(p)
j − β

(p)
j−1)

2.

Thus,L can be found from the equation(p!)2βtLtD̃pLβ =
∑K

j=1(β
(p)
j − β

(p)
j−1)

2. For equidistant knots

β
(p+1)
j = (β

(p)
j − β

(p)
j−1)/δ, according to (3), and one obtains that

(p!)2βtLtD̃pLβ =

K∑

i=1

(δβ
(p+1)
j )2 = δ−2pβt∇t

p+1∇p+1β.

Thus, for equivalence of the estimators the penalty matrix using B-splines with equidistant knots should

beLtD̃pL = δ−2p∇t
p+1∇p+1/(p!)2. We can find the optimal asymptotic orders forK andλ as well as

the pointwise bias and variance, following the arguments inthe proof of Theorem 2, though by replacing

λDq by λpδ
−2p∇t

p+1∇p+1/(p!)2. ForKq > 1, then due to the penalty matrix‖H−1
K,n‖∞ = O{δ−1(1 +

λn−1δ−2p−1)−1}. Proceeding in the same manner as in the proof of Theorem 2, weobtain (18) and

(19). �
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