Analysing Spatio-temporal Regression Data: A Case Study in Forest Health

Thomas Kneib

Institut für Mathematik
Carl von Ossietzky Universität Oldenburg

Ludwig Fahrmeir

Institut für Statistik Ludwig-Maximilians-Universität München

Spatio-Temporal Regression Data

- Regression in a general sense:
 - Linear models and generalised linear models,
 - Multivariate (categorical) generalised linear models,
 - Regression models for duration times (Cox-type models, AFT models).
- Common structure: Model a quantity of interest in terms of categorical and continuous covariates, e.g.

$$\mathbb{E}(y|x) = h(x'\beta) \qquad (\mathsf{GLM})$$

or

$$\lambda(t|x) = \lambda_0(t) \exp(x'\beta)$$
 (Cox model)

Spatio-temporal data: Temporal and spatial information as additional covariates.

- Spatio-temporal regression models should allow
 - to account for spatial and temporal correlations,
 - for time- and space-varying effects,
 - for non-linear effects of continuous covariates,
 - for flexible interactions,
 - to account for unobserved heterogeneity.
- ⇒ Geoadditive regression models.

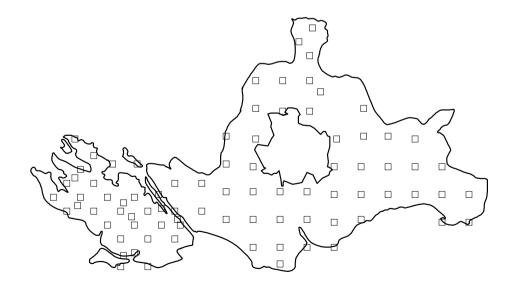
Case Study: Forest Health Data

- Aim of the study: Identify factors influencing the health status of trees.
- Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a northern Bavarian forest district.
- 83 observation plots of beeches within a 15 km times 10 km area.
- Response: defoliation degree at plot i in year t, measured in three ordered categories:

```
y_{it} = 1 no defoliation,
```

 $y_{it} = 2$ defoliation 25% or less,

 $y_{it} = 3$ defoliation above 25%.



Covariates:

Continuous: average age of trees at the observation plot

elevation above sea level in meters

inclination of slope in percent

depth of soil layer in centimeters

pH-value in 0-2cm depth

density of forest canopy in percent

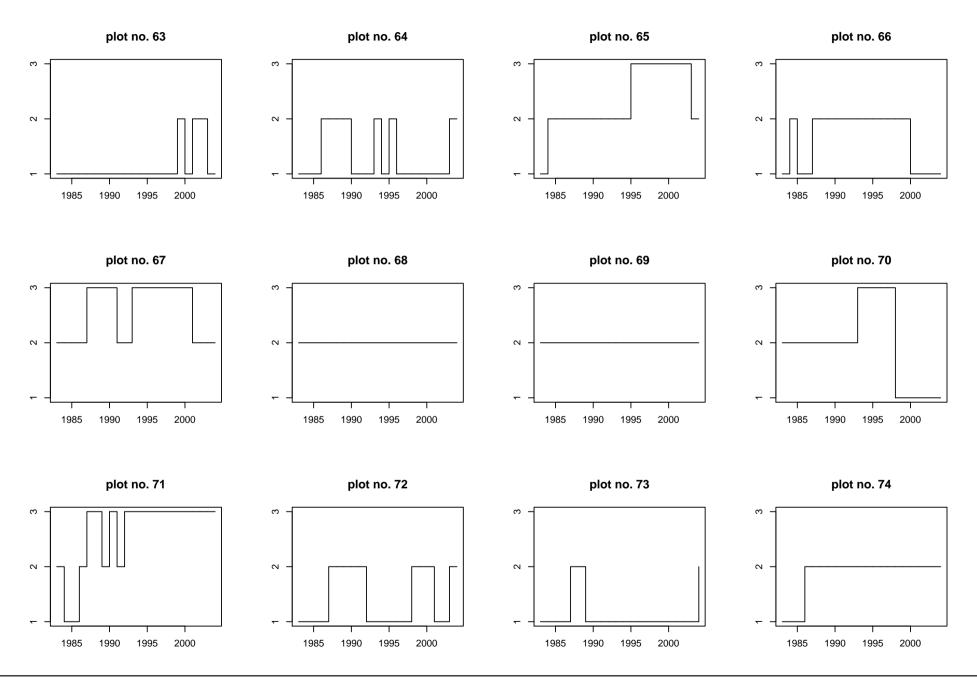
Categorical thickness of humus layer in 5 ordered categories

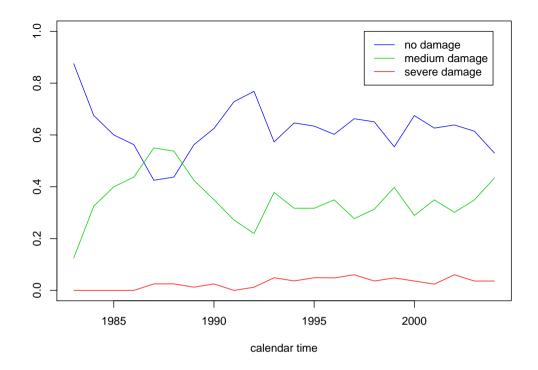
level of soil moisture

base saturation in 4 ordered categories

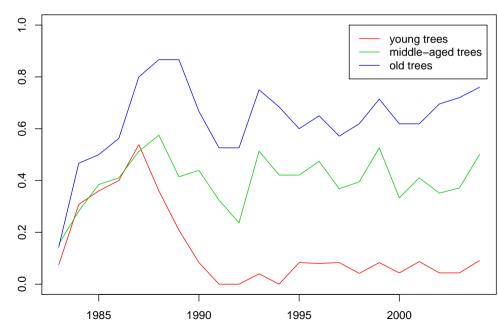
Binary type of stand

application of fertilisation

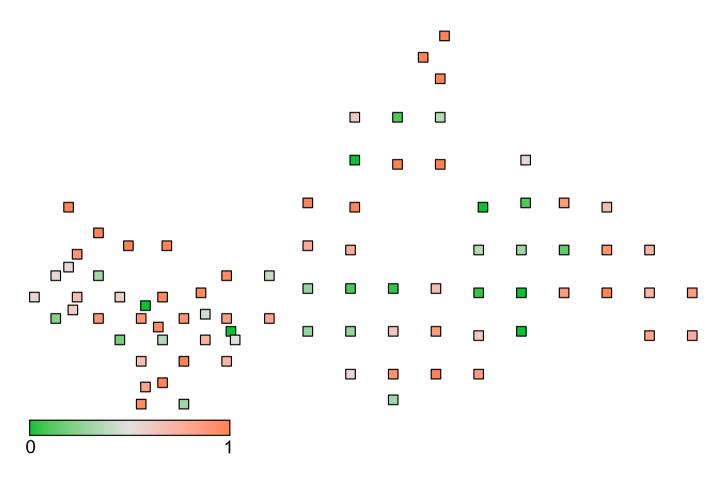




Empirical time trends.



Trends for different ages.



Percentage of time points for which a tree was classified to be damaged.

- We need a regression model that can simultaneously deal with the following issues:
 - A spatially aligned set of time series.
 - ⇒ Both spatial and temporal correlations have to be considered.
 - Decide whether unobserved heterogeneity is spatially structured or not.
 - Non-linear effects of continuous covariates (e.g. age).
 - A possibly time-varying effect of age (i.e. an interaction between age and calendar time).
 - A categorical response variable.

Regression models for ordinal responses

- Defoliation degree is measured in three ordered categories.
- Derive regression models for ordinal responses based on latent variables:

$$D = x'\beta + \varepsilon.$$

- D can be considered an unobserved, continuous measure of forest damage.
- ullet Link D to the categorical response Y based on ordered thresholds

$$-\infty = \theta^{(0)} < \theta^{(1)} < \theta^{(2)} < \theta^{(3)} = \infty$$

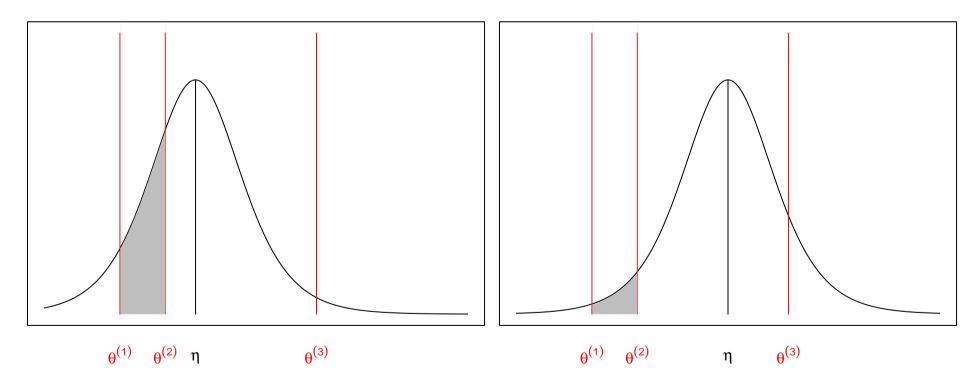
via

$$Y = r \quad \Leftrightarrow \quad \theta^{(r-1)} < D \le \theta^{(r)}.$$

• Defines cumulative probabilities in terms of the cdf F of the latent error term ε :

$$P(Y \le r) = P(D \le \theta^{(r)}) = P(x'\beta + \varepsilon \le \theta^{(r)}) = F(\theta^{(r)} - x'\beta).$$

• Graphical interpretation:



• The thresholds slice the density f = F'.

• Suitable model in our application:

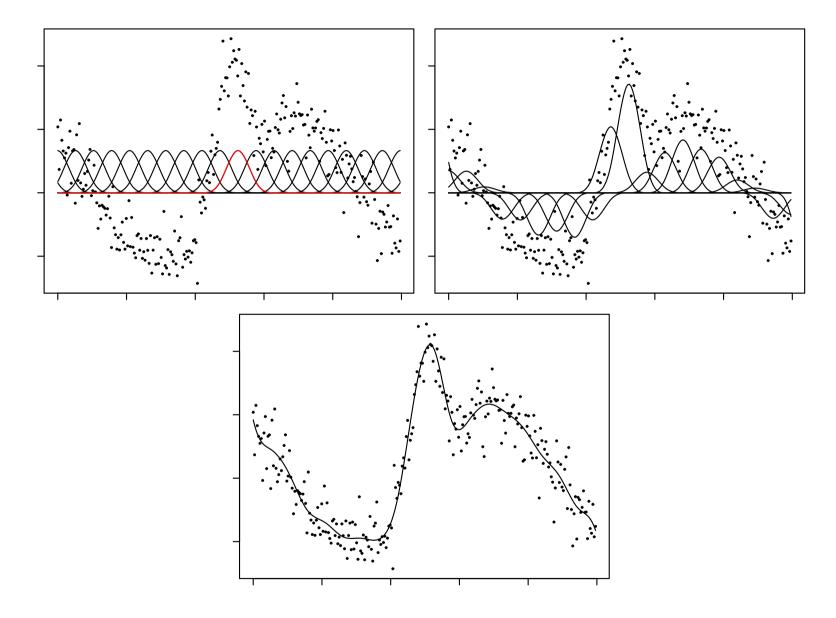
$$\begin{array}{lll} D_{it} &=& f_1(age_{it}) & \text{nonlinear effects of age,} \\ &+ f_2(inc_i) & \text{inclination of slope, and} \\ &+ f_3(can_{it}) & \text{canopy density.} \\ &+ f_{time}(t) & \text{nonlinear time trend.} \\ &+ f_4(t, age_{it}) & \text{interaction between age and calendar time.} \\ &+ f_{spat}(s_i) & \text{structured and} \\ &+ b_i & \text{unstructured spatial random effects.} \\ &+ x'_{it} \gamma & \text{usual parametric effects.} \\ &+ \varepsilon_{it} & \text{error term.} \end{array}$$

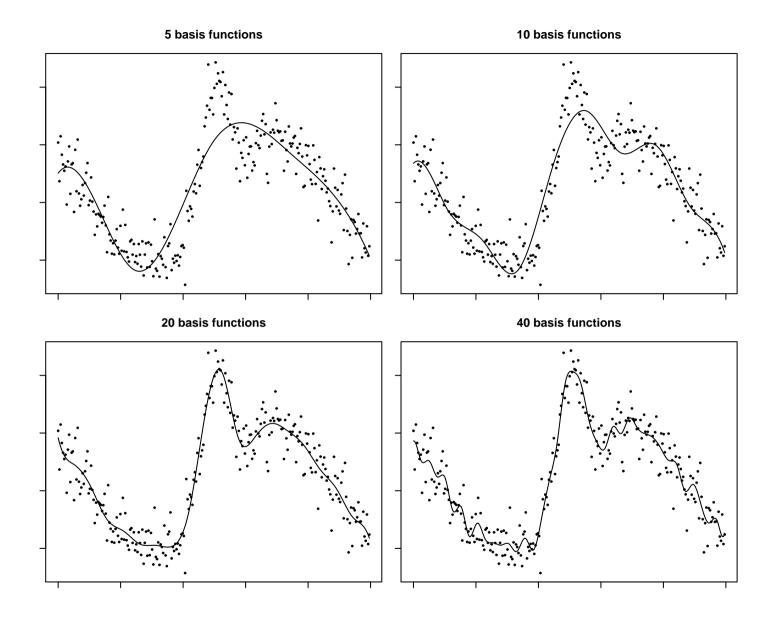
Penalised Splines

• Aim: Model nonparametric trend functions and nonparametric covariate effects.

• Idea: Approximate f(x) (or f(t)) by a weighted sum of B-spline basis functions:

$$f(x) = \sum_{j} \gamma_{j} B_{j}(x)$$





The number of basis functions has significant impact on the function estimate.

- Employ a large number of basis functions to enable flexibility.
- Penalise differences between parameters of adjacent basis functions to ensure smoothness:

$$pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \sum_{j=2}^p (\gamma_j - \gamma_{j-1})^2 \qquad \text{first order differences}$$

$$pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \sum_{j=3}^p (\gamma_j - 2\gamma_{j-1} + \gamma_{j-2})^2 \quad \text{second order differences}$$

- A penalty term based on k-th order differences is an approximation to the integrated squared k-th derivative.
- Penalties can be rewritten as quadratic forms

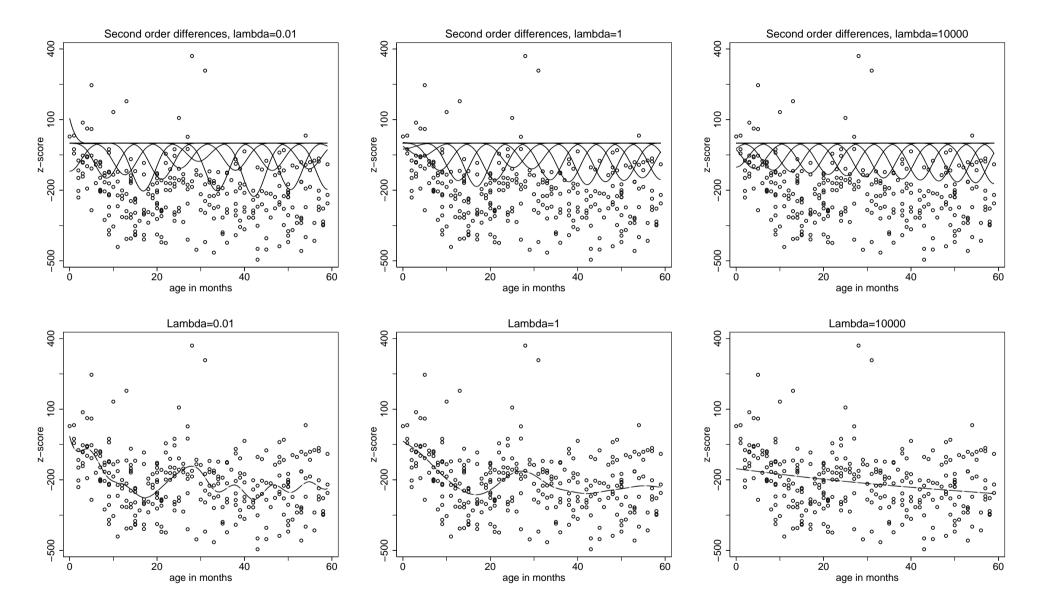
$$pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \gamma' K \gamma$$

where K = D'D and D is a difference matrix of appropriate order.

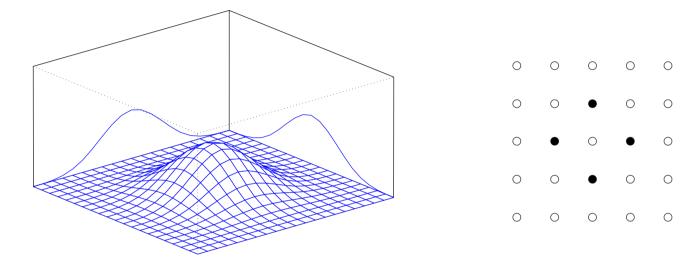
• Penalised maximum likelihood estimation with smoothing parameter τ^2 :

$$l_{\rm pen}(\gamma) = l(\gamma) - \frac{1}{2\tau^2} \gamma' K \gamma \to \max_{\gamma}$$

- Solution (for given smoothing parameter) can be obtained via penalised Fisher scoring.
- Key question: Automatic selection of the smoothing parameter τ^2 .



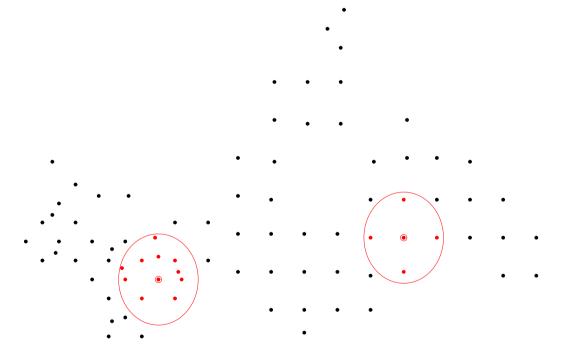
- Extension to bivariate penalised splines:
 - Bivariate basis functions based on tensor product B-splines.
 - Extend penalisation to neighbours on a grid.



 \Rightarrow Modelling of interaction surfaces (and spatial effects).

Spatial Modelling

- Markov random fields: Structured spatial effect.
- Bivariate extension of a first order random walk on the real line.
- Define two observation plots as neighbours if their distance is less than 1.2km.



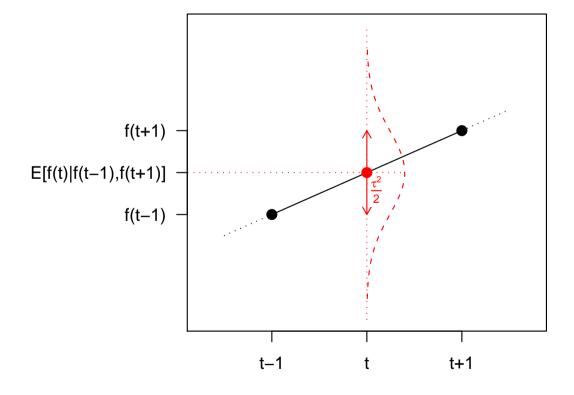
• Assume that the expected value of $\gamma_s=f_{spat}(s)$ is the average of the function evaluations of adjacent sites:

$$\gamma_s | \gamma_r, r \neq s \sim N \left(\frac{1}{N_s} \sum_{r \in \delta_s} \gamma_r, \frac{\tau^2}{N_s} \right)$$

where

 δ_s set of neighbors of plot s

 N_s no. of such neighbors.



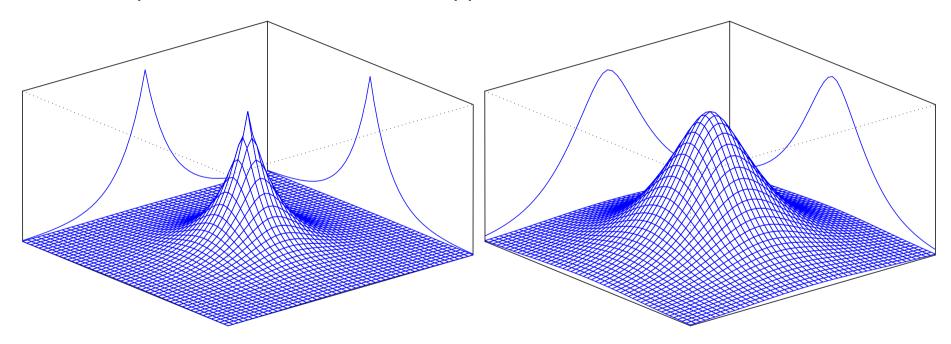
• Equivalent formulation in terms of a difference penalty:

$$pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \sum_{s} \sum_{r \in \delta_s} (\gamma_s - \gamma_r)^2.$$

Again yields a quadratic penalty

$$pen(\gamma|\tau^2) = \frac{1}{2\tau^2} \gamma' K \gamma.$$

- Kriging: Structured spatial effect.
- Assume a zero mean stationary Gaussian process for the spatial effect $\gamma_s = f_{spat}(s)$.
- Correlation of two sites is defined by an intrinsic correlation function.
- Can be interpreted as a basis function approach with radial basis functions.



• I.i.d. random effects: Unstructured spatial effect

$$\gamma_s$$
 i.i.d. $N(0, \tau^2)$.

- Also accounts for longitudinal structure of the data.
- Requires multiple measurements per observation plot.

Thomas Kneib Bayesian Inference

Bayesian Inference

• All vectors of function evaluations f_j in the geoadditive predictor can be expressed as

$$f_j = Z_j \gamma_j$$

with design matrix Z_j , constructed from the corresponding covariates, and regression coefficients γ_j .

 Each vector of regression coefficients follows a partially improper multivariate Gaussian prior:

$$p(\gamma_j|\tau_j^2) \propto \exp\left(-\frac{1}{2\tau_j^2}\gamma_j'K_j\gamma_j\right).$$

The log-prior can be interpreted as a penalty term.

Thomas Kneib Bayesian Inference

• The precision matrix K_j acts as a penalty matrix that ensures smoothness of the corresponding estimates.

- The variance au_j^2 can be interpreted as a smoothing parameter and controls the trade-off between smoothness and fidelity to the data:
 - $-\tau_i^2$ small \Rightarrow smooth estimates.
 - $-\tau_i^2$ large \Rightarrow wiggly estimates.

Thomas Kneib Bayesian Inference

• Fully Bayesian inference:

– All parameters (including the variance parameters τ_j^2) are assigned suitable prior distributions.

- Estimation is based on MCMC simulation techniques.
- Usual estimates: Posterior expectation, posterior median (easily obtained from the samples).

Empirical Bayes inference:

- Differentiate between parameters of primary interest (regression coefficients) and hyperparameters (variances).
- Assign priors only to the former.
- Estimate the hyperparameters by maximising their marginal posterior.
- Plugging these estimates into the joint posterior and maximising with respect to the parameters of primary interest yields posterior mode estimates.

Fully Bayesian inference based on MCMC

• Assign inverse gamma prior to au_j^2 :

$$p(\tau_j^2) \propto \frac{1}{(\tau_j^2)^{a_j+1}} \exp\left(-\frac{b_j}{\tau_j^2}\right).$$

Proper for $a_j>0,\ b_j>0$ Common choice: $a_j=b_j=\varepsilon$ small. Improper for $b_j=0,\ a_j=-1$ Flat prior for variance $\tau_j^2,$ $b_j=0,\ a_j=-\frac{1}{2}$ Flat prior for standard deviation $\tau_j.$

- Conditions for proper posteriors: Enough observations and either
 - proper priors for the variances or
 - $a_j < b_j = 0$ and rank deficiency in the prior for γ_j not too large.

- MCMC sampling scheme:
 - Metropolis-Hastings update for γ_i :

Propose new state from a multivariate Gaussian distribution with precision matrix and mean

$$P_j=Z_j'WZ_j+rac{1}{ au_j^2}K_j$$
 and $m_j=P_j^{-1}Z_j'W(ilde{y}-\eta_{-j}).$

IWLS-Proposal with appropriately defined working weights W and working observations \tilde{y} .

– Gibbs sampler for $au_j^2|\cdot:$

Sample from an inverse Gamma distribution with parameters

$$a_j' = a_j + \frac{1}{2} \operatorname{rank}(K_j)$$
 and $b_j' = b_j + \frac{1}{2} \gamma_j' K_j \gamma_j$.

• Efficient algorithms make use of the sparse matrix structure of P_j and K_j .

Empirical Bayes inference based on mixed model methodology

- Consider the variances τ_i^2 as unknown constants to be estimated.
- Idea: Consider γ_j a correlated random effect with multivariate Gaussian distribution and use mixed model methodology.
- Problem: In most cases partially improper random effects distribution.
- Mixed model representation: Decompose

$$\gamma_j = X_j \beta_j + U_j b_j,$$

where

$$p(\beta_j) \propto const$$
 and $b_j \sim N(0, \tau_j^2 I_{k_j}).$

 $\Rightarrow \beta_j$ is a fixed effect and b_j is an i.i.d. random effect.

This yields the variance components model

$$\eta = x'\beta + u'b,$$

where in turn

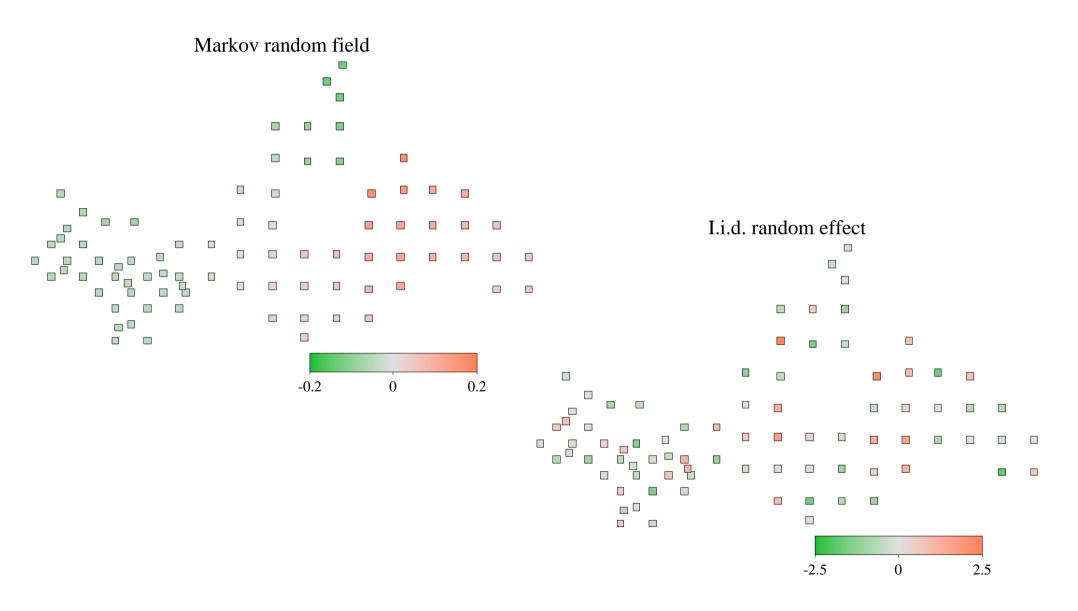
$$p(\beta) \propto const$$
 and $b \sim N(0, Q)$.

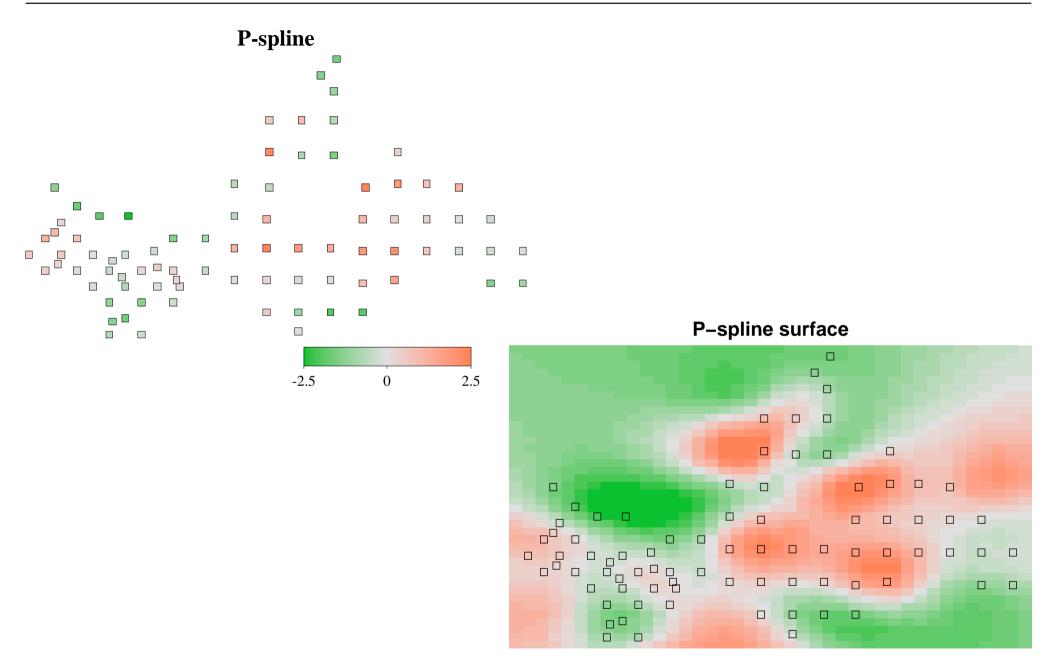
- Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
 - Penalized maximum likelihood for the regression coefficients β and b.
 - Restricted maximum / marginal likelihood for the variance parameters in Q:

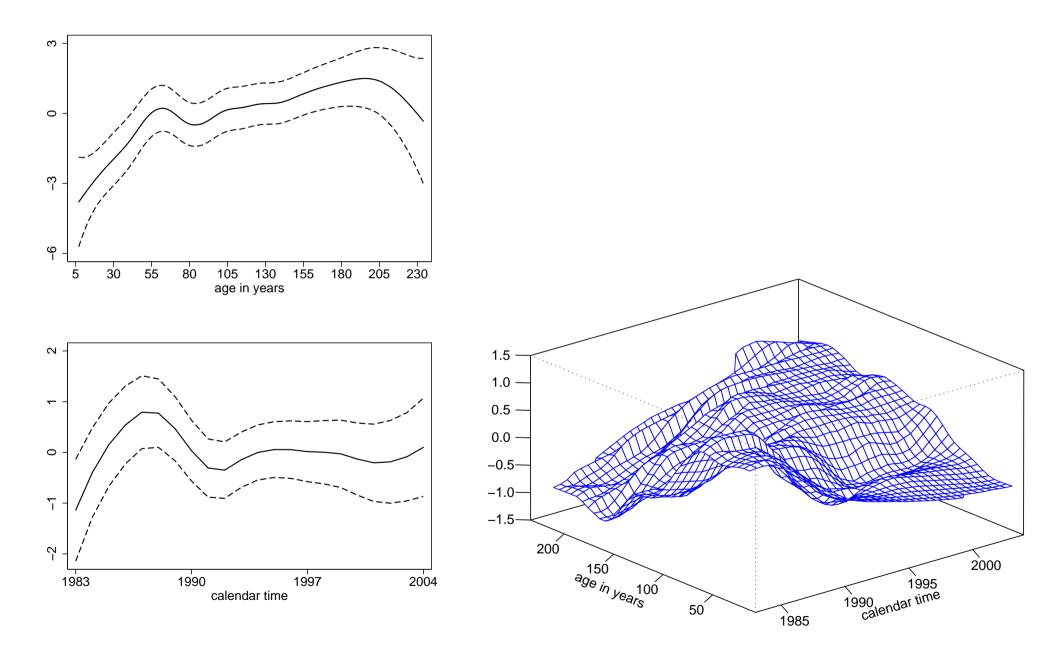
$$L(Q) = \int L(\beta, b, Q)p(b)d\beta db \to \max_{Q}.$$

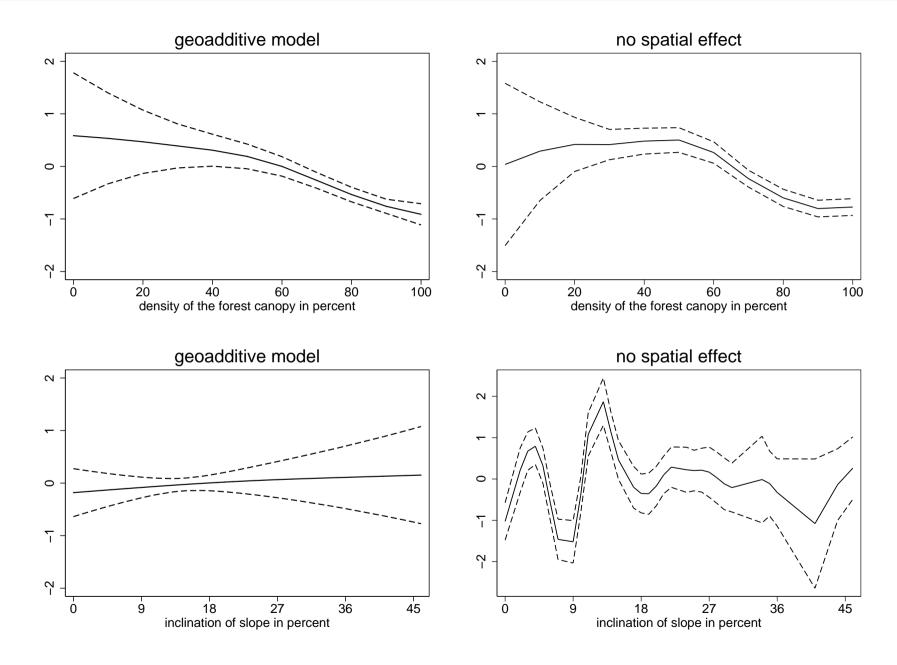
- Involves Laplace approximation to the marginal likelihood.
- Corresponds to REML estimation of variances in Gaussian mixed models.

Results









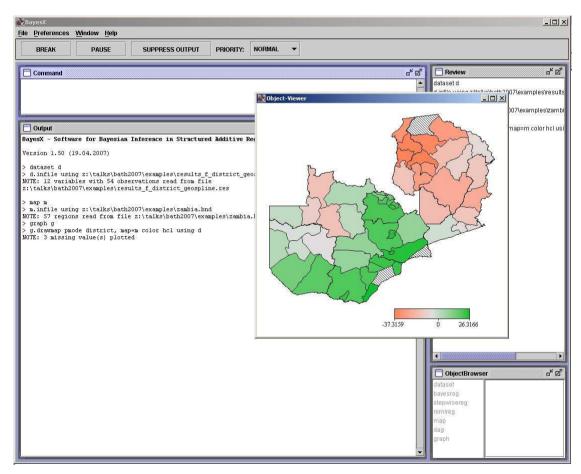
• Summary:

Inclusion of any kind of spatial effect leads to a dramatically improved model fit.

- The unstructured part dominates the structured spatial effect.
- Temporal effects are present in the data.
- Nonparametric effects allow for more realistic models and additional insight.
- Inclusion of the spatial effect also improved interpretability of other effects.

BayesX

• BayesX is a software tool for estimating geoadditive regression models.



- Stand-alone software with Stata-like syntax.
- Developed by Christiane Belitz, Andreas Brezger, Thomas Kneib and Stefan Lang with contributions of seven colleagues.
- Computationally demanding parts are implemented in C++.
- For Windows, a graphical user interface has been implemented in Java.
- The command line version of BayesX is platform independent.
- There is a supplementary R-package for easy visualisation of estimation results and for manipulating geographical information.
- More information:

http://www.stat.uni-muenchen.de/~bayesx

Inferential procedures:

- Fully Bayesian inference based on MCMC.
- Empirical Bayes inference based on mixed model methodology.
- Stepwise model selection procedures.
- Univariate response types:
 - Gaussian,
 - Bernoulli and Binomial,
 - Poisson and zero-inflated Poisson,
 - Gamma,
 - Negative Binomial.

Categorical responses with ordered categories:

- Ordinal as well as sequential models,
- Logit and probit models,
- Effects can be category-specific or constant over the categories.
- Categorical responses with unordered categories:
 - Multinomial logit and multinomial probit models,
 - Category-specific and globally-defined covariates,
 - Non-availability indicators can be defined to account for varying choice sets.

Continuous survival times:

- Cox-type hazard regression models,
- Joint estimation of baseline hazard rate and covariate effects,
- Time-varying effects and time-varying covariates,
- Arbitrary combinations of right, left and interval censoring as well as left truncation.

Multi-state models:

- Describe the evolution of discrete phenomena in continuous time,
- Model in terms of transition intensities, similar as in the Cox model.

Thomas Kneib Conclusions

Conclusions

- Take home messages: Spatio-temporal models
 - allow for sufficient flexibility in complex applications.
 - can be estimated for various types of responses.
 - can be estimated with automatic determination of smoothing parameters without the need for subjective judgements.
- Not in this talk: Model choice and variable selection in spatio-temporal regression models can be accomplished with boosting techniques.

Thomas Kneib Conclusions

• More on the application:

Kneib, T. & Fahrmeir, L. (2010): A Space-Time Study on Forest Health. In: Chandler, R. E. & Scott, M. (eds.): Statistical Methods for Trend Detection and Analysis in the Environmental Sciences, Wiley.

• A place called home:

http://www.staff.uni-oldenburg.de/thomas.kneib