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In recent years, fluorescence correlation spectroscopy has been increasingly applied for the study of

polymer dynamics on the nanometer scale. The core idea is to extract, from a measured autocorrelation

curve, an effective mean-square displacement function that contains information about the underlying

conformational dynamics. This Letter presents a fundamental study of the applicability of fluorescence

correlation spectroscopy for the investigation of nanoscale conformational and diffusional dynamics. We

find that fluorescence correlation spectroscopy cannot reliably elucidate processes on length scales much

smaller than the resolution limit of the optics used and that its improper use can yield spurious results for

the observed dynamics.
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The advent of single-molecule fluorescence techniques
has allowed for the direct visualization and measurement
of the conformation and dynamics of individual polymer
molecules; see, e.g., [1–5]. However, this single-molecule
imaging approach is restricted to the study of polymers
which are larger in size than the diffraction limit of
the imaging optics. Fluorescence correlation spectroscopy
(FCS) is a technique that can purportedly resolve dynamics
below the diffraction limit. In a recent Letter, Shusterman
et al. [6] introduced an analysis method for FCS
data, which they used to analyze the nanoscale conforma-
tional dynamics of single- and double-stranded DNA,
reporting Zimm instead of Rouse dynamics for the studied
molecules. This finding has spurred considerable theoreti-
cal work in an effort to explain this unexpected result
[7–9]. Meanwhile, the analysis method of Shusterman
et al. has found widespread application in FCS-based
studies of polymer dynamics; see Refs. [10–14].

Here, we present a fundamental analysis of the
capability of FCS to elucidate polymer dynamics on the
nanometer scale. If FCS is indeed capable of measuring
the conformational dynamics of small molecules close
to and beyond the diffraction limit of the used optics,
this would be of tremendous interest. Not only could
one resolve the question of whether Rouse or Zimm
dynamics is the appropriate model for the dynamics of
disordered polymers, but one could also experimentally
study problems such as protein folding and unfolding
or the nanoscale diffusion of molecules within lipid
membranes.

Thus, the core question is how well FCS can elucidate
nanoscale conformational or diffusional dynamics. Let us
start with a simple one-dimensional system, namely, the
one-dimensional free diffusion, with diffusion coefficient
D0, of a molecule along the x axis within the confined
region �a � x � a, where the confinement itself diffuses
with a much slower diffusion coefficient D through
the focus of a FCS system. For the diffusion within the

confined region, Green’s function is given in a standard
way as an expansion over eigenfunctions

Gðx; x0; tÞ ¼ X1
j¼0

�jðxÞ�jðx0Þ expð�!jD0tÞ; (1)

where the eigenfunctions �jðxÞ are nonzero only for

jxj � a and where they are �2jðxÞ ¼ cosðj�x=aÞ for

even indices and �2jþ1ðxÞ ¼ sin½ðjþ 1=2Þ�x=a� for odd
indices. The characteristic frequencies are!j ¼ ðj�=2aÞ2.
Let us further assume that fluorescence is excited by

focusing a plane wave through a lens with numerical
aperture (NA) into a medium with refractive index n.
The resulting intensity distribution is given by

UðxÞ ¼
�
sinðkmaxxÞ
kmaxx

�
2
; (2)

where kmax ¼ 2�NA=�. For 500 nm wavelength light, a
numerical aperture of 1.2, and a refractive index of 1.33
(water), one can estimate the focus width and thus spatial
resolution of a corresponding scanning microscope to be of
ca. 200 nm. The best fit of a Gaussian distribution to the
actual intensity distribution, Eq. (2), is found to have a
Gaussian width of 2� ¼ 152 nm. Assuming that the ex-
cited fluorescence is detected uniformly over the whole
excitation region, then UðxÞ is directly proportional to the
molecule detection function (MDF) of the system, which
gives the probability density of detecting a photon from a
molecule at position x. The autocorrelation function (ACF)
of an FCS measurement is then given as the multiple
integral over the product of the probability to detect a
photon from a molecule at some initial position, the proba-
bility density that it diffuses from this position to a final
position within time t (given by Green’s function), and the
probability to detect a photon from a molecule at this final
position. Thus, the short-time behavior of the ACF can be
written as
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gðtÞ ¼
ZZZ

dxdx0dyUðxþ yÞGðx; x0; tÞUðx0 þ yÞ; (3)

where y is the center position of the confined region with
respect to the excitation focus. The integrations over x and
x0 run from �a to a, and the integration over y runs from
�1 to 1. In Eq. (3), we have neglected all constant
prefactors related to concentration, overall detection effi-
ciency, etc. ‘‘Short-time behavior’’ means that we consider
here only a time range where the fast confined diffusion
dominates the ACF, before the slow diffusion of the con-
fined region itself plays any role. Integration over y takes
into account that the confined region can be at any position
with respect to the excitation focus. Equation (3) can be
rewritten by switching to Fourier space, representing all
functions by their Fourier transforms, e.g.,

UðxÞ ¼
Z 1

�1
dk

2�
~UðkÞ expðikxÞ: (4)

After carrying out several integrations, one finds the com-
pact expression

gðtÞ ¼ X1
j¼0

aj expð�!jD0tÞ; (5)

where the amplitudes aj are given by

aj ¼
Z 1

�1
dk

2�
j ~UðkÞ ~�jðkÞj2: (6)

Equations (5) and (6) are particularly suited for analyzing
the impact of the optical resolution of the measurement
setup on the temporal behavior of an ACF. As can be seen,
the amplitude for the jth exponential function in Eq. (5) is
given by the weighted integral over the power spectrum of
the jth eigenfunction �j, where the weight function is the

power spectrum of the MDF. However, for increasing
numbers of j, the power spectrum of�j is shifted to higher

and higher spatial frequencies k, whereas the filter ~UðkÞ is
nonzero only for k < kmax. A visualization of this fact is
presented in Fig. 1, showing the power spectra for the
first few eigenfunctions together with the power spectrum
of the MDF (both for the exact MDF as well for its
Gaussian approximation). The calculations were done for
a ¼ 50 nm, thus confining diffusion to a region of 100 nm.
As can be seen, there is substantial overlap between j ~UðkÞj2
and j ~�jðkÞj2 for the first three eigenfunctions only—all the

information contained in the higher-order eigenfunctions
which correspond to faster time scales (larger values of!j)

will not be reflected in the ACF.
The core idea of Shusterman et al. [6] is to compare a

measured ACF with the model ACF for free diffusion in
the Gaussian approximation of the MDF. For the one-
dimensional case considered here, such a model ACF is
given, up to a constant prefactor, by the simple expression

gðt; �Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hxðtÞ2i=2�2

p ; (7)

where hxðtÞ2i ¼ 2D0t is the mean-square displacement of a
molecule within time t and � the variance of the Gaussian
that is used for approximating the MDF. Under the as-
sumption that this form of the ACF will also be valid for
more complex diffusion behavior, Eq. (7) can be inverted
to yield the alleged relationship

hxðtÞ2i / g20
g2ðtÞ � 1: (8)

For free diffusion, the right-hand side of Eq. (8) is a linear
function of time. For confined diffusion, one would still
hope to see the linear behavior on short time scales. Let us
define a quantity �ðtÞ as

�ðtÞ ¼ d lnhxðtÞ2i
d lnt

; (9)

which defines the local exponent with which hxðtÞ2i in-
creases with time t. This function is time-independent and
equal to one for free diffusion, and one also expects that it
will be close to 1 on sufficiently short time scales for
confined diffusion. Figure 2 shows the behavior of �ðtÞ
for several selected values of the confinement parameter a.
Indeed,�ðtÞ converges to unity in the limit of zero time, but
this is true for any well-behaved function gðtÞ. However,
not much can be learned from �ðtÞ for intermediate time
values. This is due to the fact that, with increasing con-
finement (decreasing value of a), the correlation function

FIG. 1 (color online). Fourier power spectra of the MDF and
the eigenfunctions �j entering the Green’s function for confined

diffusion. The curves j ¼ 0; 1; . . . represent the power spectra
j ~�jðkÞj2 for a ¼ 50 nm. The triangular shaded region is the

power spectrum j ~UðkÞj2, and the shaded (yellow) region outside
the triangular region is that of the Gaussian approximation of
UðxÞ. Vertical lines delimit the finite support of the optical
transfer function. The positions of the maxima of the functions
j ~�jðkÞj2 scale with the inverse value of a. Thus, the smaller the

confinement region, the more the maxima will be shifted away
from the Fourier modes that can be probed by the MDF.
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captures less and less of the diffusion dynamics due to the
finite support of the MDF in Fourier space. It is important
to notice that we consider here only the limiting case of
negligible diffusion of the confined area, as compared to
the diffusion of a molecule within the confined area. At
large times, the diffusion of the whole confinement region
will start to show up in the ACF, thus leading again to
values of �ðtÞ close to unity. In the intermediate region,
however, the curves in Fig. 2 show that one can extract any
fractional power dependence of hxðtÞ2i on time t.

To consider a more realistic scenario and to prove that
the behavior of �ðtÞ is not an artifact of the simple one-
dimensional model system considered so far, let us study
the rapid diffusion of a particle in three dimensions within
an isotropic harmonic potential, VðRÞ ¼ kBTR

2=2�,
where kB is Boltzmann’s constant, T is temperature, and
� is a constant having units of length squared which
determines the steepness of the potential. The coordinate
vector R refers to the center position rc of the potential,
R ¼ r� rc, whereas the center position rc is assumed to
diffuse freely through space (slow diffusion). Denoting the
diffusion coefficient for the rapid diffusion again by D0,
Green’s function for the diffusion within the harmonic
potential is given by

GðR;R0; tÞ¼ 1

½2��ð1�s2Þ�3=2 exp
�
�jR�R0sj2

2�ð1�s2Þ
�
; (10)

where we have used the abbreviation s ¼ e�D0t=�.
Furthermore, for the slow diffusion of the center position
rc with diffusion constant D<D0, we have the Green’s
function for the free diffusion equation

Gcðrc � rc;0; tÞ ¼ 1

ð4�DtÞ3=2 exp

�
�jrc � rc;0j2

4Dt

�
: (11)

In most FCS publications, and also in Refs. [6,11], the
three-dimensional MDF, UðrÞ, of a confocal fluorescence

microscope is approximated by an axisymmetric Gaussian
distribution with half axes � and ��. For calculating the
final ACF, we still need the equilibrium probability p0ðR0Þ
of finding a molecule at some initial positionR0 within the
harmonic potential, which is found by letting time t in
Eq. (10) approach infinity. The ACF is then equal to the
multiple integral of the product of the initial probability
p0ðR0Þ, the probability density GðR;R0; tÞ that the mole-
cule moves from initial position R0 to position R within
the harmonic potential during time t, the probability den-
sity Gcðrc � rc;0; tÞ that the center position diffuses from

rc;0 to position rc within the same time t, and the proba-

bilities Uðr0Þ and UðrÞ to detect a photon at the initial and
final positions. After carrying out all 12 integrations over
all possible initial and final positions of molecule and
potential center, one finally arrives at the analytic expres-
sion (up to a constant prefactor)

gðtÞ ¼ fð�; tÞ2fð��; tÞ; (12)

where

fðq; tÞ ¼
�
1þDtþ �ð1� sÞ

q2

��1=2
: (13)

As an example, the correlation function is calculated for
the following parameters: the shape of the MDF is deter-
mined by � ¼ 150 nm and � ¼ 5, the fast diffusion coef-
ficient within the potential is D0 ¼ 1 �m2=time unit, the
diffusion coefficient D of the diffusion of the center
position of the harmonic potential is set equal to
0:5 �m2=time unit, and � is chosen to be ð150 nmÞ2.
Similar to the one-dimensional case, one implicitly defines
an effective mean-square displacement function hx2i by the
relation [6]

FIG. 2 (color online). Behavior of the function �ðtÞ for differ-
ent values of the confinement parameter a and for D0 ¼
1 �m2=time unit. The inset shows the different ACFs for the
selected values of a.

FIG. 3 (color online). Mean-square displacement hx2i as a
function of time determined by inverting Eq. (14) for the
parameter values given in the text. The inset shows the corre-
sponding ACF as calculated from Eqs. (12) and (13). The dashed
line is a linear fit of lnt to lnhx2i at the point of minimum slope.
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gðtÞ ¼ 1

ð1þ hx2i=�2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hx2i=ð��Þ2p : (14)

Figure 3 shows the behavior of hx2i as a function of time,
together with the corresponding shape of the ACF (inset).
The dashed line represents a linear fit of lnt to the curve of
lnhx2i at the point of minimum slope. For the chosen
parameters, this slope value is ca. 2=3, mimicking a diffu-
sion process originating from a Zimm dynamics scenario.
Let us define again a characteristic function �ðtÞ as in
Eq. (9). Generally, �ðtÞ will approach unity for very small
and very large values of time t but will have a minimum at
intermediate time values. Figure 4 shows the minimum
value of �ðtÞ as a function of the ratio D=D0. As can be
seen, depending on this value, the function hx2i can show
intermediate power-law behavior with any exponent,
although the underlying process is simple diffusion within
a harmonic potential.

In summary, FCS measurements are governed by the
same spatial resolution limit as any linear optical imaging
system, and the smaller the length scale of a diffusion
process the less information FCS can capture about it.
Moreover, defining and analyzing an effective mean-
square displacement function hx2i as first proposed in
Ref. [6] can produce any power-law behavior with little
connection to the actual underlying physical process.
However, as was shown when analyzing the interplay

between the Fourier spectra of the eigenfunctions entering
the Green’s function of the diffusion equation and the
Fourier spectrum of the MDF (Fig. 1), an FCS experiment
cannot capture much of the dynamics on length scales that
are outside of the finite Fourier support of the MDF of the
optical system. Thus, our analysis highlights the general
limitation of FCS for elucidating processes on length
scales below the resolution limit of the optics used in an
FCS experiment.
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