A heuristic way of obtaining the Kerr metric
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An intuitive, straightforward way of finding the metric of a rotating black hole is presented, based
on the algebra of differential forms. The representation obtained for the metric displays a simplicity
which is not obvious in the usual Boyer—Lindquist coordinates.1997 American Association of Physics
Teachers.

I. INTRODUCTION techniques were developed, like the spinor technique of Pen-
rose and Newmah,or Backlund transformation techniques
The formulation of general relativity by Albert Einstein in (for a review see, for example, Ref). Despite their great
1915 was one of the greatest advances of modern physics.dticcess in treating the Einstein equations, these methods are
describes the dependence of the structure of space—time @#chnically complicated and are known mainly to the special-
the distribution of matter, and the converse effect of thisists working in the field. Taking into account the great physi-
space—time structure on matter distribution. Despite theal importance of the Kerr solution, it is desirable to have a
overwhelming clarity of its foundation and the elegance ofmore straightforward way of finding it from the vacuum Ein-
its basic equations, it has proved to be very difficult to findstein equations. Although a straightforward but nonetheless
exact analytical solutions of the Einstein equations. Moregeneral way for finding the Kerr solution can be found in the
over, of all the exact solutions which are known, only aclassic work,;The Mathematical Theory of Black HoJdsy S.
limited class seem to have a real physical meaning. Amonghandrasekhdtwe will present here a more heuristic way
them are the famous solutions of Schwarzschild and Kerr foof finding this solution, revealing its simplicity and elegance
black holes, and the Friedman solution for cosmology. Al-by using an alternative presentation of its metric. Techni-
though the “simple” solution for a static, spherically sym- cally, all calculations will be presented in the language of
metric black hole(static vacuum solution with spherical differential forms.
symmetry and central singularjtyvas found by Schwarzs-
child shortly after Einstein’s publication of his equations, || A HEURISTIC GUESS FOR THE METRIC OF A
nearly 48 years were to elapse before Kefiscovered the ROTATING BLACK HOLE
vacuum solution for the stationary axisymmetric rotating
black hole. What we are looking for is the metric of a stationary,
Today, there exists a wealth of literature about solving theaxially symmetric solution of the vacuum Einstein equations.
Einstein equations and about their solutions. Powerful newhe term “stationary” implies that there are no dependen-
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cies of the space—time structure on timeAxial symmetry 0= const.
implies that there is no dependency on the coordinate of
revolution in axially symmetric coordinates. In constructing
a guess for the metric, we will first try to choose an appro-
priate coordinate presentation of the flat space—time metric.
This is then modified by the introduction of additional un-
known functions, whose form is subsequently determined by
imposing the vacuum Einstein equations. The aim is to look
for a simple guess for the metric of a rotating black hole. To
do this, one can consider the known Schwarzschild solution
of a static black hole and try to generalize it to a possible
metric of a rotating black hole. The Schwarzschild space—
time can be thought of as consisting of two-dimensional co-
ordinate surfaces with the 2-metric of sphe(@sEuclidean
three-dimensional spagebut coupled by an unusual radius
function—the radial distance between two spheres with ra-

dial coordinatesr; andr, is notr,—r;, but f:idr\/g,,,

whereg,, is therr component of the metric. Exactly this, Fig. 1. Schematic re_pres_entation of the oblate spheroid_al coordinates. Sur-
together with a radius-dependent metric componegpt faces of constang (ellipsoid9 and of constan® (hyperboloid$ are shown.
causes a nonvanishing curvature of the space—time. What

could be a possible generalization of this space—time struc-

ture giving that of a rotating black hole? From a pure tech-  ds?=dx?+dy?+dz>=a?(sint? &+sir? 0)(d&2+d6?)

nical point of view, replacing the spheres by rotational ellip- 5 5

soids is the simplest thing one can try. Both types of surfaces +a? costf ¢ cos 6 dg?. ©)

are described by simple second-order algebraic equations. ®fext, the basis 1-forms in the above coordinates for the flat
course, there is no direct physical justification for such aspace-time have to be chosen. It is convenient for the sub-
guess, and the only way to prove its validity will be to solve sequent calculations to choose them in such a way that the
the Einstein equations and to find a noncontradictory solumetric acquires the diagonal for@, 5= 17,5, Where 7,

tion. However, simply replacing the spherical coordinate surgenotes the Minkowski flat space—time metric. Thus the ba-

faces is not sufficient for a guess metric. For a rotating blackis one-forms of the flat space—tingero curvaturgin ob-
hole one has to expect the occurrence of nonvanishing offzte spheroidal coordinates read

diagonal metric componen(s a coordinate basiscoupling

& = const

the angular coordinate with time. @ '=dt,
Explicitly, for describing the spatial part of the space— wé=a3 dé
time, we will use oblate spheroidérthogonal coordinates ' 4

& 60, and ¢.° Their coordinate surfaces can be expressed in  @?=a3 dé,
Cartesian coordinat ,Zb -
esy,z by w?=a cosh¢ cos 6 de,

n : -1 where the abbreviatioB = \/sint? &+sir? g was used.
a’coslt ¢ a’sint ¢ ™ As a first attempt, one would be inclined to use an ansatz
similar to the Schwarzschild solution, i.e., one would multi-
ply the basis 1-form& ! and@ ¢ of the flat space—time by
two unknown functions, expand expg. Obviously, this will
only lead to the Schwarzschild solution itself, expressed in
y—tan ¢x=0, quite unfortunate coordinates. Recalling that one is looking
for a rotating black hole solution, one could try to use the
wherea is a positive constant. The first of these equationd_orentz transformed basis 1-forms cg8® '—sinh 8 &@* and
describes ellipsoids of revolutiont€ const.), the second, coshg@?—sinhB @' instead of @' and &%, where B
hyberboloids of revolution §=const.), and the third, axial =pg(¢,6) is a coordinate-dependent Lorentz transformation
planes ¢=const.). Some coordinate surfaces of this systenparameter. Then one arrives at the following set of basis
are depicted in Fig. 1. The constamis an arbitrary param- 1-forms:

X2+ y2 ZZ

X2+ y2 ZZ

a2cod 0 a’sirt o

1, 1

eter, defining the location of the common foci of the ellip- @ t=ef[coshB dt—sinh 8 a coshé cos 6 d¢]
soids. )
By solving Egs.(1) for x, y, andz, one finds @wé=e%> d¢, 5)
w/=aZ de,

x=a cosh¢ cos 6 cos ¢,
@?=coshp a cosh¢ cos# d¢p—sinh g dt,

which include the three unknown functiofisg, and g.
z=a sinh ¢ sin 6, The use of such an ansatz for finding a stationary axially
symmetric vacuum solution entails no essential loss of gen-
so that the Euclidean line element in these coordinates isrality, as long as all three unknown functions are assumed
given by to depend on botl§ and 6. If the coordinate surfaces defined

y=a coshé cos 6 sin ¢, (2
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by the basis 1-form¢5) are completely unrelated to the in- For our basis one-forms as defined by E5j, the connection
trinsic character of the final solution, then this ansatz leads tone-forms explicitly read

over-complicated expressions for the Riemann curvature ten-

sor and the Ricci tensor. It will therefore be assumed in thés ;=@ ‘(a3e%) [ —sinl? B tanhé+f']-B%(aze?) *
present paper thdt andg dependonly on £ and not oné. . .

This singles out the ellipsoidal coordinate surfaces for the X[coshf coshg sinh g tanhg+sinhf 8., (109
space—time structure being sought. &L= (a3) L sinf? B tan 0+ B4(a3) L
lll. CALCULATING THE RICCI TENSOR X[COShf COShﬂ Sinhﬁ tan —sinh f B,H]- (]_Ob)

There follows a brief description of the calculation of the _  __; 01 i :
Riemann curvature and Ricci tensor in the language of dif® ¢~ @ (a%€®)~[sinhf cosh sinh 3 tanh ¢

ferential forms, following mainly Ref. 6. The Einstein sum- +coshf B ,]+@’as) Y[ —sinhf coshp
mation convention is used throughout. . ’
First, we have to find the connection one-forri; Xsinh g tan 6+ coshf B 4], (109

=I"% ®?, which are defined by the first Cartan relation: .
By y @5=o%a3%) ! cosé sin @

do“=-w3le’=-T} o "0o". (6) —»%a3%9) "1 cosh¢ sinh &, (10d)
Additionally, because the metric components in our basis are . —t g1—1 ,
constant, the connection one-forms are antisymmé¢sge “¢~ @ (aX2e%) [coshf coshp sinh B tanhé

Ref. 6, Eq.(14.310]; +sinhf B ,]-@%@ased) ' cosk B tanh¢, (108
Bop=—0pq- (0 &%=% '(ax) Y[coshf coshg sinh 8 tan 6—sinh f B ]
Relation Eq.(6) is of no direct use for the calculation of the

~¢ -1
connection one-forms. But the new symbal§, antisym- +@%(ax)"" cosit B tan 6. (109
metric in 8 and y defined by Here, a prime denotes differentiation gyandg . and g ,
denote the two partial derivatives @f
doo=— %cﬁyaaﬁmm (8) Next, one calculates the Riemann curvature 2-form, which

. . I is defined by the second Cartan relation:
are easy to calculate by applying the exterior derivative to

our basis one-forms. Comparing E(a).with Eq. (_6) one can ﬁgz %RZ 37060 = d@g+ 303} (11)
see thafl’,,3—T',5,=Cg,,. By applying a cyclic permuta- . 4 4 .
tion of the indices td .5~ I'up,=Cpya, and then adding/ TheRj, s are the components of the Riemann tensor. Insert-

subtracting the resulting equations, one finds that ing Egs.(10) into the last equation, one obtains the following
v =1 _ nonvanishing and distinct components of the Riemann ten-
D=0 )= 39" (Crgy T Cryg—Cpp) @7, 9 sor

Rgtgz[azezgiz]’l{(sin}? f—sinh 2 )(coslt B sint? B tant? &+ %)+ (sinh X —4 sinf? f )coshp sinh 3
Xtanh¢ B ,—3 "2 sint? B si? 9 (€?9—1)+3 "2 coshé sinh & f' —f'2+sint? g tanh¢ (2f' —g')+f'g’ —f"},

(129
Rgtg=[2aze922]*l{2(sinh X —sinl? f )[costt B sint? B tanh¢ tan 6— B B 4]+ (sinh X —4 sinff f )
X cosh sinh g[tanh¢ B ,—tan 6 B ]+ 252 sinl? B(cosh¢ sinh ¢ tan 6—tanh & cos 6 sin 6)
—sink?B(1—sink? B)tanh ¢ tan +2(3 2 cos @ sin #—sint? B tan 6)f'}, (12b)
Rics=[a%€?932] Hcoshf[3 2 cosh sinh 8 sir? 6 (e?9—1)—coshp sinh g tanh& (f'—g')—21'B (]
+sinh f[cosh sinh B(cosit B+sint? B)tani? ¢—2 coshg sinh B tanh¢ f'—3 2?9 cosd sin 6 B,
+(2 7% coshé sinhé—tanhé—f'+9") B .~ B ¢}, (120

Rigs=[a%€9%2] Hcoshf[3 "2 coshp sinh B(cos ¢ sin 6 tanhé—coshé sinh ¢ tan 6) +cosh g sinh B
Xtan (tanh é+f')—f' B ,]—sinh f[coshB sinh B(costt B+ sini? B)tanh & tan 6— (cosh sinh B tan 6— 3 )’
— (272 coshé sinh é+sinl? B tanh ) 8,,— (32 cosh sin 6+ costt B tan 6) 8 .+ B ¢41}, (120

Ry,=[a222]"Y(sint? f—sinh X )[cosi B sinl? B tar? 6+ B%]+ (4 sintf f—sinh X )coshg sinh B tan 6 B4
+3 72 sin? B sint? ¢(e29—1)—e 2952 cosh¢ sinh € £}, (12¢
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Ry, =[a%€922] coshf[ =2 coshp sinh B(cos 6 sin 6 tanh é—costE sinh & tan 6) +cosh B sinh 8 tanh ¢
Xtan 6—f' B ,]—sinh f[cosh B sinh B(cosit B+sini? B)tanh ¢ tan §—cosh sinh B tanh & f'
— (272 coshé sinh é—cosif B tanh&)B,,— (372 cos @ sin 6—sinl? B tan 8) B .+ B ¢4},

Ryss=[a22] {72 coshf coshp sinh g sint? £(1—e™29)+sinh f{[coshg sinh B(coslf B+sint? B)tar? ¢
+(2 7% cos @ sin 6+tan 0) B ,—e 2952 coshé sinh & B .~ B, 491},

R;t(ﬁ:[aZeZgEz]*l{sinh Z coshp sinh (e tan 6 B ,—tanh& B ;) —sint? f[cosit B sinl? B(e? tarf 6
+tanlt &)+e?9p%+ %] —costt B tanh¢ f'},

Ry¢o=[a%€922] Ysinh f[ B ,f' — (cosit B+sint? B)(tanh¢ B ,+tan 6 B ;)]—coshf coshg sinh B tan 6 f'},

Rp=[a%e?958]7Y{(sint? ¢ cog 6—costt & sir? 0)(1—e?%)+32 cosh¢ sinh & g'},

R ,=[a%€?932] Y(sinh Z +sint? f )(costt B sini? B tanif &+ B%)+ (4 sinlf f+sinh X )
X coshp sinh B tanhé B .+3 2 costf B sir? 6(e?9—1)+costf g tanhé g'},

R9,=[2a%e932] " H{(4 sinl? f+sinh X )cosh sinh (tanh& B ,—tan 6 B ;) —2(sint? f+2 sinh ¥ )
X[costt B sint? B tanh¢ tan 6— B ;B 4]+ 23 2 costt B(cos 6 sin 6 tanh £—cosh¢ sinh & tan 6)
+cosltt B(cosit B+ 1)tanh¢ tan 6},

(12f)

(129

(12h
(12i)

(12)

(12k)

(121

RYy,=[a232] H(sinl? f+sinh X )[cos B sint? B tarf 9+ B%]— (4 sint? f+sinh & )coshp sinh B tan 6 B ,

+3 72 costt B sint? £(1—e 29)}.

(12m)

All other nonvanishing components of the Riemann tensoRé;:(ag)*Ze*g{(Cosﬁ B sint? B+ 1)tan 6 tanh &

can be found by employing the symmetry properties of

RZWS:gWRMBVﬁ:
Raﬁ'yS: R'y&aﬁ: - RBayr?: - Ra,ﬁ’é"y . (13)

Finally, by contracting the Riemann tensor, one finds the

components of the Ricci tensor:

RE=R?,,. (14)

For our space—time metric, the Ricci tensor components are:

Rl=(aXe9) ?{(1—e?9)sink? B+sint? g tanhé (f'—g’)
—tanh¢ f'—f'2+f'g’ —f"—sinh X[ cosl? 3
X sint? B(e?9 tar? 6+ tanit §)+e29/3?0+[3?§]
+4sint? f coshg sinh g(e® tan 6 B ,—tanh& S o)},

(159
R,=(ae?) ?{coshf[coshp sinh B(1—e?¥+f'—g')

+21'B ¢]+sinh f[coshg sinh g(2 tanh§ '
—(e?9 tar? g+tanltt ¢)cosh B)+ B (f'—g’)
+e%9(B gp—tan @ B o)+ B g +tanh & B .1}, (15b)
Ri=(aXed) 2sintf g tanh¢ f'—f'2+tanhé g'+1f'g’
—f"— 143" e?9(2 sirf 6—cos #)—cosit &
+coshé¢ sinh & (f'+g')]+23 [ e?9 cog 6 sir? 0
+cosht ¢ sint? £]+2 sinhf coshp sinh g tanh& B ;
+2sint? flcostt g sint? B tant? ¢+ %1}, (150)
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—sintf gtan @ f'— B ;B8 ,+3 ?[cos b sin f(tanh &

+f’)—cosh¢ sinh ¢ tan 6]+ 2 sinlf f[ 8.8,

—coslt B sint? B tan 6 tanh £]

+sinh X coshp sinh g[tanhé B ,—tan 6 B .1},
(150

'=(a3) 3 2 sinf? £ (1-e %)

—3 72 cosh¢ sinh ¢ (f'—g')+3  *[coslt & sir? 0
—sint? & cog 0](1—e 29)

+2 sint? f[cosi B sint? g tar? 6+ %]

—2sinh & coshg sinh B tan 6 B 4}, (156

R}=(ase% ?{cosif p[e?—1—tanh& (f'—g")]

+4 sinif f coshg sinh g[tanhé B ,—e* tan 6 g3 ;]
+sinh A[cosi g sint? B(tant? &+e? tar? 6)+ g%
+e298% 1) (15f)

Although the recipe for calculating the Ricci tensor is rela-
tively simple, the resulting algebraic calculations may be
time-consuming, and it is recommended that one uses sym-
bolic programs for the calculations, likeAPLE or MATH-
EMATICA. All calculations in the present paper were done
with the help ofMATHEMATICA.”
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IV. FINDING A SOLUTION OF THE VACUUM EINSTEIN EQUATIONS

For the vacuum, the right-hand side of the Einstein equations,
R;—(1/2) 65R=87Tj, (16)

vanishes, and the equations reduc&fe-0. When considering Eq$15), it seems to be impossible to find a straightforward
solution for the unknown functionf, g, and . But one can use the fact that the unknown functibramdg do not depend
on the coordinat®. The idea is to consider the equatidR$=0 in the limits 6—0 and¢— /2. When taking the latter limit
one has to be careful because of the divergence of.tierforming a series expansion of the Ricci tensor arofdr/2
reveals that the coefficient of the term with the highest divergendes/2— 6) 2, has the form

—sinhZsinh28 0 0 —2sinhf cosh B
coshg sinh 8 0 0 0 0
2a%cosHf & 0 0 2sinf f sinh 28 0 an
2sinhf cosh8 0 0 sinh Z sinh 28
Since B is assumed to be a smooth function, this implies that
B(&,72)=0,
B.o(§ m2)=0, (18)

and that any derivative g8 with respect tc€ on the symmetry axis equals zero. This also cancels automatically the divergent
term proportional to £/2— 6) 1. Assuming also thap is everywhere differentiable and symmetric with respect to the
equatorial plane, one finds the additional constraint

B.4(£,0=0. (19
For the limits9—0 and 8— /2, the derivatives of the unknown functions are distributed within the Ricci tensor as

p- f/,g/,B 39 -
f',f”, r, @ @ [ , ]
{ 9'.8.¢ B.eBes
. @ {f',f",g’,ﬁ'g} @ @
mRTl g o (gt @ (20
f,vg,lﬁ,aﬂ] @ @ f/ ’
L [ﬁ,gaﬂ,fs {r.9"A.4 i
and as
1.17,9".8 o} ) %) 18,00}
%) {f',",9'} (%) %)
li R~ 21
9me/2 ! %) ) {f'.9".8 4} %) @y
18,06} %) %) 1f.9".8.q}

As a first step, one can try to exclude the two unknowhsand g , in the equations lim., ., Rz=0. By examining the

coefficients of these two functions in the components of the Ricci tensor, one finds tpgi;,}jz(rR}— R§+ RZ) will eliminate
both terms:

(1—sint? ¢)[1—e?9]—coshé sinh & (3f'+g’)

: t_ pé 0\ —
OLIT/Z( Rt R§+ RB)_ a2e29 COSH f (22)
Moreover, the limit lim_,o R} also does not contain both terms:
1—sint? £)[1—e?9]—coshé sinh & (f'—g’
im Ro<t HIL-e*)—coshé sinn ¢ ('~9") 23
0 a%e’d sintf ¢

Subtracting the numerators of E¢82) and(23) yieldsf' (&)= —g'(&). Taking into account that bothandg tend to zero for
£—oo (flat Minkowski space—time at infinijyone had (¢) = —g(¢). Substitution of this relation into E¢23) and integrating
the latter leads to

sinh &
exr{f(f)]=exri—g(§)]=\/1—Am, (24)

with A as an integration constant.
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It remains to find a solution foB(¢,6). One can seek it by A _ ) sir? 6 y
close examination of the equatidtf=0, which results in ds’=— s [dt—a sir’ 6 d¢]*+ 2 [(re+p)de
sinh ¢ 2

[4 Sirf @ costt &+ 424ﬂ'0 tan # coshB sinh B]1A m —adt]2+ % dr2+p2d02, (27)

— i _3'4 _ P 2
[4sir? 6 costt é-~3%(B ,—tan 6 coshp sinh B)?] where the abbreviations A=r2—2Mr+a? p?=r?
sinh ¢ \? +a® cog 6, and M=Aa were used. Equatiof27) is the
A——>—=| =0. (25) : - _
coslt & standard representation of the Kerr metric in Boyer
. . . . , Lindquist coordinates for a rotating black hole with méss
This equation still looks quite complicated, but one can sat

. ; : and angular momenturB=aM [see Egs(33.2—4 in Ref.

isfy Eq. (25) by making the two square brackets vanish sepa; - L : .
raft)(/elyfq éhi; I)éads togthe solutign cogh3 ! cosh¢ and P g}éyzlétir?ogvdszgs is? rrl]g(;)lr?g:]sérrnggc\:lli%/ugf the metric as dis-
hence sintB=3"1cos#, where the integration constant is '

determined by taking into account ljm .,8=0. Since, for

any fixedé¢, this solution obeys the nonlinear ordinary differ-

ential equatiofODE) Eq. (25) with the boundary conditon ACKNOWLEDGMENTS
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Collecting all results of the last section, the resulting met-
ric finally has the form
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BLACK HOLES

The absence of any sharp spike, or cusp, of light on sub-arc-second scales bolsters the idea that
M15 probably does not have a black hole in its midst... . For me, this rather mundane development
was welcome news. While teaching college astronomy courses over the years, | had resisted the
temptation to endow the heart of virtually every poorly understood object in the Universe with a
black hole. The “bandwagon” appeal among astronomers who would have black holes lurking in
darkened nooks and crannies practically everywhere—in the centers of galaxies, star clusters,
exploding stars, even at the core of our Sun—was unconvincing to me, especially since therg is no
unambiguous evidence that even one such black hole actually exists anywhere. They probably do,
but they could just as well be figments of our imagination.

Eric J. ChaissonThe Hubble WargHarperCollins, New York, 1994 p. 299.
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