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An intuitive, straightforward way of finding the metric of a rotating black hole is presented, based
on the algebra of differential forms. The representation obtained for the metric displays a simplicity
which is not obvious in the usual Boyer–Lindquist coordinates. ©1997 American Association of Physics
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I. INTRODUCTION

The formulation of general relativity by Albert Einstein
1915 was one of the greatest advances of modern physi
describes the dependence of the structure of space–tim
the distribution of matter, and the converse effect of t
space–time structure on matter distribution. Despite
overwhelming clarity of its foundation and the elegance
its basic equations, it has proved to be very difficult to fi
exact analytical solutions of the Einstein equations. Mo
over, of all the exact solutions which are known, only
limited class seem to have a real physical meaning. Am
them are the famous solutions of Schwarzschild and Kerr
black holes, and the Friedman solution for cosmology.
though the ‘‘simple’’ solution for a static, spherically sym
metric black hole~static vacuum solution with spheric
symmetry and central singularity! was found by Schwarzs
child shortly after Einstein’s publication of his equation
nearly 48 years were to elapse before Kerr1 discovered the
vacuum solution for the stationary axisymmetric rotat
black hole.

Today, there exists a wealth of literature about solving
Einstein equations and about their solutions. Powerful n
897 Am. J. Phys.65 ~9!, September 1997
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techniques were developed, like the spinor technique of
rose and Newman,2 or Bäcklund transformation technique
~for a review see, for example, Ref. 3!. Despite their grea
success in treating the Einstein equations, these method
technically complicated and are known mainly to the spec
ists working in the field. Taking into account the great phy
cal importance of the Kerr solution, it is desirable to hav
more straightforward way of finding it from the vacuum E
stein equations. Although a straightforward but nonethe
general way for finding the Kerr solution can be found in
classic work,The Mathematical Theory of Black Holes, by S.
Chandrasekhar,4 we will present here a more heuristic w
of finding this solution, revealing its simplicity and elegan
by using an alternative presentation of its metric. Tec
cally, all calculations will be presented in the language
differential forms.

II. A HEURISTIC GUESS FOR THE METRIC OF A
ROTATING BLACK HOLE

What we are looking for is the metric of a stationa
axially symmetric solution of the vacuum Einstein equatio
The term ‘‘stationary’’ implies that there are no depend
897© 1997 American Association of Physics Teachers
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cies of the space–time structure on timet. Axial symmetry
implies that there is no dependency on the coordinate
revolution in axially symmetric coordinates. In constructin
a guess for the metric, we will first try to choose an appr
priate coordinate presentation of the flat space–time me
This is then modified by the introduction of additional un
known functions, whose form is subsequently determined
imposing the vacuum Einstein equations. The aim is to lo
for a simple guess for the metric of a rotating black hole.
do this, one can consider the known Schwarzschild solut
of a static black hole and try to generalize it to a possib
metric of a rotating black hole. The Schwarzschild spac
time can be thought of as consisting of two-dimensional c
ordinate surfaces with the 2-metric of spheres~in Euclidean
three-dimensional space!, but coupled by an unusual radiu
function—the radial distance between two spheres with
dial coordinatesr 1 and r 2 is not r 22r 1 , but * r 1

r 2drAgrr ,

wheregrr is the rr component of the metric. Exactly this
together with a radius-dependent metric componentgtt ,
causes a nonvanishing curvature of the space–time. W
could be a possible generalization of this space–time str
ture giving that of a rotating black hole? From a pure tec
nical point of view, replacing the spheres by rotational elli
soids is the simplest thing one can try. Both types of surfa
are described by simple second-order algebraic equations
course, there is no direct physical justification for such
guess, and the only way to prove its validity will be to solv
the Einstein equations and to find a noncontradictory so
tion. However, simply replacing the spherical coordinate s
faces is not sufficient for a guess metric. For a rotating bla
hole one has to expect the occurrence of nonvanishing
diagonal metric components~in a coordinate basis!, coupling
the angular coordinate with time.

Explicitly, for describing the spatial part of the space
time, we will use oblate spheroidal~orthogonal! coordinates
j, u, andf.5 Their coordinate surfaces can be expressed
Cartesian coordinatesx,y,z by

x21y2

a2 cosh2 j
1

z2

a2 sinh2 j
51,

x21y2

a2 cos2 u
2

z2

a2 sin2 u
51, ~1!

y2tan fx50,

wherea is a positive constant. The first of these equatio
describes ellipsoids of revolution (j5const.), the second
hyberboloids of revolution (u5const.), and the third, axia
planes (f5const.). Some coordinate surfaces of this syst
are depicted in Fig. 1. The constanta is an arbitrary param-
eter, defining the location of the common foci of the ellip
soids.

By solving Eqs.~1! for x, y, andz, one finds

x5a coshj cosu cosf,

y5a coshtj cosu sin f, ~2!

z5a sinh j sin u,

so that the Euclidean line element in these coordinates
given by
898 Am. J. Phys., Vol. 65, No. 9, September 1997
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ds25dx21dy21dz25a2~sinh2 j1sin2 u!~dj21du2!

1a2 cosh2 j cos2 u df2. ~3!

Next, the basis 1-forms in the above coordinates for the
space–time have to be chosen. It is convenient for the
sequent calculations to choose them in such a way tha
metric acquires the diagonal formgab5hab , where hab
denotes the Minkowski flat space–time metric. Thus the
sis one-forms of the flat space–time~zero curvature! in ob-
late spheroidal coordinates read

ṽ t5dt,

ṽj5aS dj,
~4!

ṽu5aS du,

ṽf5a coshj cosu df,

where the abbreviationS5Asinh2 j1sin2 u was used.
As a first attempt, one would be inclined to use an ans

similar to the Schwarzschild solution, i.e., one would mu
ply the basis 1-formsṽ t and ṽ j of the flat space–time by
two unknown functions, expf and expg. Obviously, this will
only lead to the Schwarzschild solution itself, expressed
quite unfortunate coordinates. Recalling that one is look
for a rotating black hole solution, one could try to use t
Lorentz transformed basis 1-forms coshb ṽ t2sinhb ṽf and
coshb ṽf2sinhb ṽ t instead of ṽ t and ṽf, where b
5b(j,u) is a coordinate-dependent Lorentz transformat
parameter. Then one arrives at the following set of ba
1-forms:

ṽ t5ef@coshb dt2sinh b a coshj cosu df#,

ṽj5egaS dj,
~5!

ṽu5aS du,

ṽf5coshb a coshj cosu df2sinh b dt,

which include the three unknown functionsf , g, andb.
The use of such an ansatz for finding a stationary axi

symmetric vacuum solution entails no essential loss of g
erality, as long as all three unknown functions are assum
to depend on bothj andu. If the coordinate surfaces define

Fig. 1. Schematic representation of the oblate spheroidal coordinates.
faces of constantj ~ellipsoids! and of constantu ~hyperboloids! are shown.
898Jo¨rg Enderlein
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by the basis 1-forms~5! are completely unrelated to the in
trinsic character of the final solution, then this ansatz lead
over-complicated expressions for the Riemann curvature
sor and the Ricci tensor. It will therefore be assumed in
present paper thatf and g dependonly on j and not onu.
This singles out the ellipsoidal coordinate surfaces for
space–time structure being sought.

III. CALCULATING THE RICCI TENSOR

There follows a brief description of the calculation of t
Riemann curvature and Ricci tensor in the language of
ferential forms, following mainly Ref. 6. The Einstein sum
mation convention is used throughout.

First, we have to find the connection one-formsṽb
a

5Gbg
a ṽg, which are defined by the first Cartan relation:

dṽa52ṽb
a∧ṽb52Gbg

a ṽg∧ṽb. ~6!

Additionally, because the metric components in our basis
constant, the connection one-forms are antisymmetric@see
Ref. 6, Eq.~14.31b!#:

ṽab52ṽba . ~7!

Relation Eq.~6! is of no direct use for the calculation of th
connection one-forms. But the new symbolscbg

a antisym-
metric in b andg defined by

dṽa52 1
2cbg

aṽb∧ṽg ~8!

are easy to calculate by applying the exterior derivative
our basis one-forms. Comparing Eq.~8! with Eq. ~6! one can
see thatGagb2Gabg5cbga . By applying a cyclic permuta
tion of the indices toGagb2Gabg5cbga , and then adding
subtracting the resulting equations, one finds that

ṽb
a5galṽlb5 1

2g
al~clbg1clgb2cbgl!ṽg. ~9!
899 Am. J. Phys., Vol. 65, No. 9, September 1997
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For our basis one-forms as defined by Eq.~5!, the connection
one-forms explicitly read

ṽ j
t 5ṽ t~aSeg!21@2sinh2 b tanhj1 f 8#2ṽf~aSeg!21

3@cosh f coshb sinh b tanhj1sinh f b ,j#, ~10a!

ṽ u
t 5ṽ t~aS!21 sinh2 b tan u1ṽf~aS!21

3@cosh f coshb sinh b tan u2sinh f b ,u#, ~10b!

ṽ f
t 5ṽj~aSeg!21@sinh f coshb sinh b tanhj

1cosh f b ,j#1ṽu~aS!21@2sinh f coshb

3sinh b tan u1cosh f b ,u#, ~10c!

ṽu
j5ṽj~aS3!21 cosu sin u

2ṽu~aS3eg!21 coshj sinh j, ~10d!

ṽf
j 52ṽ t~aSeg!21@cosh f coshb sinh b tanhj

1sinh f b ,j#2ṽf~aSeg!21 cosh2 b tanhj, ~10e!

ṽf
u 5ṽ t~aS!21@cosh f coshb sinh b tan u2sinh f b ,u#

1ṽf~aS!21 cosh2 b tan u. ~10f!

Here, a prime denotes differentiation byj, andb ,j and b ,u
denote the two partial derivatives ofb.

Next, one calculates the Riemann curvature 2-form, wh
is defined by the second Cartan relation:

R̃b
a[ 1

2Rbgd
a ṽg∧ṽd5dṽb

a1ṽg
a∧ṽb

g . ~11!

The Rbgd
a are the components of the Riemann tensor. Ins

ing Eqs.~10! into the last equation, one obtains the followi
nonvanishing and distinct components of the Riemann
sor:
Rj tj
t

5@a2e2gS2#21$~sinh2 f 2sinh 2f !~cosh2 b sinh2 b tanh2 j1b ,j
2 !1~sinh 2f 24 sinh2 f !coshb sinh b

3tanhj b ,j2S22 sinh2 b sin2 u ~e2g21!1S22 coshj sinh j f 82 f 821sinh2 b tanhj ~2 f 82g8!1 f 8g82 f 9%,

~12a!

Rj tu
t

5@2a2egS2#21$2~sinh 2f 2sinh2 f !@cosh2 b sinh2 b tanhj tan u2b ,jb ,u#1~sinh 2f 24 sinh2 f !

3coshb sinh b@ tanhj b ,u2tan u b ,j#12S22 sinh2 b~coshj sinh j tan u2tanhj cosu sin u!

2sinh2b~12sinh2 b!tanhj tan u12~S22 cosu sin u2sinh2 b tan u! f 8%, ~12b!

Rjjf
t 5@a2e2gS2#21$cosh f @S22 coshb sinh b sin2 u ~e2g21!2coshb sinh b tanhj ~ f 82g8!22 f 8b ,j#

1sinh f @coshb sinh b~cosh2 b1sinh2 b!tanh2 j22 coshb sinh b tanhj f 82S22e2g cosu sin u b ,u

1~S22 coshj sinh j2tanhj2 f 81g8!b ,j2b ,jj#%, ~12c!

Rjuf
t 5@a2egS2#21$cosh f @S22 coshb sinh b~cosu sin u tanhj2coshj sinh j tan u!1coshb sinh b

3tan u~ tanhj1 f 8!2 f 8b ,u#2sinh f @coshb sinh b~cosh2 b1sinh2 b!tanhj tan u2~coshb sinh b tan u2b ,u! f 8

2~S22 coshj sinh j1sinh2 b tanhj!b ,u2~S22 coshu sin u1cosh2 b tan u!b ,j1b ,ju#%, ~12d!

Ru tu
t

5@a2S2#21$~sinh2 f 2sinh 2f !@cosh2 b sinh2 b tan2 u1b ,u
2 #1~4 sinh2 f 2sinh 2f !coshb sinh b tan u b ,u

1S22 sinh2 b sinh2 j~e22g21!2e22gS22 coshj sinh j f 8%, ~12e!
899Jo¨rg Enderlein



Rujf
t 5@a2egS2#21$cosh f @S22 coshb sinh b~cosu sin u tanhj2coshj sinh j tan u!1coshb sinh b tanhj

3tan u2 f 8b ,u#2sinh f @coshb sinh b~cosh2 b1sinh2 b!tanhj tan u2coshb sinh b tanhj f 8

2~S22 coshj sinh j2cosh2 b tanhj!b ,u2~S22 cosu sin u2sinh2 b tan u!b ,j1b ,ju#%, ~12f!

Ruuf
t 5@a2S2#21$S22 cosh f coshb sinh b sinh2 j~12e22g!1sinh f @coshb sinh b~cosh2 b1sinh2 b!tan2 u

1~S22 cosu sin u1tan u!b ,u2e22gS22 coshj sinh j b ,j2b ,uu#%, ~12g!

Rf tf
t

5@a2e2gS2#21$sinh 2f coshb sinh b~e2g tan u b ,u2tanhj b ,j!2sinh2 f @cosh2 b sinh2 b~e2g tan2 u

1tanh2 j!1e2gb ,u
2 1b ,j

2 #2cosh2 b tanhj f 8%, ~12h!

Rfju
t 5@a2egS2#21$sinh f @b ,u f 82~cosh2 b1sinh2 b!~ tanhj b ,u1tan u b ,j!#2cosh f coshb sinh b tan u f 8%, ~12i!

Ruju
j 5@a2e2gS6#21$~sinh2 j cos2 u2cosh2 j sin2 u!~12e2g!1S2 coshj sinh j g8%, ~12j!

Rfjf
j 5@a2e2gS2#21$~sinh 2f 1sinh2 f !~cosh2 b sinh2 b tanh2 j1b ,j

2 !1~4 sinh2 f 1sinh 2f !

3coshb sinh b tanhj b ,j1S22 cosh2 b sin2 u~e2g21!1cosh2 b tanhj g8%, ~12k!

Rfuf
j 5@2a2egS2#21$~4 sinh2 f 1sinh 2f !coshb sinh b~ tanhj b ,u2tan u b ,j!22~sinh2 f 12 sinh 2f !

3@cosh2 b sinh2 b tanhj tan u2b ,jb ,u#12S22 cosh2 b~cosu sin u tanhj2coshj sinh j tan u!

1cosh2 b~cosh2 b11!tanhj tan u%, ~12l!

Rfuf
u 5@a2S2#21$~sinh2 f 1sinh 2f !@cosh2 b sinh2 b tan2 u1b ,u

2 #2~4 sinh2 f 1sinh 2f !coshb sinh b tan u b ,u

1S22 cosh2 b sinh2 j~12e22g!%. ~12m!
so
o

th
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All other nonvanishing components of the Riemann ten
can be found by employing the symmetry properties
Rbgd

a 5gamRmbgd :

Rabgd5Rgdab52Rbagd52Rabdg . ~13!

Finally, by contracting the Riemann tensor, one finds
components of the Ricci tensor:

Rb
a5Rga

gb . ~14!

For our space–time metric, the Ricci tensor components

Ri
t5~aSeg!22$~12e2g!sinh2 b1sinh2 b tanhj ~ f 82g8!

2tanhj f 82 f 821 f 8g82 f 92sinh 2f @cosh2 b

3sinh2 b~e2g tan2 u1tanh2 j!1e2gb ,u
2 1b ,j

2 #

14 sinh2 f coshb sinh b~e2g tan u b ,u2tanhj b ,j!%,

~15a!

Rf
t 5~aSeg!22$cosh f @coshb sinh b~12e2g1 f 82g8!

12 f 8b ,j#1sinh f @coshb sinh b~2 tanhj f 8

2~e2g tan2 u1tanh2 j!cosh 2b!1b ,j~ f 82g8!

1e2g~b ,uu2tan u b ,u!1b ,jj1tanhj b ,j#%, ~15b!

Rj
j5~aSeg!22$2 sinh2 b tanhj f 82 f 821tanhj g81 f 8g8

2 f 9211S22@e2g~2 sin2 u2cos2 u!2cosh2 j

1coshj sinh j ~ f 81g8!#12S24@e2g cos2 u sin2 u

1cosh2 j sinh2 j#12 sinh f coshb sinh b tanhj b ,j

12 sinh2 f @cosh2 b sinh2 b tanh2 j1b ,j
2 #%, ~15c!
900 Am. J. Phys., Vol. 65, No. 9, September 1997
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Ru
j5~aS!22e2g$~cosh2 b sinh2 b11!tan u tanhj

2sinh2 b tan u f 82b ,jb ,u1S22@cosu sin u~ tanhj

1 f 8!2coshj sinh j tan u#12 sinh2 f @b ,jb ,u

2cosh2 b sinh2 b tan u tanhj#

1sinh 2f coshb sinh b@ tanhj b ,u2tan u b ,j#%,

~15d!

Ru
u5~aS!22$S22 sinh2 j ~12e22g!

2S22 coshj sinh j ~ f 82g8!1S24@cosh2 j sin2 u

2sinh2 j cos2 u#~12e22g!

12 sinh2 f @cosh2 b sinh2 b tan2 u1b ,u
2 #

22 sinh 2f coshb sinh b tan u b ,u%, ~15e!

Rf
f5~aSeg!22$cosh2 b@e2g212tanhj ~ f 82g8!#

14 sinh2 f coshb sinh b@ tanhj b ,j2e2g tan u b ,u#

1sinh 2f@cosh2 b sinh2 b~ tanh2 j1e2g tan2 u!1b ,j
2

1e2gb ,u
2 #%. ~15f!

Although the recipe for calculating the Ricci tensor is re
tively simple, the resulting algebraic calculations may
time-consuming, and it is recommended that one uses s
bolic programs for the calculations, likeMAPLE or MATH-
EMATICA. All calculations in the present paper were do
with the help ofMATHEMATICA .7
900Jo¨rg Enderlein
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IV. FINDING A SOLUTION OF THE VACUUM EINSTEIN EQUATIONS

For the vacuum, the right-hand side of the Einstein equations,
Rb

a2~1/2!db
aR58pTb

a , ~16!

vanishes, and the equations reduce toRb
a50. When considering Eqs.~15!, it seems to be impossible to find a straightforwa

solution for the unknown functionsf , g, andb. But one can use the fact that the unknown functionsf andg do not depend
on the coordinateu. The idea is to consider the equationsRb

a50 in the limitsu→0 andu→p/2. When taking the latter limit
one has to be careful because of the divergence of tanu. Performing a series expansion of the Ricci tensor aroundu5p/2
reveals that the coefficient of the term with the highest divergence,;(p/22u)22, has the form

coshb sinh b

2a2 cosh2 j S 2sinh 2f sinh 2b 0 0 22 sinh f cosh 2b

0 0 0 0

0 0 2 sinh2 f sinh 2b 0

2 sinh f cosh 2b 0 0 sinh 2f sinh 2b

D . ~17!

Sinceb is assumed to be a smooth function, this implies that

b~j,p/2!50,

b ,u~j,p/2!50, ~18!

and that any derivative ofb with respect toj on the symmetry axis equals zero. This also cancels automatically the dive
term proportional to (p/22u)21. Assuming also thatb is everywhere differentiable and symmetric with respect to t
equatorial plane, one finds the additional constraint

b ,u~j,0!50. ~19!

For the limitsu→0 andu→p/2, the derivatives of the unknown functions are distributed within the Ricci tensor as

lim
u→0

Rn
m;F $ f 8, f 9,g8,b ,j% B B H f 8,g8,b ,uu

b ,j ,b ,jj
J

B $ f 8, f 9,g8,b ,j% B B

B B $ f 8,g8% B

H f 8,g8,b ,uu

b ,j ,b ,jj
J B B $ f 8,g8,b ,j%

G ~20!

and as

lim
u→p/2

Rn
m;F $ f 8, f 9,g8,b ,u% B B $b ,uu%

B $ f 8, f 9,g8% B B

B B $ f 8,g8,b ,u% B

$b ,uu% B B $ f 8,g8,b ,u%

G . ~21!

As a first step, one can try to exclude the two unknownsf 9 and b ,u in the equations limu→p/2 Rb
a50. By examining the

coefficients of these two functions in the components of the Ricci tensor, one finds that limu→p/2(Rt
t2Rj

j1Ru
u) will eliminate

both terms:

lim
u→p/2

~Rt
t2Rj

j1Ru
u!5

~12sinh2 j!@12e2g#2coshj sinh j ~3 f 81g8!

a2e2g cosh4 j
. ~22!

Moreover, the limit limu→0 Ru
u also does not contain both terms:

lim
u→0

Ru
u5

~12sinh2 j!@12e2g#2coshj sinh j ~ f 82g8!

a2e2g sinh4 j
. ~23!

Subtracting the numerators of Eqs.~22! and~23! yields f 8(j)52g8(j). Taking into account that bothf andg tend to zero for
j→` ~flat Minkowski space–time at infinity!, one hasf (j)52g(j). Substitution of this relation into Eq.~23! and integrating
the latter leads to

exp@ f ~j!#5exp@2g~j!#5A12A
sinh j

cosh2 j
, ~24!

with A as an integration constant.
901 901Am. J. Phys., Vol. 65, No. 9, September 1997 Jo¨rg Enderlein
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It remains to find a solution forb~j,u!. One can seek it by
close examination of the equationRu

u50, which results in

@4 sin2 u cosh2 j14S4b ,u tan u coshb sinh b#A
sinh j

cosh2 j

2@4 sin2 u cosh2 j2S4~b ,u2tan u coshb sinh b!2#

3S A
sinh j

cosh2 j D 2

50. ~25!

This equation still looks quite complicated, but one can sa
isfy Eq. ~25! by making the two square brackets vanish sep
rately. This leads to the solution coshb5S21 coshj and
hence sinhb5S21 cosu, where the integration constant is
determined by taking into account limu→p/2b50. Since, for
any fixedj, this solution obeys the nonlinear ordinary differ
ential equation~ODE! Eq. ~25! with the boundary condition
limu→p/2b50, it is the only solution by the uniqueness theo
rem for ODEs. By directly inserting the resulting solutions o
f , g, and b into the Ricci tensor, it is straightforward to
prove that they really constitute a solution of the vacuu
Einstein equations.

V. CONCLUSION

Collecting all results of the last section, the resulting me
ric finally has the form

ds252F12A
sinh j

cosh2 j G S coshj

S
dt

2
cosu

S
a coshj cosu df D 2

1F12A
sinh j

cosh2 j G21

a2S2dj21a2S2du2

1S coshj

S
a coshj cosu df2

cosu

S
dtD 2

. ~26!

By changing the variablesj to r 5a sinhj and u to p/2
2u, one finds the equivalent form
902 Am. J. Phys., Vol. 65, No. 9, September 1997
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ds252
D

r2 @dt2a sin2 u df#21
sin2 u

r2 @~r 21r2!df

2adt#21
r2

D
dr21r2du2, ~27!

where the abbreviations D5r 222Mr 1a2, r25r 2

1a2 cos2 u, and 2M[Aa were used. Equation~27! is the
standard representation of the Kerr metric in Boy
Lindquist coordinates for a rotating black hole with massM
and angular momentumS5aM @see Eqs.~33.2–4! in Ref.
6#. But now, the original simplicity of the metric as d
played in Eqs.~5! is no longer obvious.
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BLACK HOLES

The absence of any sharp spike, or cusp, of light on sub-arc-second scales bolsters the idea that
M15 probably does not have a black hole in its midst... . For me, this rather mundane development
was welcome news. While teaching college astronomy courses over the years, I had resisted the
temptation to endow the heart of virtually every poorly understood object in the Universe with a
black hole. The ‘‘bandwagon’’ appeal among astronomers who would have black holes lurking in
darkened nooks and crannies practically everywhere—in the centers of galaxies, star clusters,
exploding stars, even at the core of our Sun—was unconvincing to me, especially since there is no
unambiguous evidence that even one such black hole actually exists anywhere. They probably do,
but they could just as well be figments of our imagination.

Eric J. Chaisson,The Hubble Wars~HarperCollins, New York, 1994!, p. 299.
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