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Thomas Kneib Akaike Information Criterion

Akaike Information Criterion

• Most commonly used model choice criterion for comparing parametric models.

• Definition:
AIC = −2l(ψ̂) + 2k.

where l(ψ̂) is the log-likelihood evaluated at the maximum likelihood estimate ψ̂ for
the unknown parameter vector ψ and k = dim(ψ) is the number of parameters.

• Properties:

– Compromise between model fit and model complexity.

– Allows to compare non-nested models.

– Selects rather too many than too few variables in variable selection problems.
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Thomas Kneib Akaike Information Criterion

• Data y generated from a true underlying model described in terms of density g(·).
• Approximate the true model by a parametric class of models fψ(·) = f(·; ψ).

• Measure the discrepancy between a model fψ(·) and the truth g(·) by the Kullback-
Leibler distance

K(fψ, g) =
∫

[log(g(z))− log(fψ(z))] g(z)dz

= Ez [log(g(z))− log(fψ(z))] .

where z is an independent replicate following the same distribution as y.

• Decision rule: Out of a sequence of models, choose the one that minimises K(fψ, g).
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• In practice, the parameter ψ will have to be estimated as ψ̂(y) for the different
models.

• To focus on average properties not depending on a specific data realisation, minimise
the expected Kullback-Leibler distance

Ey[K(fψ̂(y), g)] = Ey[Ez

[
log(g(z))− log(fψ̂(y)(z))

]
]

• Since g(·) does not depend on the data, this is equivalent to minimising

−2Ey[Ez[log(fψ̂(y)(z))]] (1)

(the expected relative Kullback-Leibler distance).
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• The best available estimate for (1) is given by

−2 log(fψ̂(y)(y)).

• While (1) is a predictive quantity depending on both the data y and an independent
replication z, the density and the parameter estimate are evaluated for the same
data.

⇒ Introduce a correction term.

• Consider the regularity conditions

– ψ is a k-dimensional parameter with parameter space Ψ = Rk (possibly achieved
by a change of coordinates).

– y consists of independent and identically distributed replications y1, . . . , yn.

• In this case, an (asymptotically) unbiased estimate for (1) is given by

AIC = −2 log(fψ̂(y)(y)) + 2k.
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Linear Mixed Models

• Mixed models form a very useful class of regression models with general form

y = Xβ + Zb + ε

where β are usual regression coefficients while b are random effects with distributional
assumption [

ε
b

]
∼ N

([
0
0

]
,

[
σ2I 0
0 D

])
.

• In the following, we will concentrate on mixed models with only one variance
component where

b ∼ N(0, τ2I) or b ∼ N(0, τ2Σ)

with Σ known.
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• Special case I: Random intercept model for longitudinal data

yij = x′ijβ + bi + εij, j = 1, . . . , Ji, i = 1, . . . , I,

where i indexes individuals while j indexes repeated observations on the same
individual.

• The random intercept bi accounts for shifts in the individual level of response
trajectories and therefore also for intra-subject correlations.
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• Special case II: Penalised spline smoothing for nonparametric function estimation

yi = m(xi) + εi, i = 1, . . . , n,

where m(x) is a smooth, unspecified function.

• Approximating m(x) in terms of a spline basis of degree d leads (for example) to the
truncated power series representation

m(x) =
d∑

j=0

βjx
j +

K∑

j=1

bj(x− κj)d
+

where κ1, . . . , κK denotes a sequence of knots.

• Assume random effects distribution b ∼ N(0, τ2I) for the basis coefficients of
truncated polynomials to enforce smoothness.
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• Marginal perspective on a mixed model:

y ∼ N(Xβ, V )

where
V = σ2I + ZDZ ′

• Interpretation: The random effects induce a correlation structure and therefore enable
a proper statistical analysis of correlated data.

• Conditional perspective on a mixed model:

y|b ∼ N(Xβ + Zb, σ2I).

• Interpretation: Random effects are additional regression coefficients (for example
subject-specific effects in longitudinal data) that are estimated subject to a regulari-
sation penalty.
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• Interest in the following is on the selection of random effects: Compare

M1 : y = Xβ + Zb + ε, b ∼ N(0, τ2Σ)

and
M2 : y = Xβ + ε.

• Equivalent: Compare model with random effects (τ2 > 0) and without random effects
(τ2 = 0).

• Random Intercept: τ2 > 0 versus τ2 = 0 corresponds to the inclusion and exclusion
of the random intercept and therefore to the presence or absence of intra-individual
correlations.

• Penalised splines: τ2 > 0 versus τ2 = 0 differentiates between a spline model and
a simple polynomial model. In particular, we can compare linear versus nonlinear
models.
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Akaike Information Criteria in Linear Mixed Models

• In linear mixed models, two variants of AIC are conceivable based on either the
marginal or the conditional distribution.

• The marginal AIC relies on the marginal model

y ∼ N(Xβ, V )

and is defined as

mAIC = −2l(y|β̂, τ̂2, σ̂2) + 2(p + 2),

where the marginal likelihood is given by

l(y|β̂, τ̂2, σ̂2) = −1
2

log(|V̂ |)− 1
2
(y −Xβ̂)′V̂

−1
(y −Xβ̂)

and p = dim(β).
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• The conditional AIC relies on the conditional model

y|b ∼ N(Xβ + Zb, σ2I)

and is defined as
cAIC = −2l(y|β̂, b̂, τ̂2, σ2) + 2(ρ + 1),

where

l(y|β̂, b̂, τ̂2, σ2) = −n

2
log(σ̂2)− 1

2σ̂2
(y −Xβ̂ −Zb̂)′(y −Xβ̂ −Zb̂)

is the conditional likelihood and

ρ = tr
((

X ′X X ′Z
Z ′X Z ′Z + σ2/τ2Σ

)−1 (
X ′X X ′Z
Z ′X Z ′Z

))

are the effective degrees of freedom (trace of the hat matrix).
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Marginal AIC

• Model M1 (τ2 > 0) is preferred over M2 (τ2 = 0) when

mAIC1 < mAIC2 ⇔ −2l(y|β̂1, τ̂
2, σ̂2

1) + 2(p + 2) < −2l(y|β̂2, 0, σ̂2
2) + 2(p + 1)

⇔ 2l(y|β̂1, τ̂
2, σ̂2

1)− 2l(y|β̂2, 0, σ̂2
2) > 2.

• The left hand side is simply the test statistic for a likelihood ratio test on τ2 = 0
versus τ2 > 0.

• Under standard asymptotics, we would have

2l(y|β̂1, τ̂
2, σ̂2

1)− 2l(y|β̂2, 0, σ̂2
2)

a,H0∼ χ2
1

and the marginal AIC would have a type 1 error of

P (χ2
1 > 2) ≈ 0.1572992

• Common interpretation: AIC selects rather too many than too few effects.
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• In contrast to the regularity conditions for likelihood ratio tests, τ2 is on the boundary
of the parameter space for model M2.

• The classical assumptions underlying the derivation of AIC are also not fulfilled.

• Consequences:

– The marginal AIC is positively biased for twice the expected relative Kullback-
Leibler-Distance.

– The bias is dependent on the true unknown parameters in the random effects
covariance matrix and this dependence does not vanish asymptotically.

– Compared to an unbiased criterion, the marginal AIC favors smaller models
excluding random effects.

• This contradicts the usual intuition that the AIC picks rather too many than too few
effects.
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Conditional AIC

• Vaida & Blanchard (2005) have shown that the conditional AIC from above is
asymptotically unbiased for the expected relative Kullback Leibler distance for given
random effects covariance matrix.

• Intuition: Result should carry over when using a consistent estimate.

• Surprisingly, this is not the case: The complex model including the random effect is
chosen whenever τ̂2 > 0:

τ̂2 > 0 ⇔ cAIC(τ̂2) < cAIC(0)

τ̂2 = 0 ⇔ cAIC(τ̂2) = cAIC(0).

• Principal difficulty: The degrees of freedom in the cAIC are estimated from the same
data as the model parameters.
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• Liang et al. (2008) propose a corrected conditional AIC, where the degrees of freedom
ρ are replaced by the estimate

ρ̂ =
n∑

i=1

∂ŷi

∂yi
= tr

(
∂ŷ

y

)
.

• The resulting corrected conditional AIC shows satisfactory theoretical properties.

• However, it is computationally cumbersome:

– Liang et al. suggested to approximate the derivatives numerically (by adding small
perturbations to the data).

– Numerical approximations require n and 2n model fits. In an application with
1,600 Observations and 64 candidate models, computing the corrected conditional
AICs would take about 110 days.

• We have developed a closed form representation of ρ̂ that is available almost
instantaneously.
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Summary

• The marginal AIC suffers from the same theoretical difficulties as likelihood ratio
tests on the boundary of the parameter space.

• The marginal AIC is biased towards simpler models excluding random effects.

• The conventional conditional AIC tends to select too many variables.

• Whenever a random effects variance is estimated to be positive, the corresponding
effect will be included.

• The corrected conditional AIC rectifies this difficulty and is now available in closed
form.
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• A place called home:
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