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Preface

This is a script for the course “Logic II” at LMU, Sommersemester 2016.
It is mainly based on Schwichtenberg and Wainer (2012). However, some
concepts not in the textbook are included, most notably invariance under
realizability.

München, 14. Mai 2016
Helmut Schwichtenberg
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Introduction

In this introduction we deal with the basics of formalizing proofs and, via
the Curry-Howard correspondence, analysing their computational structure.

Minimal logic is a system of rules for deriving logical formulas based
just on the two symbols → (implication) and ∀ (for all). Each symbol has
two rules: an introduction rule (→+, ∀+) and an elimination rule (→−, ∀−).
The rules for implication are

[A]

|M
B →+

A→ B

|M
A→ B

| N
A →−B

and the rules for universal quantification are

|M
A ∀+x∀xA

|M
∀xA(x) r

∀−
A(r)

These are Gentzen’s (1935) Natural Deduction rules (and there are others
for ∃, ∨ and ∧ which we shall come to later). Gentzen’s idea was that
natural deduction rules do indeed reflect the ways in which we construct
logical arguments.

Notice that subderivations of the premises of rules are labelled M,N .
In order to avoid obvious invalid derivations (for example Px→ ∀xPx), the
rule ∀+x with conclusion ∀xA is subject to the following (eigen-)variable
condition: the derivation M of the premise A should not contain any open
(undischarged) assumptions having x as a free variable.

It is clear that derivations need to be started off somewhere, so in ad-
dition we need to introduce assumptions and – as in the implication intro-
duction – allow some assumptions to be closed or discharged in the course
of a derivation. The notation for a discharged assumption A is [A].

Here is a simple example. Assume A,B are formulas and x /∈ FV(A),
the set of variables free in A.

vii



viii INTRODUCTION

[∀x(A→ B)] x
∀−A→ B A →−B ∀+x∀xB →+

A→ ∀xB →+
∀x(A→ B)→ A→ ∀xB

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ B)).

It is possible that a derivation makes an unnecessary “detour” – an
elimination immediately following an introduction – and we may want to
remove it. This can be done for implication via

[A]

|M
B →+

A→ B

| N
A →−B

reduces to

| N
A
|M
B

and for universal quantification via

|M(x)

A(x)
∀+x∀xA(x) r

∀−
A(r)

reduces to
|M(r)

A(r)

Clearly the tree structure of logical derivations of any complexity at all
becomes quite cumbersome, and the availability of some alternative rep-
resentation therefore becomes increasingly important, especially when we
wish to operate on derivations. The Curry-Howard correspondence provides
a neat, computationally inspired alternative. The underlying idea is that if
we have a derivation M(x) of A(x) then any means of (universally) binding
the x should then represent a derivation of ∀xA(x). The notation chosen
for binding the x is λxM(x), denoting the function x 7→M(x). On the side
of → a derivation M of B from some assumptions A, each of which must
now in addition have a label u, is then represented as λuM(u), denoting the
function u 7→ M(u). This requires the labelling of assumptions so that all
assumptions discharged by an application of →+ must have the same label.
For example the unnecessary detour via → will thus be represented as

(λuM(u))N reduces to M(N).

Similarly the unnecessary detour via ∀ will be represented as

(λxM(x))r reduces to M(r).
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These reductions are instances of what, in lambda calculus terms, is known
as beta reduction and we write

(λuM(u))N 7→β M(N),

(λxM(x))r 7→β M(r).

The lambda calculus provides an abstract setting for representing and
computing functions and beta reduction is the main computational mecha-
nism. Now there comes one further detail: we want to be able to move back
and forth from derivations to lambda representations of them and back again
from lambda terms to derivations. For this reason it is necessary to assign
to each lambda term a “type”, which will be the formula whose proof it rep-
resents. The formula type will be written as a superscript. In detail then,
the first beta reduction example above now becomes

(λuM(uA)B)A→BNA 7→β M(NA)B.

In summary, the Curry-Howard correspondence is completely described by
the Table 1 below.

Suppose that we have extended minimal logic with axioms introducing
the existential quantifier:

∃+ : ∀x(A→ ∃xA), ∃− : ∃xA→ ∀x(A→ B)→ B (x not free in B).

These now allow us to make computationally meaningful derivations. The
underlying principle is this: suppose one has a derivation of a closed formula
∃xA(x) resulting from an existential introduction axiom ∃+, i.e., the deriva-

tion (written as a Curry-Howard term) is of the form ∃+ruA(r). Then r (the
computational content) is a witness for the existential quantifier, and it may
be read off immediately. Of course the derivation may not end with an exis-
tential introduction. However, the process of normalization will beta-reduce
the derivation term into one in which ∃+ is the final operator to be applied.
In general normalization is the process of computing out a lambda term, un-
til no further beta reductions can be made. In other words, normalization
reduces away all unnecessary detours.

Now suppose that the formula ∃xA(x) is not closed, say it has one free
variable z. By instantiating z we obtain again a closed formula depending
on the instantiated value. Extracting a witnessing term from a normalized
derivation term, as above, then provides a witness depending on the instan-
tiated value. However, to bring out the uniformity involved in this process
requires a new method, realizability.

In the lecture course we will study such computational aspects of logic,
both from theoretical and practical point of view. For the former, we will
make heavy use of the textbook Schwichtenberg and Wainer (2012). For
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Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

the latter, we present many fundamental concepts and principles underly-
ing our proof assistant Minlog1. For example, inductively defined data and
predicates, recursion, induction and decoration. All will be developed theo-
retically as well as within the Minlog setting, and in each case a wide variety
of practical case studies will illustrate program extraction.

1www.minlog-system.de



CHAPTER 1

Logic

The main subject of Mathematical Logic is mathematical proof. In this
chapter we deal with the basics of formalizing such proofs and, via normali-
zation, analysing their structure. The system we pick for the representation
of proofs is natural deduction as in Gentzen (1935). Our reasons for this
choice are twofold. First, as the name says this is a natural notion of formal
proof, which means that the way proofs are represented corresponds very
much to the way a careful mathematician writing out all details of an ar-
gument would go anyway. Second, formal proofs in natural deduction are
closely related (via the Curry-Howard correspondence) to terms in typed
lambda calculus. This provides us not only with a compact notation for log-
ical derivations (which otherwise tend to become somewhat unmanageable
tree-like structures), but also opens up a route to applying the computa-
tional techniques which underpin lambda calculus.

An essential point for Mathematical Logic is to fix the formal language
to be used. We take implication → and the universal quantifier ∀ as basic.
Then the logic rules correspond precisely to lambda calculus. The additional
connectives (i.e., the existential quantifier ∃, disjunction ∨ and conjunction
∧) will be added as axioms. Later we will see that these axioms are particular
inductive definitions. In addition to the use of inductive definitions as a
unifying concept, another reason for that change of emphasis will be that it
fits more readily with the more computational viewpoint adopted there.

We will also show that every derivation has a normal form, and analyze
the shape of such normal derivations.

This chapter does not simply introduce basic proof theory, but in addi-
tion there is an underlying theme: to bring out the constructive content of
logic, particularly in regard to the relationship between minimal and classical
logic. It seems that the latter is most appropriately viewed as a subsystem
of the former.

1.1. Natural deduction

Rules come in pairs: we have an introduction and an elimination rule for
each of the logical connectives. The resulting system is called minimal logic;

1



2 1. LOGIC

it was introduced by Kolmogorov (1932), Gentzen (1935) and Johansson
(1937). Notice that no negation is yet present. If we go on and require
ex-falso-quodlibet for the nullary propositional symbol ⊥ (“falsum”) we can
embed intuitionistic logic with negation as A→ ⊥. To embed classical logic,
we need to go further and add as an axiom schema the principle of indirect
proof, also called stability (∀~x(¬¬R~x → R~x ) for relation symbols R), but
then it is appropriate to restrict to the language based on →, ∀, ⊥ and ∧.
The reason for this restriction is that we can neither prove ¬¬∃xA → ∃xA
nor ¬¬(A∨B)→ A∨B (the former is Markov’s scheme). However, we can
prove them for the classical existential quantifier and disjunction defined by
¬∀x¬A and ¬A → ¬B → ⊥. Thus we need to make a distinction between
two kinds of “exists” and two kinds of “or”: the classical ones are “weak”
and the non-classical ones “strong” since they have constructive content.
We mark the distinction by writing a tilde above the weak disjunction and
existence symbols thus ∨̃, ∃̃.

We have alrady seen the rules of minimal logic for →, ∀ and the corre-
sponding Curry-Howard terms in Table 1.

A formula A is called derivable (in minimal logic), written ` A, if there
is a derivation of A (without free assumptions) using the natural deduction
rules. A formula B is called derivable from assumptions A1, . . . , An, if there
is a derivation of B with free assumptions among A1, . . . , An. Let Γ be
a (finite or infinite) set of formulas. We write Γ ` B if the formula B is
derivable from finitely many assumptions A1, . . . , An ∈ Γ.

1.1.1. Logic in Minlog: basic examples. As a first encounter with
the Minlog1 proof assistant we consider two simple logical facts. Let A, B,
C be propositional variables.

(A→ B → C)→ (A→ B)→ A→ C.

Informal proof. Assume A → B → C. Goal: (A → B) → A → C.
So assume A → B. Goal: A → C. So finally assume A. Goal: C. Using
the third assumption twice we have B → C by the first assumption, and
B by the second assumption. From B → C and B we then obtain C.
Then A → C, cancelling the assumption on A, and (A → B) → A → C
cancelling the second assumption. The result follows by cancelling the first
assumption. �

For the second example involving quantifiers, let P be a unary predicate
variable.

∀x(A→ Px)→ A→ ∀xPx (x /∈ FV(A)).

1www.minlog-system.de



1.1. NATURAL DEDUCTION 3

Informal proof. Assume ∀x(A→ Px). Goal: A→ ∀xPx. So assume
A. Goal: ∀xPx. Let x be arbitrary; note that we have not made any
assumptions on x. Goal: Px. We have A → Px by the first assumption.
Hence also Px by the second assumption. Hence ∀xPx. Hence A→ ∀xPx,
cancelling the second assumption. Hence the result, cancelling the first
assumption. �

We now give derivations of the two example formulas treated informally
above. Since in many cases the rule used is determined by the conclusion,
we suppress in such cases the name of the rule.

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v
(A→ B)→ A→ C

→+u
(A→ B → C)→ (A→ B)→ A→ C

For the second example we obtain

u : ∀x(A→ Px) x

A→ Px v : A
Px ∀+x∀xPx →+vA→ ∀xPx →+u∀x(A→ Px)→ A→ ∀xPx

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ Px)).

Let us now formalize these proofs in Minlog. We describe the interactions
rather shortly; for a more thorough introduction the reader should consult
the Minlog tutorial. After starting the system by typing

(load "~/git/minlog/init.scm")

we declare three propositional variables by executing

(add-pvar-name "A" "B" "C" (make-arity))

The proof then is generated by the following sequence of commands:

(set-goal "(A -> B -> C) -> (A -> B) -> A -> C")

(assume "u" "v" "w")

(use "u")

(use "w")

(use "v")

(use "w")

We save the proof and display it as lambda-expression, with formulas as-
signed to the assumption variables:
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(define proof (current-proof))

(proof-to-expr-with-formulas proof)

The result is

u: A -> B -> C

v: A -> B

w: A

(lambda (u) (lambda (v) (lambda (w) ((u w) (v w)))))

For the second example involving quantifiers we proceed similarly. We
declare x as a variable of type α (a type variable) and P as a unary predicate
variable

(add-var-name "x" (py "alpha"))

(add-pvar-name "P" (make-arity (py "alpha")))

The proof is generated by the following sequence of commands:

(set-goal "all x(A -> P x) -> A -> all x P x")

(assume "u" "v" "x")

(use "u")

(use "v")

We again save the proof and display it as lambda-expression, with formulas
assigned to the assumption variables:

(define proof (current-proof))

(proof-to-expr-with-formulas proof)

The result is

u: all x(A -> P x)

v: A

(lambda (u) (lambda (v) (lambda (x) ((u x) v))))

These lambda-expressions are exactly what the Curry-Howard corre-
spondence gives us.

1.1.2. Negation, disjunction, conjunction and existence. Recall
that negation is defined by ¬A := (A → ⊥). The following can easily be
derived.

A→ ¬¬A,
¬¬¬A→ ¬A.
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However, ¬¬A → A is in general not derivable (without stability – we will
come back to this later on). The derivation of ¬¬¬A→ ¬A is

u : ((A→ ⊥)→ ⊥)→ ⊥

w : A→ ⊥ v : A
⊥ →+w

(A→ ⊥)→ ⊥
⊥ →+vA→ ⊥ →+u

(((A→ ⊥)→ ⊥)→ ⊥)→ A→ ⊥

This proof can be generated by the following sequence of commands.

(set-goal "(((A -> bot) -> bot) -> bot) -> A -> bot")

(assume "u" "v")

(use "u")

(assume "w")

(use "w")

(use "v")

We can display it by executing

(define proof (current-proof))

(proof-to-expr-with-formulas proof)

The result then is

u: ((A -> bot) -> bot) -> bot

v: A

w: A -> bot

(lambda (u) (lambda (v) (u (lambda (w) (w v)))))

Derivations for the following formulas are left as exercises.

(A→ B)→ ¬B → ¬A,
¬(A→ B)→ ¬B,

¬¬(A→ B)→ ¬¬A→ ¬¬B,
(⊥ → B)→ (¬¬A→ ¬¬B)→ ¬¬(A→ B),

¬¬∀xA→ ∀x¬¬A.

For disjunction the introduction and elimination axioms are

∨+0 : A→ A ∨B,
∨+1 : B → A ∨B,
∨− : A ∨B → (A→ C)→ (B → C)→ C.
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For conjunction we have

∧+ : A→ B → A ∧B, ∧− : A ∧B → (A→ B → C)→ C

and for the existential quantifier

∃+ : A→ ∃xA, ∃− : ∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)).

Remark. All these axioms can be seen as special cases of a general
schema, that of an inductively defined predicate, which is defined by some
introduction rules and one elimination rule. Later we will study this kind
of definition in full generality.

It is easy to see that for each of the connectives ∨, ∧, ∃ the axioms
and the following rules are equivalent over minimal logic; this is left as an
exercise. For disjunction the introduction and elimination rules are

|M
A ∨+0

A ∨B

|M
B ∨+1

A ∨B

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C
For conjunction we have

|M
A

| N
B ∧+A ∧B

|M
A ∧B

[u : A] [v : B]

| N
C ∧− u, v

C
and for the existential quantifier

r

|M
A(r)

∃+∃xA(x)

|M
∃xA

[u : A]

| N
B ∃−x, u (var.cond.)

B

Similar to ∀+x the rule ∃−x, u is subject to an (eigen-)variable condition:
in the derivation N the variable x (i) should not occur free in the formula
of any open assumption other than u : A, and (ii) should not occur free in
B.

We collect some easy facts about derivability; B ← A means A→ B.

Lemma. The following are derivable.

(A ∧B → C)↔ (A→ B → C),

(A→ B ∧ C)↔ (A→ B) ∧ (A→ C),

(A ∨B → C)↔ (A→ C) ∧ (B → C),

(A→ B ∨ C)← (A→ B) ∨ (A→ C),
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(∀xA→ B)← ∃x(A→ B) if x /∈ FV(B),

(A→ ∀xB)↔ ∀x(A→ B) if x /∈ FV(A),

(∃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B),

(A→ ∃xB)← ∃x(A→ B) if x /∈ FV(A).

Proof. A derivation of the final formula is

u : ∃x(A→ B)
x

w : A→ B v : A
B

∃xB ∃−x,w
∃xB →+vA→ ∃xB →+u∃x(A→ B)→ A→ ∃xB

The variable condition for ∃− is satisfied since the variable x (i) is not free
in the formula A of the open assumption v : A, and (ii) is not free in ∃xB.
The rest of the proof is left as an exercise. �

The Minlog proof for the final formula uses the axioms ∃+ and ∃−:

(set-goal "ex x(A -> P x) -> A -> ex x P x")

(assume "u" "v")

(by-assume "u" "x" "w")

(ex-intro "x")

(use "w")

(use "v")

Again we can display it by executing

(define proof (current-proof))

(proof-to-expr-with-formulas proof)

The result then is

Ex-Elim: ex x(A -> P x) -> all x((A -> P x) -> ex x0 P x0) ->

ex x P x

Ex-Intro: all x(P x -> ex x0 P x0)

u: ex x(A -> P x)

v: A

w: A -> P x

(lambda (u)

(lambda (v)

((Ex-Elim u)

(lambda (x) (lambda (w) ((Ex-Intro x) (w v)))))))
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As an example of how to deal with the axioms for conjunction and
disjunction we give Minlog proofs for the two directions of

(A ∨B → C)↔ (A→ C) ∧ (B → C).

Here andd and ord indicate that we view ∧, ∨ as inductively defined2.

(set-goal "(A ord B -> C) -> (A -> C) andd (B -> C)")

(assume "u")

(split)

(assume "v")

(use "u")

(intro 0)

(use "v")

(assume "w")

(use "u")

(intro 1)

(use "w")

We display the proof as above and obtain

Intro: (A -> C) -> (B -> C) -> (A -> C) andd (B -> C)

Intro: A -> A ord B

Intro: B -> A ord B

u: A ord B -> C

v: A

w: B

(lambda (u)

((Intro (lambda (v) (u (Intro v))))

(lambda (w) (u (Intro w)))))

For the other direction we have

(set-goal "(A -> C) andd (B -> C) -> A ord B -> C")

(assume "u" "v")

(elim "v")

(use "u")

(use "u")

and obtain

Elim: A ord B -> (A -> C) -> (B -> C) -> C

Elim: (A -> C) andd (B -> C) ->

((A -> C) -> (B -> C) -> A -> C) -> A -> C

2For the existential quantifier we could have proceeded similarly, using the inductively
defined exd. However, there is also a “primitive” ex in Minlog, which was used above.
There is also a primitive conjunction written &.
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Elim: (A -> C) andd (B -> C) ->

((A -> C) -> (B -> C) -> B -> C) -> B -> C

u: (A -> C) andd (B -> C)

v: A ord B

u0: A -> C

u1: B -> C

(lambda (u)

(lambda (v)

(((Elim v) ((Elim u) (lambda (u0) (lambda (u1) u0))))

((Elim u) (lambda (u0) (lambda (u1) u1))))))

1.2. Embedding intuitionistic and classical logic

As already mentioned, we distinguish two kinds of “or” and “exists”:
the “weak” or classical ones and the “strong” or constructive ones. In the
present context both kinds occur together and hence we must mark the
distinction; we shall do this by writing a tilde above the weak disjunction
and existence symbols thus

A ∨̃ B := ¬A→ ¬B → ⊥, ∃̃xA := ¬∀x¬A.
These weak variants of disjunction and the existential quantifier are no
stronger than the proper ones (in fact, they are weaker):

A ∨B → A ∨̃ B, ∃xA→ ∃̃xA.
This can be seen easily by putting C := ⊥ in ∨− and B := ⊥ in ∃−.

Remark. Since ∃̃x∃̃yA unfolds into a rather awkward formula we extend

the ∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.
Moreover let

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.
This allows to stay in the →,∀ part of the language. Notice that ∧̃ only
makes sense in this context, i.e., in connection with ∃̃.

1.2.1. Intuitionistic and classical derivability. In the definition of
derivability falsity ⊥ plays no role. We may change this and require ex-
falso-quodlibet axioms, of the form

∀~x(⊥ → R~x )

with R a relation symbol distinct from ⊥. Let Efq denote the set of all such
axioms. A formula A is called intuitionistically derivable, written `i A, if
Efq ` A. We write Γ `i B for Γ ∪ Efq ` B.
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We may even go further and require stability axioms, of the form

∀~x(¬¬R~x→ R~x )

with R again a relation symbol distinct from ⊥. Let Stab denote the set of
all these axioms. A formula A is called classically derivable, written `c A,
if Stab ` A. We write Γ `c B for Γ ∪ Stab ` B.

It is easy to see that intuitionistically (i.e., from Efq) we can derive
⊥ → A for an arbitrary formula A, using the introduction rules for the
connectives. A similar generalization of the stability axioms is only possible
for formulas in the language not involving ∨, ∃. However, it is still possible
to use the substitutes ∨̃ and ∃̃.

Theorem (Stability, or principle of indirect proof).

(a) ` (¬¬A→ A)→ (¬¬B → B)→ ¬¬(A ∧B)→ A ∧B.
(b) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.
(c) ` (¬¬A→ A)→ ¬¬∀xA→ A.
(d) `c ¬¬A→ A for every formula A without ∨, ∃.

Proof. (a) is left as an exercise.
(b) For simplicity, in the derivation to be constructed we leave out ap-

plications of →+ at the end.

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

(c)

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

(d) Induction on A. The case R~t with R distinct from ⊥ is given by Stab.
In the case ⊥ the desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
In the cases A ∧B, A→ B and ∀xA use (a), (b) and (c), respectively. �
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Using stability we can prove some well-known facts about the interaction
of weak disjunction and the weak existential quantifier with implication. We
first prove a more refined claim, stating to what extent we need to go beyond
minimal logic.

Lemma. The following are derivable.

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B),(1)

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B),(2)

(⊥ → B[x:=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A),(3)

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).(4)

The last two items can also be seen as simplifying a weakly existentially
quantified implication whose premise does not contain the quantified variable.
In case the conclusion does not contain the quantified variable we have

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B),(5)

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).(6)

Proof. (1)

∃̃xA→ B

u1 : ∀x¬A x
¬A A

⊥ →+u1¬∀x¬A
B

(2)

¬¬B → B

¬∀x¬A

u2 : ¬B

∀x(A→ B) x

A→ B u1 : A
B

⊥ →+u1¬A
∀x¬A

⊥ →+u2¬¬B
B
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(3) Writing B0 for B[x:=c] we have

∀x¬(A→ B) c

¬(A→ B0)

⊥ → B0

A→ ∃̃xB u2 : A

∃̃xB

∀x¬(A→ B) x

¬(A→ B)
u1 : B
A→ B

⊥ →+u1¬B
∀x¬B

⊥
B0 →+u2

A→ B0

⊥
(4)

∃̃x(A→ B)

∀x¬B x
¬B

u1 : A→ B A
B

⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥
(5)

¬¬B → B

∃̃x(A→ B)

u2 : ¬B
u1 : A→ B

∀xA x
A

B
⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥ →+u2¬¬B
B

(6) We derive ∀x(⊥ → A) → (∀xA → B) → ∀x¬(A → B) → ¬¬A. Writing
Ax,Ay for A(x), A(y) we have

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀y(⊥ → Ay) y

⊥ → Ay
u1 : ¬Ax u2 : Ax

⊥
Ay

∀yAy
B →+u2

Ax→ B

⊥ →+u1¬¬Ax
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Using this derivation M we obtain

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀x(¬¬Ax→ Ax) x

¬¬Ax→ Ax

|M
¬¬Ax

Ax
∀xAx

B
Ax→ B

⊥
Since clearly ` (¬¬A→ A)→ ⊥→ A the claim follows. �

Remark. An immediate consequence of (6) is the classical derivability

of the “drinker formula” ∃̃x(Px → ∀xPx), to be read “in every non-empty
bar there is a person such that, if this person drinks, then everybody drinks”.
To see this let A := Px and B := ∀xPx in (6).

Corollary.

`c (∃̃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B) and B without ∨, ∃,

`i (A→ ∃̃xB)↔ ∃̃x(A→ B) if x /∈ FV(A),

`c ∃̃x(A→ B)↔ (∀xA→ B) if x /∈ FV(B) and A,B without ∨,∃.

There is a similar lemma on weak disjunction:

Lemma. The following are derivable.

(A ∨̃ B → C)→ (A→ C) ∧ (B → C),

(¬¬C → C)→ (A→ C)→ (B → C)→ A ∨̃ B → C,

(⊥ → B)→ (A→ B ∨̃ C)→ (A→ B) ∨̃ (A→ C),

(A→ B) ∨̃ (A→ C)→ A→ B ∨̃ C,
(¬¬C → C)→ (A→ C) ∨̃ (B → C)→ A→ B → C,

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).

Proof. The derivation of the final formula is

¬(B → C)

⊥ → C

¬(A→ C)

A→ B → C u1 : A
B → C u2 : B

C →+u1
A→ C

⊥
C →+u2

B → C

⊥
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The other derivations are similar to the ones above, if one views ∃̃ as an
infinitary version of ∨̃. �

Corollary.

`c (A ∨̃ B → C)↔ (A→ C) ∧ (B → C) for C without ∨,∃,
`i (A→ B ∨̃ C)↔ (A→ B) ∨̃ (A→ C),

`c (A→ C) ∨̃ (B → C)↔ (A→ B → C) for C without ∨, ∃.

Remark. It is easy to see that weak disjunction and the weak existential
quantifier satisfy the same axioms as the strong variants, if one restricts the
conclusion of the elimination axioms to formulas without ∨,∃. In fact, we
have

` A→ A ∨̃ B, ` B → A ∨̃ B,
`c A ∨̃ B → (A→ C)→ (B → C)→ C (C without ∨, ∃),

` A→ ∃̃xA,

`c ∃̃xA→ ∀x(A→ B)→ B (x /∈ FV(B), B without ∨, ∃).

The derivations of the second and the fourth formula are

¬¬C → C

¬A→ ¬B → ⊥

u1 : ¬C
A→ C u2 : A

C
⊥ →+u2¬A

¬B → ⊥

u1 : ¬C
B → C u3 : B

C
⊥ →+u3¬B

⊥ →+u1¬¬C
C

and

¬¬B → B

¬∀x¬A

u1 : ¬B

∀x(A→ B) x

A→ B u2 : A
B

⊥ →+u2¬A
∀x¬A

⊥ →+u1¬¬B
B

1.2.2. Gödel-Gentzen translation. Classical derivability Γ `c B was
defined in 1.2.1 by Γ ∪ Stab ` B. This embedding of classical logic into
minimal logic can be expressed in a somewhat different and very explicit
form, namely as a syntactic translation A 7→ Ag of formulas such that A
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is derivable in classical logic if and only if its translation Ag is derivable in
minimal logic.

Definition (Gödel-Gentzen translation Ag).

(R~t )g := ¬¬R~t for R distinct from ⊥,
⊥g := ⊥,
(A ∨B)g := Ag ∨̃ Bg,

(∃xA)g := ∃̃xAg,
(A ◦B)g := Ag ◦Bg for ◦ = →,∧,
(∀xA)g := ∀xAg.

Lemma. ` ¬¬Ag → Ag.

Proof. Induction on A.
Case R~t with R distinct from ⊥. We must show ¬¬¬¬R~t → ¬¬R~t,

which is a special case of ` ¬¬¬B → ¬B.
Case ⊥. Use ` ¬¬⊥ → ⊥.
Case A ∨ B. We must show ` ¬¬(Ag ∨̃ Bg) → Ag ∨̃ Bg, which is a

special case of ` ¬¬(¬C → ¬D → ⊥)→ ¬C → ¬D → ⊥:

¬¬(¬C → ¬D → ⊥)

u1 : ¬C → ¬D → ⊥ ¬C
¬D → ⊥ ¬D

⊥ →+u1¬(¬C → ¬D → ⊥)

⊥
Case ∃xA. In this case we must show ` ¬¬∃̃xAg → ∃̃xAg, but this is a

special case of ` ¬¬¬B → ¬B, because ∃̃xAg is the negation ¬∀x¬Ag.
Case A ∧ B. We must show ` ¬¬(Ag ∧ Bg) → Ag ∧ Bg. By induction

hypothesis ` ¬¬Ag → Ag and ` ¬¬Bg → Bg. Now use part (a) of the
stability theorem in 1.2.1.

The cases A → B and ∀xA are similar, using parts (b) and (c) of the
stability theorem instead. �

Theorem. (a) Γ `c A implies Γg ` Ag.
(b) Γg ` Ag implies Γ `c A for Γ, A without ∨,∃.

Proof. (a) Use induction on Γ `c A. For a stability axiom ∀~x(¬¬R~x→
R~x ) we must derive ∀~x(¬¬¬¬R~x→ ¬¬R~x ), which is easy (as above). For
the rules →+, →−, ∀+, ∀−, ∧+ and ∧− the claim follows immediately from
the induction hypothesis, using the same rule again. This works because the
Gödel-Gentzen translation acts as a homomorphism for these connectives.
For the rules ∨+i , ∨−, ∃+ and ∃− the claim follows from the induction
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hypothesis and the remark at the end of 1.2.1. For example, in case ∃− the
induction hypothesis gives

|M
∃̃xAg

and
u : Ag

| N
Bg

with x /∈ FV(Bg). Now use ` (¬¬Bg → Bg) → ∃̃xAg → ∀x(Ag → Bg) →
Bg. Its premise ¬¬Bg → Bg is derivable by the lemma above.

(b) First note that `c (B ↔ Bg) for B without ∨,∃. From Γg ` Ag we
obtain Γ `c A as follows. We argue informally. Assume Γ. Then Γg by the
note, hence Ag because of Γg ` Ag, hence A again by the note. �



CHAPTER 2

Computability

At this point we leave the general setting of logic and aim to get closer to
mathematics. We introduce free algebras (for example, the natural numbers)
as our basic data structures and consider function spaces based on them.
The functional objects are viewed as limits of their finite approximations.
We call a functional computable if it is the limit of a recursively enumerable
set of finite approximations. To work with such objects in a formal theory
we need to have a language to denote them. Again lambda calculus is the
appropriate tool, this time extended by constants for particular functionals
defined by equations.

It is a fundamental property of computation that evaluation must be
finite. So in any evaluation of Φ(ϕ) the argument ϕ can be called upon only
finitely many times, and hence the value – if defined – must be determined
by some finite subfunction of ϕ. This is the principle of finite support.

Let us carry this discussion somewhat further and look at the situation
one type higher up. Let H be a partial functional of type-3, mapping type-2
functionals Φ to natural numbers. Suppose Φ is given and H(Φ) evaluates
to a defined value. Again, evaluation must be finite. Hence the argument Φ
can only be called on finitely many functions ϕ. Furthermore each such ϕ
must be presented to Φ in a finite form (explicitly say, as a set of ordered
pairs). In other words, H and also any type-2 argument Φ supplied to it
must satisfy the finite support principle, and this must continue to apply as
we move up through the types.

To describe this principle more precisely, we need to introduce the notion
of a “finite approximation” Φ0 of a functional Φ. By this we mean a finite
set X of pairs (ϕ0, n) such that (i) ϕ0 is a finite function, (ii) Φ(ϕ0) is defined
with value n, and (iii) if (ϕ0, n) and (ϕ′0, n

′) belong to X where ϕ0 and ϕ′0
are “consistent”, then n = n′. The essential idea here is that Φ should be
viewed as the union of all its finite approximations. Using this notion of a
finite approximation we can now formulate the

Principle of finite support . If H(Φ) is defined with value
n, then there is a finite approximation Φ0 of Φ such that
H(Φ0) is defined with value n.

17
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The monotonicity principle formalizes the simple idea that once H(Φ) is
evaluated, then the same value will be obtained no matter how the argument
Φ is extended. This requires the notion of “extension”. Φ′ extends Φ if for
any piece of data (ϕ0, n) in Φ there exists another (ϕ′0, n) in Φ′ such that ϕ0

extends ϕ′0 (note the contravariance!). The second basic principle is then

Monotonicity principle. If H(Φ) is defined with value n
and Φ′ extends Φ, then H(Φ′) is defined with value n.

An immediate consequence of finite support and monotonicity is that
the behaviour of any functional is indeed determined by its set of finite
approximations. For if Φ, Φ′ have the same finite approximations and H(Φ)
is defined with value n, then by finite support, H(Φ0) is defined with value n
for some finite approximation Φ0, and then by monotonicityH(Φ′) is defined
with value n. Thus H(Φ) = H(Φ′), for all H.

This observation now allows us to formulate a notion of abstract com-
putability:

Effectivity principle. An object is computable just in case
its set of finite approximations is (primitive) recursively
enumerable (or equivalently, Σ0

1-definable).

The general theory of computability concerns partial functions and par-
tial operations on them. However, we are primarily interested in total ob-
jects, so once the theory of partial objects is developed, we can look for ways
to extract the total ones. We will define the total objects of base type in-
ductively, and then by induction on types the notion of totality for arbitrary
types.

2.1. Abstract computability via information systems

We need to define appropriate domains for our to-be-defined computable
functionals, viewed as limits of their finite approximations. Information
systems are a convenient setting to introduce and study the latter.

2.1.1. Information systems. The basic idea of information systems
is to provide an axiomatic setting to describe approximations of abstract
objects (like functions or functionals) by concrete, finite ones. We do not
attempt to analyze the notion of “concreteness” or finiteness here, but rather
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with
each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
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The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

Definition. An information system is a structure (A,Con,`) where A
is a countable set (the tokens), Con is a non-empty set of finite subsets of A
(the consistent sets) and ` is a subset of Con×A (the entailment relation),
which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U, V ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ` a→ U ⊆ x→ a ∈ x (x is deductively closed).

For example the deductive closure U := { a ∈ A | U ` a } of U ∈ Con is an
ideal. The set of all ideals of A is denoted by |A|.

Examples. Every countable set A can be turned into a flat information
system by letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and
U ` a mean a ∈ U . In this case the ideals are just the elements of Con. For
A = N we have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

��
�
��
•
{2}

. . .

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
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U ` (a, b) := (a, b) ∈ U.
It is easy to verify that this defines an information system whose ideals are
(the graphs of) all partial functions from A to B.

One can show that for every information system A = (A,Con,`) the

structure (|A|,⊆, ∅) is a “domain” (also called Scott-Ershov domain, or
“bounded complete algebraic cpo”), whose set of “compact elements” can
be represented as |A|c = {U | U ∈ Con }. We will not need this relation to
standard (non-constructive) domain theory, and hence not even define these
notions here.

2.1.2. Function spaces. We define the “function space” A → B be-
tween two information systems A and B.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I(
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB).

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.
From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Clearly application is monotone in the second argument, in the sense
that U `A U ′ implies (WU ′ ⊆ WU , hence also) WU `B WU ′. In fact,
application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma. If A and B are information systems, then so is A→ B defined
as above.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ` (U, b), i.e., { bj | U `A Uj } `B b.
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We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U `A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.

Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } `B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W `W ′ and W ′ ` (U, b).

We have to show W ` (U, b), i.e., WU `B b. We obtain WU `B W ′U by
monotonicity in the first argument, and W ′U ` b by definition. �

We shall now give an alternative characterization of the function space,
as “approximable maps”. The basic idea for approximable maps is the desire
to study “information respecting” maps from A into B. Such a map is given
by a relation r between ConA and B, where r(U, b) intuitively means that
whenever we are given the information U ∈ ConA, then we know that at
least the token b appears in the value.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if r(U, b1), . . . , r(U, bn), then {b1, . . . , bn} ∈ ConB;
(b) if r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b, then r(U, b);
(c) if r(U ′, b) and U `A U ′, then r(U, b).

We write r : A→ B to mean that r is an approximable map from A to B.

Theorem. Let A and B be information systems. Then the ideals of
A→ B are exactly the approximable maps from A to B.



22 2. COMPUTABILITY

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). If r ∈ |A →
B| then r ⊆ ConA × B is consistent and deductively closed. We have to
show that r satisfies the axioms for approximable maps.

(a) Let r(U, b1), . . . , r(U, bn). We must show that {b1, . . . , bn} ∈ ConB.
But this clearly follows from the consistency of r.

(b) Let r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b. We must show that
r(U, b). But

{(U, b1), . . . , (U, bn)} ` (U, b)

by the definition of the entailment relation ` in A→ B, hence r(U, b) since
r is deductively closed.

(c) Let U `A U ′ and r(U ′, b). We must show that r(U, b). But

{(U ′, b)} ` (U, b)

since {(U ′, b)}U = {b} (which follows from U `A U ′), hence r(U, b), again
since r is deductively closed.

For the other direction suppose that r : A→ B is an approximable map.
We must show that r ∈ |A→ B|.

Consistency of r. Suppose r(U1, b1), . . . , r(Un, bn) and U =
⋃
{Ui | i ∈

I } ∈ ConA for some I ⊆ {1, . . . , n}. We must show that { bi | i ∈ I } ∈
ConB. Now from r(Ui, bi) and U `A Ui we obtain r(U, bi) by axiom (c) for
all i ∈ I, and hence { bi | i ∈ I } ∈ ConB by axiom (a).

Deductive closure of r. Suppose r(U1, b1), . . . , r(Un, bn) and

W := {(U1, b1), . . . , (Un, bn)} ` (U, b).

We must show r(U, b). By definition of ` for A → B we have WU `B b,
which is { bi | U `A Ui } `B b. Further by our assumption r(Ui, bi) we know
r(U, bi) by axiom (c) for all i with U `A Ui. Hence r(U, b) by axiom (b). �

2.1.3. Scott topology. We can also characterize approximable maps
as continuous functions w.r.t. a certain topology on the space |A| of ideals
of an information system A.1

Definition. Suppose A = (A,Con,`) is an information system and
U ∈ Con. Define OU ⊆ |A| by

OU := {x ∈ |A| | U ⊆ x }.
Note that, since the ideals x ∈ |A| are deductively closed, x ∈ OU

implies U ⊆ x.

Lemma. The system of all OU with U ∈ Con forms the basis of a topo-
logy on |A|, called the Scott topology.

1Here we refer to topology in the standard (non-constructive) sense, based on points.
There are also recent attempts to build a constructive “point-free” topology; however, we
will not enter this subject here.
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Proof. Suppose U, V ∈ Con and x ∈ OU ∩OV , i.e., U ⊆ x and V ⊆ x.
We need W ∈ Con such that x ∈ OW ⊆ OU ∩OV . Choose W = U ∪ V . �

Lemma. Let A be an information system and O ⊆ |A|. Then the fol-
lowing are equivalent.

(a) O is open in the Scott topology.
(b) O satisfies

(i) If x ∈ O and x ⊆ y, then y ∈ O (Alexandrov condition).
(ii) If x ∈ O, then U ∈ O for some U ⊆ x (Scott condition).

(c) O =
⋃
U∈OOU .

Hence open sets O may be seen as those determined by a (possibly
infinite) system of finitely observable properties, namely all U such that
U ∈ O.

Proof. (a)→ (b). If O is open, then O is the union of some OU ’s, U ∈
Con. Since each OU is upwards closed, also O is; this proves the Alexandrov
condition. For the Scott condition assume x ∈ O. Then x ∈ OU ⊆ O for
some U ∈ Con. Note that U ∈ OU , hence U ∈ O, and U ⊆ x since x ∈ OU .

(b) → (c). Assume that O ⊆ |A| satisfies the Alexandrov and Scott
conditions. Let x ∈ O. By the Scott condition, U ∈ O for some U ⊆ x, so
x ∈ OU for this U . Conversely, let x ∈ OU for some U ∈ O. Then U ⊆ x.
Now x ∈ O follows from U ∈ O by the Alexandrov condition.

(c) → (a). The OU ’s are the basic open sets of the Scott topology. �

We now give some simple characterizations of the continuous functions
f : |A| → |B|. Call f monotone if x ⊆ y implies f(x) ⊆ f(y).

Lemma. Let A and B be information systems and f : |A| → |B|. Then
the following are equivalent.

(a) f is continuous w.r.t. the Scott topology.
(b) f is monotone and satisfies the “principle of finite support” PFS: If

b ∈ f(x), then b ∈ f(U) for some U ⊆ x.
(c) f is monotone and commutes with directed unions: for every directed

D ⊆ |A| (i.e., for any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f(
⋃
x∈D

x) =
⋃
x∈D

f(x).

Note that in (c) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |A|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.

Hence continuous maps f : |A| → |B| are those that can be completely
described from the point of view of finite approximations of the abstract
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objects x ∈ |A| and f(x) ∈ |B|: whenever we are given a finite approxi-
mation V to the value f(x), then there is a finite approximation U to the
argument x such that already f(U) contains the information in V ; note that
by monotonicity f(U) ⊆ f(x).

Proof. (a) → (b). Let f be continuous. Then for any basic open set
OV ⊆ |B| (so V ∈ ConB) the set f−1[OV ] = {x | V ⊆ f(x) } is open in
|A|. To prove monotonicity assume x ⊆ y; we must show f(x) ⊆ f(y). So
let b ∈ f(x), i.e., {b} ⊆ f(x). The open set f−1[O{b}] = { z | {b} ⊆ f(z) }
satisfies the Alexandrov condition, so from x ⊆ y we can infer {b} ⊆ f(y),
i.e., b ∈ f(y). To prove PFS assume b ∈ f(x). The open set { z | {b} ⊆ f(z) }
satisfies the Scott condition, so for some U ⊆ x we have {b} ⊆ f(U).

(b)→ (a). Assume that f satisfies monotonicity and PFS. We must show
that f is continuous, i.e., that for any fixed V ∈ ConB the set f−1[OV ] =
{x | V ⊆ f(x) } is open. We prove

{x | V ⊆ f(x) } =
⋃
{OU | U ∈ ConA and V ⊆ f(U) }.

Let V ⊆ f(x). Then by PFS V ⊆ f(U) for some U ∈ ConA such that U ⊆ x,
and U ⊆ x implies x ∈ OU . Conversely, let x ∈ OU for some U ∈ ConA such
that V ⊆ f(U). Then U ⊆ x, hence V ⊆ f(x) by monotonicity.

For (b) ↔ (c) assume that f is monotone. Let f satisfy PFS, and
D ⊆ |A| be directed. f(

⋃
x∈D x) ⊇

⋃
x∈D f(x) follows from monotonicity.

For the reverse inclusion let b ∈ f(
⋃
x∈D x). Then by PFS b ∈ f(U) for some

U ⊆
⋃
x∈D x. From the directedness and the fact that U is finite we obtain

U ⊆ z for some z ∈ D. From b ∈ f(U) and monotonicity infer b ∈ f(z).
Conversely, let f commute with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. �

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem. Let A and B = (B,ConB,`B) be information systems.
Then the ideals of A → B are in a natural bijective correspondence with
the continuous functions from |A| to |B|, as follows.

(a) With any approximable map r : A → B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z }.

We call |r|(z) the application of r to z.
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(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ : A→ B by

f̂(U, b) := (b ∈ f(U)).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

Proof. Let r be an ideal of A → B; then by the theorem just proved
r is an approximable map. We first show that |r| is well-defined. So let
z ∈ |A|.
|r|(z) is consistent: let b1, . . . , bn ∈ |r|(z). Then there are U1, . . . , Un ⊆ z

such that r(Ui, bi). Hence U := U1 ∪ · · · ∪ Un ⊆ z and r(U, bi) by ax-
iom (c) of approximable maps. Now from axiom (a) we can conclude that
{b1, . . . , bn} ∈ ConB.
|r|(z) is deductively closed: let b1, . . . , bn ∈ |r|(z) and {b1, . . . , bn} `B b.

We must show b ∈ |r|(z). As before we find U ⊆ z such that r(U, bi). Now
from axiom (b) we can conclude r(U, b) and hence b ∈ |r|(z).

Continuity of |r| follows immediately from part (b) of the lemma above,
since by definition |r| is monotone and satisfies PFS.

Now let f : |A| → |B| be continuous. It is easy to verify that f̂ is indeed
an approximable map. Furthermore

b ∈ |f̂ |(z)↔ f̂(U, b) for some U ⊆ z
↔ b ∈ f(U) for some U ⊆ z
↔ b ∈ f(z) by monotonicity and PFS.

Finally, for any approximable map r : A→ B we have

r(U, b)↔ ∃V⊆Ur(V, b) by axiom (c) for approximable maps

↔ b ∈ |r|(U)

↔ |̂r|(U, b),

so r = |̂r|. �

Moreover, one can easily check that

r ◦ s := { (U, c) | ∃V ((U, V ) ⊆ s ∧ (V, c) ∈ r) }

is an approximable map (where (U, V ) := { (U, b) | b ∈ V }), and

|r ◦ s| = |r| ◦ |s|, f̂ ◦ g = f̂ ◦ ĝ.

We usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It
should always be clear from the context where the mods and hats should be
inserted.
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2.1.4. Algebras and types. We now consider concrete information
systems, our basis for continuous functionals.

Types will be built from base types by the formation of function types,
ρ → σ. As domains for the base types we choose non-flat and possibly
infinitary free algebras, given by their constructors. The main reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.

Definition (Types). We inductively define type forms

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

with α, ξ type variables and k ≥ 1. Note that (ρν)ν<n → σ means ρ0 →
. . .→ ρn−1 → σ, associated to the right. Let TV(ρ) denote the set of (free)
type variables in ρ. We define SP(α, ρ) “α occurs at most strictly positive
in ρ” by induction on ρ.

SP(α, β)
α /∈ TV(ρ) SP(α, σ)

SP(α, ρ→ σ)

SP(α, ρiν) for all i < k, ν < ni
SP(α, µξ((ρiν)ν<ni → ξ)i<k)

Now we can define Ty(ρ) “ρ is a type”, again by induction on ρ.

Ty(α)
Ty(ρ) Ty(σ)

Ty(ρ→ σ)

Ty(ρiν) and SP(ξ, ρiν) for all i < k, ν < ni
Ty(µξ((ρiν)ν<ni → ξ)i<k)

We call

ι := µξ((ρiν)ν<ni → ξ)i<k

an algebra. Sometimes it is helpful to display the type parameters and write

ι(~α, ~β ), where ~α, ~β are all type variables except ξ free in some ρiν , and ~α
are the ones occuring only strictly positive. If we write the i-th component
of ι in the form (ρiν(ξ))ν<ni → ξ, then we call

(ρiν(ι))ν<ni → ι

the i-th constructor type of ι.
In (ρiν(ξ))ν<ni → ξ we call ρiν(ξ) a parameter argument type if ξ does

not occur in it, and a recursive argument type otherwise. A recursive argu-
ment type ρiν(ξ) is nested if it has an occurrence of ξ in a strictly positive
parameter position of another (previously defined) algebra, and unnested
otherwise. An algebra ι is called nested if it has a constructor with at least
one nested recursive argument type, and unnested otherwise.

Examples.

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),
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P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (trees).

Examples of algebras strictly positive in their type parameters are

I(α) := µξ(α→ ξ) (identity),

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

An example of a nested algebra is

T := µξ(L(ξ)→ ξ) (finitely branching trees).

Note that T has a total inhabitant since L(α) has one (given by the []
constructor).

Let ρ be a type; we write ρ(~α ) for ρ to indicate its dependence on
the type parameters ~α. We can substitute types ~σ for ~α, to obtain ρ(~σ ).
Examples are L(B), the type of lists of booleans, and N ×N, the type of
pairs of natural numbers.

Note that often there are many equivalent ways to define a particular
type. For instance, we could take U+U to be the type of booleans, L(U) to
be the type of natural numbers, and L(B) to be the type of positive binary
numbers.

For every constructor type of an algebra we provide a (typed) constructor
symbol Ci. In some cases they have standard names, for instance

ttB, ffB for the two constructors of the type B of booleans,

0N, SN→N for the type N of (unary) natural numbers,

1P, SP→P
0 , SP→P

1 for the type P of (binary) positive numbers,

0O, SO→O, Sup(N→O)→O for the type O of ordinals,

[]L(ρ), consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(Inlρσ)ρ→ρ+σ, (Inrρσ)σ→ρ+σ for the sum type ρ+ σ,

Branch: L(T)→ T for the type T of finitely branching trees.

An algebra form ι is structure-finitary if all its argument types ρiν are
not of arrow form. It is finitary if in addition it has no type variables. In
the examples above U, B, N, P and D are all finitary, but O and Tn+1
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are not. L(ρ), ρ × σ and ρ + σ are structure-finitary, and finitary if their
parameter types are. The nested algebra T above is finitary.

An algebra is explicit if all its constructor types have parameter argu-
ment types only (i.e., no recursive argument types). In the examples above
U, B, ρ× σ and ρ+ σ are explicit, but N, P, L(ρ), D, O, Tn+1 and T are
not. We will also need the notion of the level of a type, which is defined by

lev(ι) := 0, lev(ρ→ σ) := max{lev(σ), 1 + lev(ρ)}.

Base types are types of level 0, and a higher type has level at least 1.

2.1.5. Partial continuous functionals. For every type ρ we define
the information system Cρ = (Cρ,Conρ,`ρ). The ideals x ∈ |Cρ| are the
partial continuous functionals of type ρ. Since we will have Cρ→σ = Cρ →
Cσ, the partial continuous functionals of type ρ→ σ will correspond to the
continuous functions from |Cρ| to |Cσ| w.r.t. the Scott topology. It will not
be possible to define Cρ by recursion on the type ρ, since we allow algebras
with constructors having function arguments (like O and Sup). Instead, we
shall use recursion on the “height” of the notions involved, defined below.

Definition (Information system of type ρ). We simultaneously define
Cι, Cρ→σ, Conι and Conρ→σ.

(a) The tokens a ∈ Cι are the type correct constructor expressions Ca∗1 . . . a
∗
n

where a∗i is an extended token, i.e., a token or the special symbol ∗ which
carries no information.

(b) The tokens in Cρ→σ are the pairs (U, b) with U ∈ Conρ and b ∈ Cσ.
(c) A finite set U of tokens in Cι is consistent (i.e., ∈ Conι) if all its elements

start with the same constructor C, say of arity τ1 → . . .→ τn → ι, and
all Ui ∈ Conτi for i = 1, . . . , n, where Ui consists of all (proper) tokens

at the i-th argument position of some token in U = {C ~a∗1, . . . ,C ~a∗m}.
(d) { (Ui, bi) | i ∈ I } ∈ Conρ→σ is defined to mean ∀J⊆I(

⋃
j∈J Uj ∈ Conρ →

{ bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U `ρ a for U ∈ Conρ and a ∈ Cρ.
(e) {C ~a∗1, . . . ,C ~a∗m} `ι C′ ~a∗ is defined to mean C = C′, m ≥ 1 and Ui ` a∗i ,

with Ui as in (c) above (and U ` ∗ taken to be true).
(f) W `ρ→σ (U, b) is defined to mean WU `σ b, where application WU

of W = { (Ui, bi) | i ∈ I } ∈ Conρ→σ to U ∈ Conρ is defined to be
{ bi | U `ρ Ui }; recall that U ` V abbreviates ∀a∈V (U ` a).

If we define the height of the syntactic expressions involved by

|Ca∗1 . . . a∗n| := 1 + max{ |a∗i | | i = 1, . . . , n }, | ∗ | := 0,

|(U, b)| := max{1 + |U |, 1 + |b|},
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Figure 1. Tokens and entailment for N

|{ ai | i ∈ I }| := max{ 1 + |ai| | i ∈ I },
|U ` a| := max{1 + |U |, 1 + |a|},

these are definitions by recursion on the height.
It is easy to see that (Cρ,Conρ,`ρ) is an information system. Observe

that all the notions involved are computable: a ∈ Cρ, U ∈ Conρ and U `ρ a.

Definition (Partial continuous functionals). For every type ρ let Cρ be
the information system (Cρ,Conρ,`ρ). The set |Cρ| of ideals in Cρ is the set
of partial continuous functionals of type ρ. A partial continuous functional
x ∈ |Cρ| is computable if it is recursively enumerable when viewed as a set
of tokens.

Notice that we have Cρ→σ = Cρ → Cσ, as defined generally for infor-
mation systems.

For example, the tokens for the algebra N are shown in Figure 1. For
tokens a, b we have {a} ` b if and only if there is a path from a (up) to
b (down). As another (more typical) example, consider the algebra D of
derivations with a nullary constructor 0 and a binary C. Then {C0∗,C∗0}
is consistent, and {C0∗,C∗0} ` C00.

2.1.6. Constructors as continuous functions. Let ι be an algebra.
Every constructor C generates the following ideal in the function space:

rC := { (~U,C ~a∗ ) | ~U ` ~a∗ }.

Here (~U, a) abbreviates (U1, (U2, . . . (Un, a) . . . )).
According to the general definition of a continuous function associated

to an ideal in a function space the continuous map |rC| satisfies

|rC|(~x ) = {C ~a∗ | ∃~U⊆~x(~U ` ~a∗) }.

An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint, which is what we
wanted to achieve by associating non-flat rather than flat information sys-
tems with algebras.
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Lemma (Constructors are injective and have disjoint ranges). Let ι be
an algebra and C be a constructor of ι. Then

|rC|(~x ) ⊆ |rC|(~y )↔ ~x ⊆ ~y.
If C1,C2 are distinct constructors of ι, then |rC1 |(~x ) 6= |rC2 |(~y ), since the
two ideals are non-empty and disjoint.

Proof. Immediate from the definitions. �

Remark. Notice that neither property holds for flat information sys-
tems, since for them, by monotonicity, constructors need to be strict (i.e.,
if one argument is the empty ideal, then the value is as well). But then we
have

|rC|(∅, y) = ∅ = |rC|(x, ∅),

|rC1 |(∅) = ∅ = |rC2 |(∅)
where in the first case we have one binary and, in the second, two unary
constructors.

2.1.7. Total and cototal ideals in a finitary algebra. In the infor-
mation system Cι associated with an algebra ι, the “total” and “cototal”
ideals are of special interest. Here we give an explicit definition for fini-
tary algebras. For general algebras totality can be defined inductively and
cototality coinductively.

Recall that a token in ι is a constructor tree P possibly containing the
special symbol ∗. Because of the possibility of parameter arguments we need
to distinguish between “structure-” and “fully” total and cototal ideals.
For the definition it is easiest to refer to a constructor tree P (∗) with a
distinguished occurrence of ∗. This occurrence is called non-parametric if
the path from it to the root does not pass through a parameter argument
of a constructor. For a constructor tree P (∗), an arbitrary P (C ~a∗) is called

one-step extension of P (∗), written P (C ~a∗) �1 P (∗).

Definition. Let ι be an algebra, and Cι its associated information
system. An ideal x ∈ |Cι| is cototal if every constructor tree P (∗) ∈ x has a
�1-predecessor P (C~∗ ) ∈ x; it is called total if it is cototal and the relation
�1 on x is well-founded. It is called structure-cototal (structure-total) if the
same holds with �1 defined w.r.t. P (∗) with a non-parametric distinguished
occurrence of ∗.

If there are no parameter arguments, we shall simply speak of total
and cototal ideals. For example, for the algebra N every total ideal is
the deductive closure of a token S(S . . . (S0) . . . ), and the set of all tokens
S(S . . . (S∗) . . . ) is a cototal ideal. For the algebra L(N) of lists of natural
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numbers the total ideals are the finite lists and the cototal ones the finite
or infinite lists. For the algebra D of derivations the total ideals can be
viewed as the finite derivations, and the cototal ones as the finite or infinite
“locally correct” derivations of Mints (1978); arbitrary ideals can be viewed
as “partial” or “incomplete” derivations, with “holes”.

Call a partial continuous functional total if it maps total arguments into
total values, and cototal if it maps cototal arguments into cototal values.

2.2. A term language for computable functionals

To work with computable functionals in a formal theory we need to have
a language to denote them. Again lambda calculus is the appropriate tool,
this time extended by constants for computable functionals.

Recall that a partial continuous functional is defined to be computable
if it is the limit of a recursively enumerable set of finite approximations.
We introduce a convenient way to define computable functionals, by means
of defining equations or more precisely, computation rules. Therefore we
extend the term language by constants D defined by certain “computation
rules”, as in (Berger et al., 2003; Berger, 2005). The resulting term system
can be seen as a common extension of Gödel’s T (1958) and Plotkin’s PCF;
we call it T+.

2.2.1. Structural recursion operators and Gödel’s T. We begin
with a discussion of particularly important examples of such constants D,
the (structural) higher type recursion operators Rτι introduced by Hilbert
(1925) and Gödel (1958). They are used to construct maps from the algebra
ι to τ , by recursion on the structure of ι. For instance, RτN has type N →
τ → (N→ τ → τ)→ τ . The first argument is the recursion argument, the
second one gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the next value.
For example, RN

Nnmλn,p(Sp) defines addition m+n by recursion on n. For
λn,p(Sp) we often write λ ,p(Sp) since the bound variable n is not used.

Generally, we define the type of the recursion operatorRτι for the algebra
ι = µξ((ρiν(ξ))ν<ni → ξ)i<k and result type τ to be

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.

Here ι is the type of the recursion argument, and each (ρiν(ι×τ))ν<ni → τ is
called a step type. Usage of ι× τ rather than τ in the step types can be seen
as a “strengthening”, since then one has more data available to construct
the value of type τ . Moreover, for unnested recursive argument types ~σ → τ
we avoid the product type in ~σ → ι × τ and take the two argument types
~σ → ι and ~σ → τ instead (“duplication”).
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For some algebras we spell out the type of their recursion operators:

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτP : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

RτD : D→ τ → (D→ τ → D→ τ → τ)→ τ,

RτO : O→ τ → (O→ τ → τ)→ ((N→ O)→ (N→ τ)→ τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ,

RτT : T→ (L(T× τ)→ τ)→ τ.

There is an important variant of recursion, where no recursive calls oc-
cur. This variant is called the cases operator ; it distinguishes cases according
to the outer constructor form. For the algebra ι = µξ((ρiν(ξ))ν<ni → ξ)i<k
and result type τ the type of the cases operator Cτι is

ι→ ((ρiν(ι))ν<ni → τ)i<k → τ.

The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.

It can be used to define the predecessor function on N, i.e., P0 := 0 and
P(Sn) := n, by the term

Pm := CNNm0(λnn).

Remark. When computing the value of a cases term, we do not want
to (eagerly) evaluate all arguments, but rather compute the test argument
first and depending on the result (lazily) evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; for
instance, in Scheme the if-construct is called a special form (as opposed
to an operator). Therefore instead of taking the cases operator applied to a
full list of arguments, one rather uses a case-construct to build this term;
it differs from the former only in that it employs lazy evaluation. Hence the
predecessor function is written in the form

[case mN of (0 7→ 0 | Sn 7→ n)].

We shall also need map operators. Let ρ(~α ) be a type and ~α strictly
positive type parameters. We define

M~σ→~τ
λ~αρ(~α ) : ρ(~σ )→ (~σ → ~τ )→ ρ(~τ )
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(where (~σ → ~τ) → ρ(~τ ) means (σ1 → τ1) → . . . → (σn → τn) → ρ(~τ )). If
none of ~α appears free in ρ(~α ) let

M~σ→~τ
λ~αρ(~α )x

~f := x.

Otherwise we use an outer recursion on ρ(~α ) and if ρ(~α ) is ι(~α ) an inner
one on x. In case ρ(~α ) is ι(~α ) we abbreviate M~σ→~τ

λ~αι(~α ) by M~σ→~τ
ι or M~τ

ι(~σ ).

The immediate cases for the outer recursion are

M~σ→~τ
λ~ααi

x~f := fix, M~σ→~τ
λ~α(σ→ρ)h

~fx :=M~σ→~τ
λ~αρ

(hx)~f.

It remains to consider ι(~π(~α )). In case ~π(~α ) is not ~α let

M~σ→~τ
λ~αι(~π(~α ))x

~f :=M~π(~σ )→~π(~τ )
ι x(M~σ→~τ

λ~απi(~α ) · ~f )i<|~π |

with M~σ→~τ
λ~απi(~α ) · ~f := λxM~σ→~τ

λ~απi(~α )x
~f . In case ~π(~α ) is ~α we use recursion on

x and define for a constructor Ci : (ρiν(~σ, ι(~σ )))ν<ni → ι(~σ )

M~σ→~τ
ι (Ci~x )~f

to be the result of applying C′i of type (ρiν(~τ , ι(~τ )))ν<ni → ι(~τ ) (the same
constructor as Ci with only the type changed) to, for each ν < ni,

M~σ,ι(~σ )→~τ,ι(~τ )
λ~α,βρiν(~α,β)

xiν ~f(M~σ→~τ
ι · ~f ).

Note that the final function argument provides the recursive call w.r.t. the
recursion on x.

Example. We write x :: l as shorthand for cons(x, l).

Mτ
L(σ)[]f

σ→τ := [],

Mτ
L(σ)(x

σ :: lL(σ))fσ→τ := (fx) :: (M l f).

Definition. Terms of Gödel’s T for nested algebras are inductively
defined from typed variables xρ and constants for constructors Cι

i, recursion

operators Rτι , cases operators Cτι and map operators M~ρ→~τ
λ~απ

by abstraction

λxρM
σ and application Mρ→σNρ.

The set FV(M) of free variables of a term M is defined by

FV(x) := {x},
FV(C) := ∅ for C constructor or a recursion, cases or map operator,

FV(λxM) := FV(M) \ {x},
FV(MN) := FV(M) ∪ FV(N).
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2.2.2. Conversion. We define a conversion relation 7→ρ between terms
of type ρ by

(λxM(x))N 7→M(N),(7)

λx(Mx) 7→M if x /∈ FV(M) (M not an abstraction),(8)

Rτι (Cι
i
~N) ~M 7→Mi(Mι→ι×τ

λαρiν(α)
Niνλx〈xι,Rτι x ~M〉)ν<ni(9)

where (ρiν(ι))ν<ni → ι is the type of the i-th constructor Ci.
In the special case ρiν(α) = α we can avoid the product type and instead

of the pair

Mι→ι×τ
λαα

Niνλx〈xι,Rτι x ~M〉 i.e., 〈N ι
iν ,RτιNiν

~M〉

take its two components N ι
iν and RτιNiν

~M as separate arguments of Mi.
The rule (7) is called β-conversion, and (8) η-conversion; their left hand

sides are called β-redexes or η-redexes, respectively. The left hand side of (9)
is called R-redex ; it is a special case of a redex associated with a constant D
defined by “computation rules” (cf. 2.2.4), and hence also called a D-redex .

We give some examples of what can be defined in Gödel’s T. The pro-
jections of a pair to its components can be defined by

M0 := Rρρ×σMρ×σ(λxρ,yσx
ρ), M1 := Rσρ×σMρ×σ(λxρ,yσy

σ).

The append function ∗ for lists satisfies the equations

[] ∗ l2 := l2, (x :: l1) ∗ l2 := x :: (l1 ∗ l2).

It can be defined as the term

l1 ∗ l2 := RL(α)
L(α)l1l2λx, ,p(x :: p).

Here “ ” is taken for a bound variable which is not used. Using the append
function ∗ we can define list reversal Rev by

Rev([]) := [], Rev(x :: l) := Rev(l) ∗ (x :: []).

The corresponding term is

Rev(l) := RL(α)
L(α)l []λx, ,p(p ∗ (x :: [])).

Assume we want to define by simultaneous recursion two functions on N,
say even, odd: N→ B satisfying

even(0) := tt, odd(0) := ff,

even(Sn) := odd(n), odd(Sn) := even(n).

This can be achieved using pair types: we recursively define the single func-
tion evenodd: N→ B×B by evenoddm := RB×B

N m〈tt, ff〉λn,p〈p1, p0〉.



2.2. A TERM LANGUAGE FOR COMPUTABLE FUNCTIONALS 35

General recursion with respect to a measure. In practice it often hap-
pens that one needs to recur to an argument which is not an immediate
component of the present constructor object; this is not allowed in struc-
tural recursion. Of course, in order to ensure that the recursion terminates
we have to assume that the recurrence is w.r.t. a given well-founded set; for
simplicity we restrict ourselves to the algebra N. However, we do allow that
the recurrence is with respect to a measure function µ, with values in N.
The operator F of general recursion then is defined by

(10) FµxG = Gx(λy[if µy < µx then FµyG else ε]),

where ε denotes a canonical inhabitant of the range. We leave it as an
exercise to prove that F is definable from an appropriate structural recursion
operator.

2.2.3. Corecursion. One can show that an arbitrary “reduction se-
quence” beginning with a term in Gödel’s T terminates. For this to hold
it is essential that the constants allowed in T are restricted to constructors
C and recursion, cases and map operators R, C, M. A consequence is that
every closed term of a base type denotes a total ideal. The conversion rules
for R (cf. 2.2.2) work from the leaves towards the root, and terminate be-
cause total ideals are well-founded. If, however, we deal with cototal ideals
(infinitary derivations, for example), then a similar operator is available to
define functions with cototal ideals as values, namely “corecursion”.

To understand the type of a corecursion operator recall the constructor
types κi(ι) of an algebra ι = µξ(κ0, . . . , κk−1):

(ρiν(ι))ν<ni → ι (i < k).

The product of these k constructor types is isomorphic to∑
i<k

∏
ν<ni

ρiν(ι)→ ι

and the type of the recursion operator Rτι is isomorphic to

ι→ (
∑
i<k

∏
ν<ni

ρiν(ι× τ)→ τ)→ τ.

Dually for the algebra ι the type of its destructor Dι (disassembling a
constructor-built object into its parts) is

ι→
∑
i<k

∏
ν<ni

ρiν(ι).
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The corecursion operator coRτι is used to construct a mapping from τ to ι
by “corecursion” on the structure of ι. Its type is

τ → (τ →
∑
i<k

∏
ν<ni

ρiν(ι+ τ))→ ι.

We list the types of the corecursion operators for some algebras:

coRτB : τ → (τ → U + U)→ B,
coRτN : τ → (τ → U + (N + τ))→ N,
coRτP : τ → (τ → U + (P + τ) + (P + τ))→ P,
coRτD : τ → (τ → U + (D + τ)× (D + τ))→ D,
coRτL(ρ) : τ → (τ → U + ρ× (L(ρ) + τ))→ L(ρ).

The conversion relation for each of these is defined below. For f : ρ→ τ and
g : σ → τ we denote λx(Rτρ+σxfg) of type ρ+ σ → τ by [f, g], and similary
for ternary sumtypes etcetera. x0, x1 are shorthand for the two projections
of x of type ρ× σ. The identity functions id below are of type ι→ ι with ι
the respective algebra.

coRτBNM 7→ [λ tt, λ ff](MN),

coRτNNM 7→ [λ 0, λx(S([idN→N, λy(
coRτNyM)]x))](MN),

coRτPNM 7→ [λ 1, λx(S0([id, PP]x)), λx(S1([id, PP]x))](MN),
coRτDNM 7→ [λ 0, λx(C([id, PD]x0)([id, PD]x1))](MN),

coRτL(ρ)NM 7→ [λ [], λx(x0 :: [id, λy(
coRτL(ρ)yM)]x1)](MN),

with Pα := λy(
coRταyM) for α ∈ {P,D}.

2.2.4. A common extension T+ of Gödel’s T and Plotkin’s PCF.
Terms of T+ are built from (typed) variables and (typed) constants (con-
structors C or defined constants D, see below) by (type-correct) application
and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Definition (Computation rule). Every defined constant D comes with
a system of computation rules, consisting of finitely many equations

(11) D~Pi(~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi(~yi) and Mi among ~yi, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i 6= j ~Pi and ~Pj have disjoint free

variables, and either ~Pi and ~Pj are non-unifiable (i.e., there is no substitution
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which identifies them), or else for the most general unifier ϑ of ~Pi and ~Pj
we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

~yi in Mi constructor patterns ~Rk(~z ) (k = i, j). A further requirement on a

system of computation rules D~Pi(~yi) = Mi is that the lengths of all ~Pi(~yi)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (11) is called a D-redex .

More formally, constructor patterns are defined inductively by (we write
~P (~x ) to indicate all variables in ~P ):

(a) x is a constructor pattern.
(b) The empty list is a constructor pattern.

(c) If ~P (~x ) and Q(~y ) are constructor patterns whose variables ~x and ~y are

disjoint, then (~P ,Q)(~x, ~y ) is a constructor pattern.

(d) If C is a constructor and ~P a constructor pattern, then so is C~P , provided
it is of ground type.

Remark. The requirement of disjoint variables in constructor patterns
~Pi and ~Pj used in computation rules of a defined constant D is needed to
ensure that applying the most general unifier produces constructor patterns
again. However, for readability we take this as an implicit convention, and
write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant. In
particular, the map and (structural) recursion operators can be viewed as
defined by computation rules, which in this case are called conversion rules;
cf. 2.2.2.

The boolean connectives andb, impb and orb are defined by

tt andb y = y,

x andb tt = x,

ff andb y = ff,

x andb ff = ff,

ff impb y = tt,

tt impb y = y,

x impb tt = tt,

tt orb y = tt,

x orb tt = tt,

ff orb y = y,

x orb ff = x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a finitary algebra ι can be defined
easily by computation rules. For example,

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).
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For the algebra D of binary trees with constructors 0 (leaf) and C (construct
a new tree from two given ones) we have

(0 =D 0) = tt,

(0 =D Cab) = ff,

(Cab =D 0) = ff,

(Cab =D Ca′b′) = (a =D a′ andb b =D b′).

The predecessor functions introduced in 2.2.1 by means of the cases-operator
C can also be viewed as defined constants, for instance

P0 = 0, P(Sn) = n.

2.3. Denotational semantics

How can we use computation rules to define an ideal z in a function
space? The general idea is to inductively define the set of tokens (U, a) that
make up z. It is convenient to define the value [[λ~xM ]], where M is a term
with free variables among ~x. Since this value is a token set, we can define

inductively the relation (~U, a) ∈ [[λ~xM ]].

For a constructor pattern ~P (~x ) and a list ~V of the same length and

types as ~x we define a list ~P (~V ) of formal neighborhoods of the same length

and types as ~P (~x ), by induction on ~P (~x ). x(V ) is the singleton list V ,

and for 〈〉 we take the empty list. (~P ,Q)(~V , ~W ) is covered by the induction
hypothesis. Finally

(C~P )(~V ) := {C ~a∗ | a∗i ∈ Pi(~Vi) if Pi(~Vi) 6= ∅, and a∗i = ∗ otherwise }.

We use the following notation. (~U, a) means (U1, (U2, . . . (Un, a)) . . . ),

and (~U, V ) ⊆ [[λ~xM ]] means (~U, a) ∈ [[λ~xM ]] for all (finitely many) a ∈ V .

Definition (Inductive, of (~U, a) ∈ [[λ~xM ]]).

Ui ` a
(~U, a) ∈ [[λ~xxi]]

(V ),
(~U, V, a) ∈ [[λ~xM ]] (~U, V ) ⊆ [[λ~xN ]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D we have

~V ` ~a∗

(~U, ~V ,C ~a∗) ∈ [[λ~xC]]
(C),

(~U, ~V , a) ∈ [[λ~x,~yM ]] ~W ` ~P (~V )

(~U, ~W, a) ∈ [[λ~xD]]
(D)

with one such rule (D) for every computation rule D~P (~y ) = M .

This “denotational semantics” has good properties; however, we do not
carry out the proofs here (cf. Appendix A or Schwichtenberg and Wainer
(2012)). First of all, one can prove that [[λ~xM ]] is an ideal . Moreover, our
definition above of the denotation of a term is reasonable in the sense that
it is not changed by an application of the standard (β- and η-) conversions
or a computation rule.



CHAPTER 3

A theory of computable functionals

After getting clear about the domains we intend to reason about, the
partial continuous functionals and in particular the computable ones, we
now set up a theory to prove their properties. The main concept is that of
an inductively defined predicate.

3.1. Predicates and formulas

To properly introduce inductively defined predicates we first have to
define what predicates and formulas are, and also the concept of strictly
positive occurrences of predicate variables.

When we want to make propositions about computable functionals and
their domains of partial continuous functionals, it is perfectly natural to take,
as initial propositions, ones formed inductively or coinductively. However,
for simplicity we postpone the treatment of coinductive definitions and until
then deal with inductive definitions only. For example, in the algebra N we
can inductively define totality by the clauses

TN0, ∀n(TNn→ TN(Sn)).

Its least-fixed-point scheme will now be taken in the form

∀n(TNn→ A(0)→ ∀n(TNn→ A(n)→ A(Sn))→ A(n)).

The reason for writing it in this way is that it fits more conveniently with the
logical elimination rules, which will be useful in the proof of the soundness
theorem. It expresses that every “competitor” {n | A(n) } satisfying the
same clauses contains TN. This is the usual induction schema for natural
numbers, which clearly only holds for “total” numbers (i.e., total ideals in
the information system for N). Notice that we have used a “strengthened”
form of the “step formula”, namely ∀n(TNn → A(n) → A(Sn)) rather
than ∀n(A(n)→ A(Sn)). In applications of the least-fixed-point axiom this
simplifies the proof of the “induction step”, since we have the additional
hypothesis T (n) available. Totality for an arbitrary algebra can be defined
similarly.

39
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Generally, an inductively defined predicate I is given by k clauses, which
are of the form

Ki := ∀~xi((Aiν(I))ν<ni → I~ri) (i < k).

Our formulas will be defined by the operations of implication A → B

and universal quantification ∀xA from inductively defined predicates µX ~K,
where X is a “predicate variable”, and the Ki are “clauses”. Every predicate
has an arity, which is a possibly empty list of types.

Definition (Predicates and formulas). By simultaneous induction we
define predicate forms

P,Q ::= X | { ~x | A } | µX(∀~xi((Aiν)ν<ni → X~ri))i<k

and formula forms

A,B ::= P~r | A→ B | ∀xA
with X a predicate variable, k ≥ 1 and ~xi all free variables in (Aiν)ν<ni →
X~ri (it is not necessary to allow object parameters in inductively defined
predicates, since they can be taken as extra arguments). Let C denote both
predicate and formula forms, and PV(C) denote the set of (free) predicate
variables in C. We define SP(Y,C) “Y occurs at most strictly positive in
C” by induction on C.

SP(Y,X)
SP(Y,A)

SP(Y, { ~x | A })
SP(Y,Aiν) for all i<k, ν<ni

SP(Y, µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

SP(Y, P )

SP(Y, P~r )

Y /∈ PV(A) SP(Y,B)

SP(Y,A→ B)

SP(Y,A)

SP(Y,∀xA)

Now we can define P(P ) “P is a predicate” and F(A) “A is a formula”,
again by simultaneous induction.

P(X)
F(A)

P({ ~x | A })
F(Aiν) and SP(X,Aiν) for all i<k, ν<ni P( ~Q, ~R )

P(I(~ρ, ~Q, ~R ))

P(P )

F(P~r )

F(A) F(B)

F(A→ B)

F(A)

F(∀xA)

with

I(~α, ~Y , ~Z ) := µX(∀~xi((Aiν)ν<ni → X~ri))i<k

where ~Y , ~Z are all predicate variables free in some Aiν except X, and ~Y
are the ones occuring only strictly positive. We call I an inductively defined
predicate or shortly inductive predicate.



3.1. PREDICATES AND FORMULAS 41

Here ~A→ B means A0 → · · · → An−1 → B, associated to the right. The
terms ~r are those introduced in 2.2.4, i.e., typed terms built from variables
and constants by abstraction and application, and (importantly) those with
a common reduct are identified. In ∀~x((Aν(X))ν<n → X~r ) we call Aν(X)
a parameter premise if X does not occur in it, and a recursive premise
otherwise. A recursive premise Aν(X) is nested if it has an occurrence of
X in a strictly positive parameter position of another (previously defined)
inductive predicate, and unnested otherwise. An inductive predicate I is
called nested if it has a clause with at least one nested recursive premise,
and unnested otherwise.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x ) }~r with C(~r ). For a predicate C of arity (ρ, ~σ ) we write
Cr for { ~y | Cr~y }. An inductive predicate is finitary if its clauses have
recursive premises of the form X~s only.

Remark (Substitution for predicate parameters). Let C( ~X) be a pred-

icate or formula and ~P be predicates of the same arities as ~X. By induction

on C one can see easily that C(~P ) is a predicate or formula again.

Examples. The even numbers are inductively defined by

Even := µX(X0,∀n(Xn→ X(S(Sn)))).

Let ≺ be a binary relation. Its transitive closure is inductively defined by

TC≺ := µX(∀x,y(x ≺ y → Xxy),∀x,y,z(x ≺ y → Xyz → Xxz)).

An important example of an inductive predicate is (Leibniz) equality.
But a word of warning is in order here: we need to distinguish four separate
but closely related equalities.

(i) Firstly, defined function constants D are introduced by computation
rules, written l = r, but intended as left-to-right rewrites.

(ii) Secondly, we have Leibniz equality =d inductively defined below.
(iii) Thirdly, pointwise equality between partial continuous functionals will

be defined inductively as well.
(iv) Fourthly, if l and r have a finitary algebra as their type, l = r can be

read as a boolean term, where = is the decidable equality defined in
2.2.4 as a boolean-valued binary function.

We define Leibniz equality by

EqD := µX(∀xXxx).

Existence, intersection and union can be defined inductively by

ExY := µX(∀x(Y x→ X)),

CapY,Z := µX(∀~x(Y ~x→ Z~x→ X~x )),
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CupY,Z := µX(∀~x(Y ~x→ X~x ), ∀~x(Z~x→ X~x )).

We will use the abbreviations

(x =d y) := EqD(x, y),

∃xA := Ex{x|A},

P ∩Q := CapP,Q,

P ∪Q := CupP,Q.

3.2. Axioms

We define a theory of computable functionals, called TCF. Formulas
are those in F defined above, involving typed variables. Derivations use the
rules of minimal logic for → and ∀, and the following axioms. For each
inductive predicate, there are “closure” or introduction axioms, together
with a “least-fixed-point” or elimination axiom. In more detail, consider an
inductive predicate

I := µX(∀~xi((Aiν(X))ν<ni → X~ri))i<k.

For every i < k we have a clause (or introduction axiom)

(12) I+i : ∀~xi((Aiν(I))ν<ni → I~ri).

Moreover, we have an elimination axiom

(13) I− : ∀~x(I~x→ (∀~xi((Aiν(I ∩X))ν<ni → X~ri))i<k → X~x )

(I ∩ X was inductively defined above). Here X can be thought of as a
“competitor” predicate. We take all substitution instances of I+i , I− (w.r.t.
substitutions for type and predicate variables) as axioms.

Examples. (i) For the even numbers defined by

Even := µX(X0,∀n(Xn→ X(S(Sn))))

the introduction axioms are

Even(0), ∀n(Even(n)→ Even(S(Sn)))

and the elimination axiom is

∀n(Even(n)→ X0→ ∀n(Even(n)→ Xn→ X(S(Sn)))→ Xn).

(ii) The transitive closure TC≺ of a binary relation ≺ was defined in-
ductively by

TC≺ := µX(∀x,y(x ≺ y → Xxy),∀x,y,z(x ≺ y → Xyz → Xxz)).

The introduction axioms are

∀x,y(x ≺ y → TC≺(x, y)),

∀x,y,z(x ≺ y → TC≺(y, z)→ TC≺(x, z))
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and the elimination axiom is

∀x,y(TC≺(x, y)→ ∀x,y(x ≺ y → Xxy)→
∀x,y,z(x ≺ y → TC≺(y, z)→ Xyz → Xxz)→
Xxy).

(iii) Leibniz equality was defined above by

EqD := µX(∀xXxx).

The introduction axiom is
∀x(xρ =d xρ)

and the elimination axiom

∀x,y(x =d y → ∀xXxx→ Xxy),

where x =d y abbreviates EqD(ρ)(xρ, yρ).

Lemma (Compatibility of EqD). ∀x,y(x =d y → A(x)→ A(y)).

Proof. Exercise. �

Using compatibility of EqD one easily proves symmetry and transitivity.
Define falsity by F := (ff =d tt).

Theorem (Ex-falso-quodlibet). For every formula A we can derive F→
A from assumptions EfqY : ∀~x(F→ Y ~x ) for predicate variables Y in A, and
EfqI : ∀~x(F→ I~x ) for inductive predicates I without a nullary clause.

Proof. We first show that F → xρ =d yρ. To see this, we first obtain
RρBffxy =d RρBffxy from the introduction axiom. Then from ff =d tt we

get RρBttxy =d RρBffxy by compatibility. Now RρBttxy converts to x and

RρBffxy converts to y. Hence xρ =d yρ, since we identify terms with a
common reduct.

The claim can now be proved by induction on A ∈ F. Case I~s. If I
has no nullary clause take EfqI . Otherwise let Ki be the nullary clause,
with final conclusion I~t. By induction hypothesis from F we can derive all
parameter premises. Hence I~t. From F we also obtain si =d ti, by the
remark above. Hence I~s by compatibility. The cases Y ~s, A → B and ∀xA
are obvious. �

A crucial use of the equality predicate EqD is that it allows us to lift a
boolean term rB to a formula, using atom(rB) := (rB =d tt). This opens
up a convenient way to deal with equality on finitary algebras. The com-
putation rules ensure that, for instance, the boolean term Sr =N Ss, or
more precisely =N(Sr, Ss), is identified with r =N s. We can now turn this
boolean term into the formula (Sr =N Ss) =d tt, which again is abbreviated
by Sr =N Ss, but this time with the understanding that it is a formula.
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Then (importantly) the two formulas Sr =N Ss and r =N s are identified
because the latter is a reduct of the first. Consequently there is no need to
prove the implication Sr =N Ss→ r =N s explicitly.

Examples (continued). (iv) Let ≺ be a binary relation. Its accessible
part is inductively defined by

Acc≺ := µX(∀x(∀y≺xXy → Xx)).

The introduction axiom is

∀x(∀y≺xAcc≺(y)→ Acc≺(x)),

where ∀y≺xA stands for ∀y(y ≺ x→ A). The elimination axiom is

∀x(Acc≺(x)→ ∀x(∀y≺xAcc≺(y)→ ∀y≺xPy → Xx)→ Xx).

(v) Existence, intersection and union were defined inductively by

ExY := µX(∀x(Y x→ X)),

CapY,Z := µX(∀~x(Y ~x→ Z~x→ X~x )),

CupY,Z := µX(∀~xY ~x→ X~x, Z → X~x )

together with the abbreviations

∃xA := Ex{x|A},

P ∩Q := CapP,Q,

P ∪Q := CupP,Q.

For nullary predicates P = { | A } and Q = { | B } we write A∧B for P ∩Q
and A∨B for P ∪Q. Then – as in Chapter 1 – the introduction axioms are

∀x(A→ ∃xA),

A→ B → A ∧B,
A→ A ∨B, B → A ∨B

and the elimination axioms

∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)),

A ∧B → (A→ B → C)→ C,

A ∨B → (A→ C)→ (B → C)→ C.

3.3. Totality and induction

We now inductively define general totality predicates. Let us first look
at some examples. The clauses1 defining totality for the algebra N are

TN0, ∀n(TNn→ TN(Sn)).

1They will be refined in 4.1.4, when decorations are available.
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The least-fixed-point axiom is

∀n(TNn→ X0→ ∀n(TNn→ Xn→ X(Sn))→ Xn).

Clearly the partial continuous functionals with TN interpreted as the total
ideals for N provide a model of TCF extended by these axioms.

For the algebra D of derivations totality is inductively defined by

TD0D, ∀x(TDx→ ∀y(TDy → TD(CD→D→Dxy))),

with least-fixed-point axiom

∀x(TDx→ X0D →
∀x(TDx→ Xx→ ∀y(TDy → Xy → X(CD→D→Dxy)))→
Xx).

Again, the partial continuous functionals with TD interpreted as the total
ideals for D (i.e., the finite derivations) provide a model.

Generally we define by induction on the type ρ

(i) RTρ called relative totality and its special case Tρ called (absolute)
totality , and

(ii) STρ called structural totality .

The least-fixed-point axiom for STι will provide us with the induction axiom
for the algebra ι.

The definition of RTρ is relative to an assigment of c.r. predicate vari-
ables Y of arity (α) to type variables α.

Definition (Relative totality RT). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then RTι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x((RTρν (~Y ,X)xν)ν<n → X(Ci~x ))

and

RTαj (
~Y ,X) := Yj ,

RTξ(~Y ,X) := X,

RTσ→ρ(~Y ,X) := { f | ∀x(Tσx→ RTρ(~Y ,X)(fx)) }.

For important special cases of the parameter predicates ~Y we introduce
a separate notation. Suppose we want to argue about total ideals only. Note
that this only makes sense when when no type variables occur. However, to
allow a certain amount of abstract reasoning (involving type variables to be
substituted later by concrete closed types), we introduce special predicate
variables Tα which under a substitution α 7→ ρ with ρ closed turn into the
inductively defined predicate Tρ. Using this convention we define totality
for an arbitrary algebra by specializing Y of arity (ρ) to Tρ.
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Definition (Absolute totality T ). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then Tι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x((Tρν (X)xν)ν<n → X(Ci~x ))

and

Tαj (X) := Tαj , Tξ(X) := X, Tσ→ρ(X) := { f | ∀x(Tσx→ Tρ(X)(fx)) }.

Another important notion is structural totality, where in the clauses all
premises ending with Y are omitted.

Definition (Structural totality ST). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then STι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x((STρν (X)xν)ν<n → X(Ci~x ))

and

STαj (X) := {x | > } (will be omitted),

STξ(X) := X,

STσ→ρ(X) := { f | ∀x(STσx→ STρ(X)(fx)) }.

For example, the main clause for the predicate STL(α) expressing struc-
tural totality of lists of elements of type α is

∀x,l(STα(X)x︸ ︷︷ ︸
>; omit

→ STξ(X)︸ ︷︷ ︸
X

l→ X(x :: l))

where x :: l is shorthand for cons(x, l). It leads to the introduction axiom

∀x,l(STL(α)l→ STL(α)(x :: l))

with no assumptions on x.
The least-fixed-point axiom for STL(α) is

∀l(ST(l)→ X([])→ ∀x,l((ST ∩X)l→ X(x :: l))→ XlL(ρ)).

Written differently (with “duplication”) we obtain the induction axiom

∀l(ST(l)→ X([])→ ∀x,l(ST(l)→ Xl→ X(x :: l))→ XlL(ρ))

denoted Indl,X .
Note that in all these definitions we allow usage of totality predicates for

previously introduced algebras ι′. An example is totality TT for the algebra
T of finitely branching trees. It is defined by the single clause

∀as(RTL(T)(TT)(as)→ TT(Branch(as))).
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Clearly all three notions of totality coincide for algebras without type
parameters. Abbreviating ∀x(Tx → A) by ∀x∈T A we obtain from the eli-
mination axioms the usual induction axioms, for example

Indp,A(p) : ∀p∈T (A(tt)→ A(ff)→ A(pB)),

Indn,A(n) : ∀n∈T (A(0)→ ∀n∈T (A(n)→ A(Sn))→ A(nN)).

Parallel to general recursion, one can also consider general induction,
which allows recurrence to all points “strictly below” the present one. For
applications it is best to make the necessary comparisons w.r.t. a “measure
function” µ. Then it suffices to use an initial segment of the ordinals instead
of a well-founded set. For simplicity we here restrict ourselves to the segment
given by ω, so the order we refer to is just the standard <-relation on the
natural numbers. The principle of general induction then is

(14) ∀µ,x∈T (ProgµxA(x)→ A(x))

where ProgµxA(x) expresses “progressiveness” w.r.t. the measure function µ
and the order <:

ProgµxA(x) := ∀x∈T (∀y∈T ;µy<µxA(y)→ A(x)).

It is easy to see that in our special case of the <-relation we can prove (14)
from structural induction. However, it will be convenient to use general
induction as a primitive axiom.

3.4. Coinductive definitions

We now extend TCF by allowing coinductive definitions as well as in-
ductive ones. For instance, in the algebra N we can coinductively define
cototality by the clause

coTNn→ n =d 0 ∨ ∃m(n =d Sm ∧ coTNm).

Its greatest-fixed-point axiom is

Xn→ ∀n(Xn→ n =d 0 ∨ ∃m(n =d Sm ∧ (coTNm ∨Xm))→ coTNn.

It expresses that every “competitor” X satisfying the same clause is a subset
of coTN. The partial continuous functionals with coTN interpreted as the
cototal ideals for N provide a model of TCF extended by these axioms.
The greatest-fixed-point axiom is called the coinduction axiom for natural
numbers.

Similarly, for the algebra D of derivations with constructors 0D and
CD→D→D cototality is coinductively defined by the clause

coTDx→ x =d 0 ∨ ∃y,z(x =d Cyz ∧ coTDy ∧ coTDz).
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Its greatest-fixed-point axiom is

Xx→ ∀x(Xx→ x =d 0 ∨ ∃y,z(x =d Cyz ∧ (coTDx ∨Xy) ∧
(coTDx ∨Xz)))→ coTDx.

The partial continuous functionals with coTD interpreted as the cototal ideals
for D (i.e., the finite or infinite locally correct derivations) provide a model.

Generally, a coinductive predicate J is given by exactly one clause, which
is of the form

∀~x(J~x→
∨∨
i<k

∃~xi
∧∧
ν<ni

Aiν(J)).

However, here we do not need this generality, and restrict ourselves to a
special situation: every inductive predicate I gives rise to an important
example of a coinductive predicate, its dual or companion coI. Let I be
inductively defined by the clauses

∀~xi((Aiν(I))ν<ni → I~ti) (i < k).

The conjunction of these k clauses is equivalent to

∀~x(
∨∨
i<k

∃~xi(~x =d ~ti ∧
∧∧
ν<ni

Aiν(I))→ I~x ).

Now the dual coI of I is coinductively defined by its closure axiom coI−:

∀~x(coI~x→
∨∨
i<k

∃~xi(~x =d ~ti ∧
∧∧
ν<ni

Aiν(coI))).

Its greatest-fixed-point axiom coI+ is

∀~x(X~x→ ∀~x(X~x→
∨∨
i<k

∃~xi(~x =d ~ti ∧
∧∧
ν<ni

Aiν(coI ∨X)))→ coI~x ).

More precisely, we extend the definition of formulas and predicates in
Section 3.1 to also include the dual of an inductive predicate I, defined by

coI(~α, ~Y , ~Z ) := νX(∀~xi((Aiν)ν<ni → X~ri))i<k.

The proof of the ex-falso-quodlibet theorem in Section 3.2 can be ex-
tended to also cover coI, even in cases where no nullary clause is present.
To see this, use the greatest-fixed-point axiom for coI with X~x := F. Then
any ∃~x(~x =d ~t ∧

∧∧
ν<nAν(coI ∨X)) is provable, since ~t =d ~t is, and also

all Aν(coI ∨ F) can be proved from F by induction hypothesis.



CHAPTER 4

Computational content of proofs

Proofs have two aspects: they provide insight into why an argument
is correct, and they can also have computational content. The Brouwer-
Heyting-Kolmogorov interpretation (BHK-interpretation for short) gives a
good analysis of the latter.

A formula can be seen as a problem, and its proof as providing a solution
to this problem. The clauses of the BHK-interpretation are:

(i) p proves A → B if and only if p is a construction transforming any
proof q of A into a proof p(q) of B;

(ii) ⊥ is a proposition without proof;
(iii) p proves ∀x∈DA(x) if and only if p is a construction such that for all

d ∈ D, p(d) proves A(d);

The problem with the BHK-interpretation clearly is its reliance on some
unexplained notions, in particular

what is a “construction”?

what is a proof of a prime formula?

Here we propose to take

construction := computable functional,

proof of a prime formula I~r := a “generation tree” for I~r.

For example, let Even be defined by the clauses Even(0) and ∀n(Even(n)→
Even(S(Sn))). A generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6). More formally,
such a generation tree can seen as an ideal in a certain algebra ιI associated
naturally with I.

Consider the more general situation when parameters are involved, i.e.,

when we have a proof (in TCF) of a closed formula ∀~x( ~A → I~r ). It is of

obvious interest which of the variables ~x and assumptions ~A are actually
used in the “solution” provided by the proof (in the sense of Kolmogorov
(1932)). To be able to express dependence on and independence of such
parameters we split each of our (only) logical connectives →, ∀ into two
variants, a “computational” one→c,∀c and a “non-computational” one→nc

49
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, ∀nc. This distinction (for the universal quantifier) is due to Berger (1993,
2005). One can view this “decoration” of →, ∀ as turning our (minimal)
logic into a “computational logic”, which is able to express dependence on
and independence of parameters. The rules for →nc,∀nc are similar to the
ones for →c, ∀c; they will be defined in 4.1.2.

Now the clauses of inductive predicates can and should be decorated as
well, for instance in the form

∀nc~x ∀
c
~y(
~A→nc ~B →c X~r ).

This will lead to a different (i.e., simplified) algebra ιI associated with the
inductive predicate I.

A special case occurs when there is exactly one clause, and this clause
only uses the non-computational→nc,∀nc. Then we have ιI = U, and hence
prime formulas I~r only have a trivial generation tree; in this sense they
are without computational content. We call such inductive predicates one-
clause n.c. defined, or unitary . Examples will be Leibniz equality =d, and
the non-computational variants ∃nc and ∧nc of the existential quantifier and
of conjunction (see 4.1.3).

Formulas with such a one-clause n.c. inductive predicate as conlusion
clearly are without computational content as well. These formulas are called
non-computational (n.c.) or Harrop formulas. Moreover, a Harrop formula
in a premise can be ignored when we are interested in the computational
content of a proof of this formula: its only contribution would be of unit
type. We will define the “type of a formula” (i.e., the type of its solution)
accordingly; it will not involve the unit type.

The next thing to do is to properly accomodate the BHK-interpretation
and define what it means that a term t “realizes” the formula A, written
t r A. In the prime formula case I~r this will involve a predicate “t realizes
I~r ”, which will be defined inductively as well, following the clauses of I. But
since this is a “meta” statement already containing the term t representing a
generation tree, we are not interested in the generation tree for such realizing
formulas and consider them as non-computational.

Now we can formulate a consequence of Kolmogorov’s view of a formula
as a problem asking for a solution: we view a formula A and the existence
of a realizer x of A as the same thing, and state it as an invariance axiom

InvA : A↔ ∃x(x r A).

A realizer of such an axiom will be the identity.
Finally we will define in 4.2.3 the “extracted term” et(M) of a proof

M of a formula A. This is a term in T+ incorporating the computational
content of the proof M . In Section 4.3 we will then prove the important
soundness theorem et(M) r A.
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4.1. Decoration

4.1.1. Decorated predicates and formulas. We introduce decora-
ted connectives →c,∀c and →nc, ∀nc, and also decorated least-fixed-point
operators µc, µnc. Moreover we distinguish two sorts of predicate variables,
computationally relevant ones written X,Y, Z . . . and non-computational
ones written Xnc, Y nc, Znc . . . . Then we can define decorated predicates and
formulas by essentially the same definition as in Section 3.1, provided we
take both X and Xnc as initial decorated predicate forms. For readability we
usually write→, ∀, µ for→c, ∀c, µc, and also apply the following notational
conventions.

(i) In the special case on a one-clause n.c. inductive predicate we use
µ rather than µnc, since the fact that we have exactly one clause,
which uses the non-computational→nc,∀nc only makes it clear that no
computational content is present.

(ii) In the general case of an n.c. inductive predicate Inc := µncX
~K we use the

non-decorated→,∀ in the clauses ~K, since elimination axiom (Inc)− is
restricted to n.c. competitor predicates. Hence the clauses will appear
in n.c. parts of proofs only, where decorations are ignored.

Example. For the even numbers we have two variants:

Even := µX(X0,∀ncn (Xn→ X(S(Sn)))),

Evennc := µncX (X0,∀n(Xn→ X(S(Sn)))).

Generally for every c.r. inductive predicate I defined as µX ~K we have a

non-computational variant Inc defined as µncX
~K.

To every predicate or formula C we assign its final predicate fp(C) by

fp(X) := X, fp(Xnc) := Xnc

fp({ ~x | A }) := fp(A)

fp(I) := I, fp(Inc) := Inc

fp(P~r ) := fp(P )

fp(A→c/nc B) := fp(B)

fp(∀c/ncx A) := fp(A)

We call a predicate or formula C non-computational (n.c., or Harrop) if its
final predicate fp(C) is of the form Xnc or Inc, or it is a one-clause n.c. induc-
tive predicate. The other predicates and formulas are called computationally
relevant (c.r.).

Similarly we assign to every predicate or formula C its non-computational
variant Cnc: we already have Xnc and Inc, and in the other cases let

{ ~x | A }nc := { ~x | Anc }
(P~r )nc := P nc~r

(A→c/nc B)nc := A→ Bnc
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(∀c/ncx A)nc := ∀xAnc

Clearly each Cnc is non-computational in the sense above.
Since decorations can be inserted arbitrarily and parameter predicate

variables can be chosen as either n.c. or c.r. we obtain many useful variants
of inductive predicates. For the existential quantifier we have

ExDY := µX(∀x(Y x→ X)),

ExLY := µX(∀x(Y x→nc X)),

ExRY := µX(∀ncx (Y x→ X)),

ExNcY := µX(∀ncx (Y x→nc X)).

Here D is for “double”, L for “left”, R for “right”. We will use the abbrevi-
ations

∃dxA := ExD{x|A},

∃lxA := ExL{x|A},

∃rxA := ExR{x|A},

∃ncx A := ExNc{x|A}.

For intersection we only consider the nullary case (i.e., conjunction). Then

CapDY,Z := µX(Y → Z → X),

CapLY,Z := µX(Y → Z →nc X),

CapRY,Z := µX(Y →nc Z → X),

CapNcY,Z := µX(Y →nc Z →nc X).

We use the abbreviations

A ∧d B := CapD{|A},{|B},

A ∧l B := CapL{|A},{|B},

A ∧r B := CapR{|A},{|B},

A ∧nc B := CapNc{|A},{|B}.

For union again we only consider the nullary case (i.e., disjunction). Then

CupDY,Z := µX(Y → X, Z → X),

CupLY,Z := µX(Y → X, Z →nc X),

CupRY,Z := µX(Y →nc X, Z → X),

CupUY,Z := µX(Y →nc X, Z →nc X),

CupNcY,Z := µncX (Y → X, Z → X).
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Here U stands for “uniform”. The final nc-variant is used to suppress even
the information which clause has been used. We use the abbreviations

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNc{|A},{|B}.

For Leibniz equality we from now on take the definition

EqD := µX(∀ncx Xxx).

4.1.2. Logic with decorations. By an n.c. part of a derivation we
mean a subderivation with an n.c. end formula. Such n.c. parts will not
contribute to the computational content of the whole derivation, and hence
we can ignore all decorations in those parts (i.e., define a modified notion of
equality of formulas there).

We also need to adapt our logical rules to the decorated connectives
→,→nc and ∀,∀nc. The introduction and elimination rules for → and ∀
remain as before, and also the elimination rules for →nc and ∀nc. However,
the introduction rules for →nc and ∀nc must be restricted: the abstracted
(assumption or object) variable must be “non-computational”, in the follow-
ing sense. Simultaneously with a derivation M we define the sets CV(M)
and CA(M) of computational object and assumption variables of M , as
follows. Let MA be a derivation. If A is non-computational (n.c.) then
CV(MA) := CA(MA) := ∅. Otherwise

CV(cA) := ∅ (cA an axiom),

CV(uA) := ∅,
CV((λuAM

B)A→B) := CV((λuAM
B)A→

ncB) := CV(M),

CV((MA→BNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxM
A)∀xA) := CV((λxM

A)∀
nc
x A) := CV(M) \ {x},

CV((M∀xA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀
nc
x A(x)r)A(r)) := CV(M),

and similarly

CA(cA) := ∅ (cA an axiom),

CA(uA) := {u},
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CA((λuAM
B)A→B) := CA((λuAM

B)A→
ncB) := CA(M) \ {u},

CA((MA→BNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxM
A)∀xA) := CA((λxM

A)∀
nc
x A) := CA(M),

CA((M∀xA(x)r)A(r)) := CA((M∀
nc
x A(x)r)A(r)) := CA(M).

The introduction rules for →nc and ∀nc then are

(i) If MB is a derivation and uA /∈ CA(M) then (λuAM
B)A→

ncB is a
derivation.

(ii) If MA is a derivation, x is not free in any formula of a free assumption
variable of M and x /∈ CV(M), then (λxM

A)∀
nc
x A is a derivation.

An alternative way to formulate these rules is simultaneously with the notion
of the “extracted term” et(M) of a derivation M . This will be done in 4.2.3.

4.1.3. Decorated axioms. Consider a c.r. inductive predicate

I := µX(∀c/nc~xi
((Aiν(X))ν<ni →c/nc X~ri))i<k.

As in Section 3.2, for every i < k we have a clause (or introduction axiom)

(15) I+i : ∀c/nc~xi
((Aiν(I))ν<ni →c/nc I~ri).

Moreover, we have an elimination axiom

(16) I− : ∀nc~x (I~x→ (∀c/nc~xi
((Aiν(I ∩d X))ν<ni →c/nc X~ri))i<k → X~x ).

For an n.c. inductive predicate Inc the introduction axioms (Inc)+i are
formed similarly, but with an important restriction: the elimination axiom
(Inc)− can only be used with X substituted by a non-computational com-
petitor predicate. This is needed in the proof of the soundness theorem.

However, there is an important exception: in the special case of a one-
clause-nc definition I (i.e., with only one clause involving →nc,∀nc only)
there are no restrictions on the elimination axiom. This is the case for
Leibniz equality =d, and the non-computational variants ∃nc and ∧nc of the
existential quantifier and of conjunction.

For the decorated variants ∃d, ∃l,∃r,∃nc,∧d,∧l,∧r,∧nc,∨d,∨l,∨r,∨u,∨nc
of the existential quantifier, conjunction and disjunction we obtain the fol-
lowing introduction and elimination axioms. For the existential quantifier
we have (assuming x /∈ FV(B))

(∃d)+ : ∀x(A→ ∃dxA), (∃d)− : ∃dxA→ ∀x(A→ B)→ B,

(∃l)+ : ∀x(A→nc ∃lxA), (∃l)− : ∃lxA→ ∀x(A→nc B)→ B,

(∃r)+ : ∀ncx (A→ ∃rxA), (∃r)− : ∃rxA→ ∀ncx (A→ B)→ B,



4.1. DECORATION 55

(∃nc)+ : ∀ncx (A→nc ∃ncx A), (∃nc)− : ∃ncx A→ ∀ncx (A→nc B)→ B.

Here for instance (∃d)+ abbreviates (ExD{x|A})
+
0 . Similar for ∧ we have

(∧d)+ : A→ B → A ∧d B,

(∧l)+ : A→ B →nc A ∧l B,
(∧r)+ : A→nc B → A ∧r B,
(∧nc)+ : A→nc B →nc A ∧nc B

(∧d)− : A ∧d B → (A→ B → C)→ C,

(∧l)− : A ∧l B → (A→ B →nc C)→ C,

(∧r)− : A ∧r B → (A→nc B → C)→ C,

and (∧nc)− : A ∧nc B → (A→nc B →nc C)→ C. For ∨ we have

(∨d)+0 : A→ A ∨d B,

(∨l)+0 : A→ A ∨l B,

(∨l)+0 : A→nc A ∨r B,
(∨u)+0 : A→nc A ∨u B,
(∨nc)+0 : A→nc A ∨nc B,

(∨d)+1 : B → A ∨d B,

(∨l)+1 : B →nc A ∨l B,
(∨u)+1 : B → A ∨r B,
(∨u)+1 : B →nc A ∨u B,
(∨nc)+1 : B →nc A ∨nc B

with elimination axioms

(∨d)− : A ∨d B → (A→ C)→ (B → C)→ C,

(∨l)− : A ∨l B → (A→ C)→ (B →nc C)→ C,

(∨r)− : A ∨r B → (A→nc C)→ (B → C)→ C,

(∨u)− : A ∨u B → (A→nc C)→ (B →nc C)→ C,

(∨nc)− : A ∨nc B → (A→nc C)→ (B →nc C)→ C for C n.c.

Lemma (Converse of (∃d)−, (∃l)−, (∃r)−, (∃nc)−). Assume x /∈ FV(B).
The following are derivable.

(∃dxA→ B)→ ∀x(A→ B),

(∃lxA→ B)→ ∀x(A→nc B),

(∃rxA→ B)→ ∀ncx (A→ B),

(∃ncx A→ B)→ ∀ncx (A→nc B).

Proof. Exercise. �

Remark. One might wonder whether the weak (or classical) existential

quantifier ∃̃xA is the same as the non-computational existential quantifier
∃ncx A, since both in some sense computationally disregard the quantified vari-
able x and the kernel A. We will argue that both quantifiers are equivalent
if and only if a certain (non-computational) Markov axiom holds.

Note first that in our comparison we should use the arithmetical form
∀x(A→ F)→ F rather than the logical form ∀x(A→ ⊥)→ ⊥ of the weak
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existential quantifier. Otherwise there can be no relation, because ⊥ is a
predicate variable with computational content.

Clearly ∃ncx A implies ∃̃xA, by (∃nc)− (take F for B). However, the

converse is problematic. We do have an elimination scheme for ∃̃xA as well,
but only for formulas B satisfying ((B → F) → F) → B. This means
that for the converse we need a Markov axiom for the (non-computational)
formula ∃ncx A:

(17) ((∃ncx A→ F)→ F)→ ∃ncx A.

Conversely, from ∃̃xA→ ∃ncx A we can easily derive (17). Although usage of
such an n.c. axiom does not have any effect on computational content, we
prefer to avoid it.

4.1.4. Decorating totality and induction axioms. The inductive
definitions in Section 3.3 are decorated as well, and then read as follows.

Definition (Relative totality RT). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then RTι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((RTρν (~Y ,X)xν)ν<n → X(Ci~x ))

and

RTαj (
~Y ,X) := Yj ,

RTξ(~Y ,X) := X,

RTσ→ρ(~Y ,X) := { f | ∀ncx (Tσx→ RTρ(~Y ,X)(fx)) }.

Definition (Absolute totality T ). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then Tι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((Tρν (X)xν)ν<n → X(Ci~x ))

and

Tαj (X) := Tαj ,

Tξ(X) := X,

Tσ→ρ(X) := { f | ∀ncx (Tσx→ Tρ(X)(fx)) }.

Definition (Structural totality ST). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then STι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((STρν (X)xν)ν<n → X(Ci~x ))

and

STαj (X) := {x | > } (will be omitted),

STξ(X) := X,
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STσ→ρ(X) := { f | ∀ncx (STσx→ STρ(X)(fx)) }.

For example, the main introduction axiom for the predicate STL(α) ex-
pressing structural totality of lists of elements of type α is

∀ncx,l(STL(α)l→ STL(α)(x :: l))

with no assumptions on x.
The least-fixed-point axiom for STL(α) is according to (16)

∀ncl (ST(l)→ X([])→ ∀ncx,l((ST ∩d X)l→ X(x :: l))→ XlL(ρ)).

Written differently (with “duplication”) we obtain the induction axiom

∀ncl (ST(l)→ X([])→ ∀ncx,l(ST(l)→ Xl→ X(x :: l))→ XlL(ρ))

denoted Indl,X .
Generally, abbreviating ∀ncx (Tx → A) by ∀x∈T A we obtain from the

elimination axioms computational induction axioms, for example

Indp,A(p) : ∀p∈T (A(tt)→ A(ff)→ A(pB)),

Indn,A(n) : ∀n∈T (A(0)→ ∀n∈T (A(n)→ A(Sn))→ A(nN)).

The types of these formulas (as defined below in Section 4.2) will be the
types of the recursion operators of the respective algebras.

The decorated form of the general induction schema is

(18) ∀µ∈T∀x∈T (ProgµxA(x)→ A(x))

with
ProgµxA(x) := ∀x∈T (∀y∈T (µy < µx→ A(y))→ A(x)).

The type of general induction (18) will be

(α→ N)→ α→ (α→ (α→ τ)→ τ)→ τ,

which is the type of the general recursion operator F defined in (10).

4.2. Realizers

The next thing to do is to view a formula A as a “computational prob-
lem”, as done by Kolmogorov (1932). Then what should be the solution to
the problem posed by the formula I~r, where I is inductively defined? The
obvious idea here is to take a “generation tree”, witnessing how the argu-
ments ~r were put into I. For example, consider the clauses Even(0) and
∀ncn (Even(n)→ Even(S(Sn))). A generation tree for Even(6) should consist
of a single branch with nodes Even(0), Even(2), Even(4) and Even(6).

When we want to generally define this concept of a generation tree,
it seems natural to let the clauses of I determine the algebra to which
such trees belong. Hence we will define ιI to be the type µξ(κ0, . . . , κk−1)
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generated from constructor types κi := τ(Ki), where Ki is the i-th clause
of the inductive definition of I as µX(K0, . . .Kk−1), and τ(Ki) is the type
of the clause Ki, relative to τ(X~r ) := ξ.

We begin with the definition of the type τ(A) of a formula A, the type of
the solution to the problem posed by this formula. Then we define what it
means for an x of type τ(A) to be a “realizer” (i.e., a solution) of the formula
A. Next we assign to any derivation M of a formula A its “extracted term”
et(M), which should be the realizer of A provided by the proof M . Finally
we prove the soundness theorem, saying that this indeed is the case.

4.2.1. Types of predicates and formulas. We refine the distinction
between computationally relevant (c.r.) and non-computational (n.c.) predi-
cates and formulas given in 4.1.1 by providing a type in the former case. To
indicate that there is no computational content we introduce a “nulltype”
symbol ◦ and extend the use of ρ→ σ by

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Definition (Type τ(C) of a predicate or formula C). Assume a global
injective assignment of type variables ξ to c.r. predicate variables X. Let
τ(C) := ◦ if C is non-computational. In case C is c.r. let

τ(X) := ξ,

τ({ ~x | A }) := τ(A),

τ(µX(∀nc~xi∀~yi( ~Ai →
nc ~Bi → X~ri))i<k︸ ︷︷ ︸
I

) := µξ(τ(~yi)→ τ( ~Bi)→ ξ)i<k︸ ︷︷ ︸
ιI

.

τ(P~r ) := τ(P ),

τ(A→ B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀xρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A),

We call ιI the algebra associated with I.

4.2.2. Realizability. Assume that we have a global assignment giving
for every (c.r.) predicate variable X of arity ~ρ an n.c. predicate variable Xr

of arity (τ(X), ~ρ ) together with an invariance axiom

∀nc~x (X~x↔ ∃lzXrz~x ).

Definition (Cr for predicates and formulas C). For every predicate or
formula C we define an n.c. predicate or formula Cr. For n.c. C let Cr := C.
In case C is c.r. Cr is a predicate of arity (τ(C), ~σ ) with ~σ the arity of C.
We write z r C for Crz in case C is a c.r. formula. For c.r. predicates let
Xr be the n.c. predicate variable provided, and

{ ~x | A }r := { z, ~x | z r A }.
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For a c.r. inductive predicate

I := µX(∀c/nc~xi
((Aiν)ν<ni →c/nc X~ri))i<k.

we define the witnessing predicate Ir by

Ir := µncXr(∀~xi,~zi((ziν r Aiν)ν<ni → Ci~xi~zi r X~ri))i<k

with the understanding that instead of (ziν r Aiν)ν<ni →
(i) if Aiν is n.c. or followed by →nc we have Aiν → and there is no ziν ,
(ii) if Aiν is c.r. and followed by → we have ziν r Aiν →.

Only those xij with a computational ∀xij occur as arguments in Ci~xi~zi. Here
Ci is the i-th constructor of the algebra ιI generated from the constructor
types τ(Ki) with Ki the i-th clause of I. If I has a c.r. parameter predicate
Y , then both Y and Y r may appear in Ir. For c.r. formulas let

z r P~r := P r(z, ~r ),

z r (A→ B) :=

{
∀w(w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r (A→nc B) := A→ z r B

z r ∀xA := ∀x(zx r A)

z r ∀ncx A := ∀x(z r A)

Example. For the even numbers

Even := µX(X0,∀ncn (Xn→ X(S(Sn))))

we obtain the associated algebra ιEven = N and

Evenr := µncXr(0 r X0,∀n,m(m r Xn→ Sm r X(S(Sn)))).

The introduction axioms (15) are

(Evenr)+0 : 0 r Even(0),

(Evenr)+1 : ∀n,m(m r Even(n)→ Sm r Even(S(Sn)))

Recall that the elimination axiom for an n.c. inductive predicate Inc can only
be used with non-computational competitor predicates (except one-clause-
nc inductive predicates like =d, ∃nc and ∧nc). Hence the elimination axiom
(16) is

(Evenr)− : ∀n,m(m r Even(n)→ Qnc00→
∀n,m(m r Even(n)→ Qncmn→ Qnc(Sm,S(Sn)))→
Qncmn).

Next we study what our general definition says about realizers for the
c.r. inductively defined decorated connectives.
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Lemma (Realizers for ∃d, ∃l and ∃r).

〈x, z〉 r ∃dxA↔ z r A for A c.r.

x r ∃lxA↔ A for A n.c.

z r ∃rxA↔ ∃ncx (z r A) for A c.r.

Proof. Case ∃d. Recall

ExDY := µX(∀x(Y xρ → X))

with the associated algebra ιExDY := ρ× τ(Y ). Then

ExDr
Y r := µncXr(∀x,z(z r Y x→ 〈x, z〉 r X)).

Substituting Y r by { z, x | z r A } in the introduction axiom (15) gives

(ExDr
{z,x|zrA})

+
0 : ∀x,z(z r A→ 〈x, z〉 r ∃dxA)

where 〈x, z〉 r ∃dxA abbreviates ExDr
{z,x|zrA}〈x, z〉. Conversely, the elimina-

tion axiom (16) is

(ExDr
Y r)− : ∀p(ExDr

Y rp→ ∀x,z(z r Y x→ X〈x, z〉)→ Xp).

Substituting X by { p | rht(p) r Y lft(p) } makes the middle part provable.
Thus with { z, x | z r A } for Y r we obtain ∀x,z(〈x, z〉 r ∃dxA → z r A) as a
consequence of (ExDr

{z,x|zrA})
−.

Case ∃l. Recall

ExLY := µX(∀x(Y xρ →nc X)).

Then

ExLr
Y := µncXr(∀x(Y x→ x r X)).

Substituting Y by {x | A } in the introduction axiom (15) gives

(ExLr
{x|A})

+
0 : ∀x(A→ x r ∃lxA)

where x r ∃lxA abbreviates ExLr
{x|A}x. Conversely, substituting Y by {x |

A } in the elimination axiom (16) gives

(ExLr
{x|A})

− : ∀x(x r ∃lxA→ ∀x(A→nc Xnc)→ Xnc).

With A for Xnc the middle part is provable (recall that A is assumed to be
n.c.). Therefore we have x r ∃lxA→ A.

Case ∃r. Recall

ExRY := µX(∀ncx (Y xρ → X)).

Then

ExRr
Y r := µncXr(∀x,z(z r Y x→ z r X)).
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Substituting Y r by { z, x | z r A } in the introduction axiom (15) gives

(ExRr
{z,x|zrA})

+
0 : ∀x,z(z r A→ z r ∃rxA)

where z r ∃rxA abbreviates ExRr
{z,x|zrA}z, whence ∀z(∃ncx (z r A)→ z r ∃rxA).

Conversely, the elimination axiom (16) is

(ExRr
Y r)− : ∀z(ExRr

Y rz → ∀x,z(z r Y x→ Xncz)→ Xncz).

Substituting Xnc by { z | ∃ncx (z r Y x) } makes the middle part provable.
Thus with { z, x | z r A } for Y r we obtain ∀z(z r ∃rxA→ ∃ncx (z r A)). �

Similarly we have

Lemma (Realizers for ∧d, ∧l and ∧r).

z r A→ w r B → 〈z, w〉 r (A ∧d B) for A,B c.r.

z r A→ B → z r (A ∧l B) for A c.r. and B n.c.

A→ w r B → w r (A ∧r B) for A n.c. and B c.r.

〈z, w〉 r (A ∧d B)→ (z r A) ∧nc (w r B) for A,B c.r.

z r (A ∧l B)→ (z r A) ∧nc B for A c.r. and B n.c.

w r (A ∧r B)→ A ∧nc (w r B) for A n.c. and B c.r.

Proof. Exercise. �

Lemma (Realizers for ∨d, ∨l, ∨r and ∨u).

z r A→ Inl(z) r (A ∨d B) for A,B c.r.

w r B → Inr(w) r (A ∨d B) for A,B c.r.

z r A→ InlYsumu(z) r (A ∨l B) for A c.r. and B n.c.

B → DummyR r (A ∨l B) for A c.r. and B n.c.

A→ DummyL r (A ∨r B) for A n.c. and B c.r.

w r B → InrUysum(w) r (A ∨r B) for A n.c. and B c.r.

A→ tt r (A ∨u B) for A,B n.c.

B → ff r (A ∨u B) for A,B n.c.

and for C n.c.

u r (A ∨d B)→ ∀z(z r A→ C)→ ∀w(w r B → C)→ C) for A,B c.r.

u r (A ∨l B)→ ∀z(z r A→ C)→ (B → C)→ C) for A c.r. and B n.c.

u r (A ∨r B)→ (A→ C)→ ∀w(w r B → C)→ C) for A n.c. and B c.r.

u r (A ∨u B)→ (A→ C)→ (B → C)→ C) for A,B n.c.
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Proof. The introduction group follows easily from clauses of the deco-
rated disjunctions. For the elimination group one needs to use the elimina-
tion axioms; this is left as an exercise. �

We can now state the invariance axioms InvA and prove that identities
realize them.

Axiom (Invariance under realizability).

(19) InvA : A↔ ∃lz(z r A) for c.r. formulas A.

Lemma. For c.r. formulas A we have

(λzz) r (A→ ∃lz(z r A)),

(λzz) r (∃lz(z r A)→ A).

Proof. Unfolding the definitions we obtain

(λzz) r (A→ ∃lz(z r A))

∀z(z r A→ z r ∃lz(z r A))

and similarly

(λzz) r (∃lz(z r A)→ A)

∀z(z r ∃lz(z r A)→ z r A).

But z r ∃lz(z r A) is equivalent to z r A by the lemma above. �

Important consequences of the invariance axioms are the theorems of
choice and of independence of premise.

Theorem (Choice). From the invariance axioms we can derive

∀x∃lyA(y)→ ∃lf∀xA(fx) for A n.c.(20)

∀x∃dyA(y)→ ∃df∀xA(fx) for A c.r.(21)

Proof. By the invariance axioms it suffices to find a realizer. (20).

(λff) r (∀x∃lyA(y)→ ∃lf∀xA(fx))

∀f (f r ∀x∃lyA(y)→ f r ∃lf∀xA(fx))

∀f (∀x(fx r ∃lyA(y))→ ∀xA(fx))

∀f (∀xA(fx)→ ∀xA(fx)).

(21).

(λg〈λxlft(gx), λxrht(gx)〉) r (∀x∃dyA(y)→ ∃df∀xA(fx))

∀g(g r ∀x∃dyA(y)→ 〈λxlft(gx), λxrht(gx)〉 r ∃df∀xA(fx))
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∀g(∀x(gx r ∃dyA(y))→ (λxrht(gx)) r ∀xA(lft(gx)))

∀g(∀x(rht(gx) r A(lft(gx)))→ ∀x(rht(gx) r A(lft(gx)))). �

Theorem (Independence of premise). Assume x /∈ FV(A). From the
invariance axioms we can derive

(A→ ∃lxB)→ ∃lx(A→ B) for A,B n.c.(22)

(A→nc ∃lxB)→ ∃lx(A→ B) for B n.c.(23)

(A→ ∃dxB)→ ∃dx(A→ B) for A n.c., B c.r.(24)

(A→nc ∃dxB)→ ∃dx(A→nc B) for B c.r.(25)

Proof. By the invariance axioms it suffices to find a realizer. (22).

(λxx) r ((A→ ∃lxB)→ ∃lx(A→ B))

∀x(x r (A→ ∃lxB)→ x r ∃lx(A→ B))

∀x((A→ x r ∃lxB)→ x r ∃lx(A→ B))

∀x((A→ B)→ A→ B).

(23) is proved similarly. (24).

(λpp) r ((A→ ∃dxB(x))→ ∃dx(A→ B(x)))

∀p(p r (A→ ∃dxB(x))→ p r ∃dx(A→ B(x)))

∀p((A→ p r ∃dxB(x))→ rht(p) r (A→ B(lft(p))))

∀p((A→ rht(p) r B(lft(p)))→ A→ rht(p) r B(lft(p))).

(25) is proved similarly. �

Lemma (Monotonicity). Let C be a predicate or formula with all its

strictly positive predicate variables among ~X. Assume τ(C) = ρ(~α ). Let Xi

be of arity ~ρi and Y r
i , Zr

i of arity (βi, ~ρi), (γi, ~ρi), respectively. Then we can
derive

~w r (~Y ⊆ ~Z )→ u r
~Y r

~X
C~x→ (M~β→~γ

λ~αρ(~α )u~w ) r
~Zr

~X
C~x

where

~w r (~Y ⊆ ~Z ) := (∀vi(Y r
i vi ⊆ Zr

i (wivi))i<n,

u rPX A := Ar[Xr := P ]u.

Proof. By induction on C. Case I(~P ). We first deal with the case

where I has its original predicate parameters ~X; the general case will then
follow by substitution. Let τ(I) = ι(~α ). We must show

~w r (~Y ⊆ ~Z )→ u r
~Y r

~X
I~x→ (M~β→~γ

ι u~w) r
~Zr

~X
I~x.
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Fix ~w and abbreviate

Qu~x := (M~β→~γ
ι u~w) r

~Zr

~X
I~x.

Let u r
~Y r

~X
I~x. Use (Ir)− with the n.c. competitor predicate Q:

(∀~xi,~ui((uiν r
Ir( ~Y r)∩Q, ~Y r

X, ~X
Aiν)ν<ni → Q(Ci~xi~ui, ~ri)))i<k → Ir( ~Y r) ⊆ Q.

It suffices to prove the premises. Fix i < k. By the conversion rule for

M~β→~γ
ι its conclusion Q(Ci~xi~ui, ~ri) is

Ci~xi(M
~β,ι(~β )→~γ,ι(~γ )
λ~α,αρiν(~α,α)

uiν ~w(M~β→~γ
ι · ~w )︸ ︷︷ ︸

viν

)ν<ni r
~Zr

~X
I~ri.

Use the i-th introduction axiom for Ir with ~Zr, i.e.,

(viν r
Ir( ~Zr), ~Zr

X, ~X
Aiν)ν<ni → Ci~xi~vi r

~Zr

~X
I~ri.

It suffices to prove its premises. We use the induction hypothesis for Aiν :

~w r (~Y ⊆ ~Z )→ ∀u((Ir( ~Y r) ∩Q)u ⊆ Ir( ~Zr)(gu))→

uiν r
Ir( ~Y r)∩Q, ~Y r

X, ~X
Aiν → (M

~β,ι(~β )→~γ,ι(~γ )
λ~α,αρiν(~α,α)

uiν ~wg) r
Ir( ~Zr), ~Zr

X, ~X
Aiν .

Define gu :=M~β→~γ
ι u~w. It remains to prove (Ir( ~Y r)∩Q)u~x→ Ir( ~Zr)(gu)~x.

The conclusion is (gu) r
~Zr

~X
I~x, i.e., Qu~x which we have.

We now deal with the general case I(~P ). Recall that we just proved

~f r (~Y ⊆ ~Z )→ u r
~Y r

~X
I~x→ (M~β→~γ

ι u~f ) r
~Zr

~X
I~x.

By substitution we obtain

~w r (~P (~Y ) ⊆ ~P (~Z ))→ u r
~P r( ~Y r)
~X

I~x→ (M~π(~β)→~π(~γ)
ι u~w) r

~P r( ~Zr)
~X

I~x.

Our goal is

~f r (~Y ⊆ ~Z )→ u r
~P r( ~Y r)
~X

I~x→ (M~β→~γ
λ~αι(~π(~α ))u

~f ) r
~P r( ~Zr)
~X

I~x.

By induction hypothesis for Pi( ~X)

~f r (~Y ⊆ ~Z )→ (M~β→~γ
λ~απi(~α ) · ~f ) r (Pi(~Y ) ⊆ Pi(~Z )).

Let wi :=M~β→~γ
λ~απi(~α ) · ~f . The claim follows from

M~σ→~τ
λ~αι(~π(~α ))u

~f :=M~π(~σ )→~π(~τ )
ι u(M~σ→~τ

λ~απi(~α ) · ~f )i<|~π |

which is part of the definition ofM. The other cases are left as exercises. �
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4.2.3. Extracted terms. For a derivation M of a c.r. formula A we
define its extracted term et(M), of type τ(A). It will be a term in our term
language of Section 2.2. This definition is relative to a fixed assignment of
object variables to assumption variables: to every assumption variable uA

for a c.r. formula A we assign an object variable zu of type τ(A).

Definition (Extracted term et(M) of a derivation M). For derivations
MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := zτ(A)u (z
τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxρM
A)∀xA) := λρxet(M),

et((M∀xA(x)r)A(r)) := et(M)r,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

It remains to define extracted terms for the axioms. Consider a (c.r.) induc-
tively defined predicate I. For its introduction axioms (15) and elimination
axiom (16) define et(I+i ) := Ci and et(I−) := R, where both the constructor
Ci and the recursion operator R refer to the algebra ιI associated with I.
For the invariance axioms we take identities.

4.3. Soundness

We prove that the term extracted from a proof in TCF + Inv + Axnc

is a solution of the problem posed by the proven formula. Here Axnc is an
arbitrary set of non-computational formulas viewed as axioms.

Theorem (Soundness). Let M be a derivation of a c.r. formula A from
assumptions ui : Ci (i < n). Then we can derive et(M) r A from assump-
tions zui r Ci in case Ci is c.r. and Ci otherwise.

If not stated otherwise, all derivations are in TCF + Inv + Axnc. The
proof is by induction on M .
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Proof for the logical rules. Case u : A. Then et(u) = zu.
Case (λuAM

B)A→B. We must find a derivation of et(λuM) r (A→ B).
Subcase A c.r. Then the goal is

∀z(z r A→ et(λuM)z r B).

Recall that et(λuM) = λzuet(M). Renaming z into zu, our goal is to find a
derivation of

∀zu(zu r A → et(M) r B),

since we identify terms with the same β-normal form. But by induction
hypothesis we have a derivation of et(M) r B from zu r A. An → and ∀
introduction then give the desired result. Subcase A n.c. Then the goal is

A→ et(λuM) r B.

Recall that et(λuM) = et(M). By induction hypothesis we have a derivation
of et(M) r B from A.

Case MA→BNA. We must find a derivation of et(MN) r B. Subcase
A c.r. Then et(MN) = et(M)et(N). By induction hypothesis we have
derivations of

et(M) r (A→ B), which is ∀z(z r A → et(M)z r B)

and of et(N) r A. Hence, again by logic, the claim follows. Subcase A n.c.
Then et(MN) = et(M). By induction hypothesis we have a derivation of

et(M) r (A→ B), which is A → et(M) r B.

Using the derivation NA we obtain et(M) r B.
Case (λxM

A)∀xA. We must find a derivation et(λxM) r ∀xA. By defi-
nition et(λxM) = λxet(M). Hence we must derive

λxet(M) r ∀xA, which is ∀x((λxet(M))x r A).

Since we identify terms with the same β-normal form, the claim follows from
the induction hypothesis.

Case M∀xA(x)t. We must find a derivation of et(Mt) r A(t). By defi-
nition et(Mt) = et(M)t, and by induction hypothesis we have a derivation
of

et(M) r ∀xA(x), which is ∀x(et(M)x r A(x)).

Hence the claim.
Case (λuAM

B)A→
ncB. Recall that et(λuM) = et(M). We must find a

derivation of

et(M) r (A→nc B), which is A→ et(M) r B).

Assume A. Subcase A c.r. By induction hypothesis we have a derivation
of et(M) r B from z r A. But by the invariance axioms A → ∃lz(z r A),
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whence the claim follows logically. Subcase A n.c. By induction hypothesis
we have a derivation of et(M) r B from A.

Case MA→ncBNA. Recall that et(MN) = et(M). We must find a
derivation of et(M) r B. By induction hypothesis we have a derivation of

et(M) r (A→nc B), which is A → et(M) r B.

Using the derivation NA we obtain et(M) r B.
Case (λxM

A)∀
nc
x A. Recall that et(λxM) = et(M). Thus we must find a

derivation of

et(M) r ∀ncx A, which is ∀x(et(M) r A).

But this follows from the induction hypothesis.
Case M∀

nc
x A(x)t. Recall that et(Mt) = et(M). We must find a derivation

of et(Mt) r A(t). By induction hypothesis we have a derivation of

et(M) r ∀ncx A(x), which is ∀x(et(M) r A(x)). �

It remains to prove the soundness theorem for the axioms, i.e., that their
extracted terms are realizers. Before doing anything general let us first look
at an example. Totality for N has been inductively defined by the clauses

TN0, ∀ncn (TNn→ TN(Sn)).

Its elimination axiom is

∀ncn (TNn→ X0→ ∀ncn (TNn→ Xn→ X(Sn))→ Xn).

We show that their extracted terms 0, S and R are realizers. For the proof
recall from the examples in 4.2.2 that the witnessing predicate T r

N is defined
by the clauses

T r
N00, ∀n,m(T r

Nmn→ T r
N(Sm,Sn)),

and it has as its elimination axiom

∀n,m(T r
Nmn→ Xnc00→

∀n,m(T r
Nmn→ Xncmn→ Xnc(Sm,Sn))→

Xncmn).

Lemma. (a) 0 r TN0 and S r ∀ncn (TNn→ TN(Sn)).
(b) R r ∀ncn (TNn→ X0→ ∀ncn (TNn→ Xn→ X(Sn))→ Xn).

Proof. (a) 0 r TN0 is defined to be T r
N00. Moreover, by definition

S r ∀ncn (TNn→ TN(Sn)) unfolds into ∀n,m(T r
Nmn→ T r

N(Sm,Sn)).
(b) Let n,m be given and assume m r TNn. Let further w0, w1 be such

that w0 r X0 and w1 r ∀ncn (TNn→ Xn→ X(Sn)), i.e.,

∀n,m(T r
Nmn→ ∀z(z r Xn→ w1mz r X(Sn))).
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Our goal is

Rmw0w1 r Xn =: Qmn.

To this end we use the elimination axiom for T r
N above. Hence it suffices

to prove its premises Q00 and ∀ncn,m(T r
Nmn → Qmn → Q(Sm,Sn)). By a

conversion rule for R (cf. 2.2.2) the former is the same as w0 r P0, which
we have. For the latter assume n,m and its premises. We show Q(Sm,Sn),
i.e., R(Sm)w0w1 r X(Sn). By a conversion rule for R this is the same as

w1m(Rmw0w1) r X(Sn).

But with z := Rmw0w1 this follows from what we have. �

Proof for the axioms. We first prove soundness for introduction and
elimination axioms of c.r. inductively defined predicates, and show that the
extracted terms defined above are realizers. The proof uses the definition of
Ir in 4.2.2.

By the clauses for Ir we clearly have Ci r I+i . For the elimination axiom
we have to prove R r I−, that is,

R r ∀nc~x (I~x→ (Ki(I, P ))i<k → P~x ).

Let ~x,w be given and assume w r I~x. Let further w0, . . . , wk−1 be such that
wi r Ki(I, P ), i.e.,

(26) ∀~xi,~vi((v
ρiν(ι×τ)
iν r

{ p,~x |lft(p)rI~x∧rht(p)rP~x }
X Aiν)ν<ni → wi~xi~vi r P~ri)

with ρiν(α) := τ(Aiν(X)) and τ the type of P . Here lft(p), rht(p) are
shorthand for the two projections of p of type ι× τ . Our goal is

Rw~w r P~x =: Qw~x.

We use the elimination axiom (16) for Ir with the n.c. Q, i.e.,

(∀~xi,~ui((uiν rI
r∩Q
X Aiν)ν<ni → Q(Ci~xi~ui, ~ri)))i<k → Ir ⊆ Q.

Hence it suffices to prove its premises. Fix i < k. Assume ~xi, ~ui and for
every ν < ni the premise

uiν rI
r∩Q
X Aiν .

We show Q(Ci~xi~ui, ~ri), i.e.,

R(Ci~xi~ui)~w r P~ri.

By the conversion rules for R this is the same as

wi~xi(Mι→ι×τ
λαρiν(α)

uiνλw〈w,Rw~w 〉︸ ︷︷ ︸
viν

)ν<ni r P~ri.
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To this end we apply (26) to ~xi and ~vi. Its conclusion is what we want, and
for its premises use

uiν rI
r∩Q
X Aiν → (Mι→ι×τ

λαρiν(α)
uiνλw〈w,Rw~w 〉) r

{ p,~x |lft(p)rI~x∧rht(p)rP~x }
X Aiν

which follows from an instance of the monotonicity lemma in 4.2.2

f r (Y ⊆ Z)→ u rY
r

X A→ (Mβ→γ
λαρ(α)

uf ) rZ
r

X A

where β := τ(Y ), γ := τ(Z). To see this unfold the premise

∀y,~x(Y ry~x→ Zr(fy)~x)→ u rY
r

X A→ (Mβ→γ
λ~αρ(~α )uf ) rZ

r

X A

and substitute β 7→ ι, γ 7→ ι × τ , y 7→ w, u 7→ uiν , A 7→ Aiν , Y r 7→
Ir ∩Q, Zr 7→ { p, ~x | lft(p)rI~x ∧ rht(p)rP~x }, f 7→ λw〈w,Rw~w 〉. Then the
conclusion is what we want, and we have to prove the premise

(Ir ∩Q)w~x→ { p, ~x | lft(p)rI~x ∧ rht(p)rP~x }〈w,Rw~w 〉~x.

But this follows from the definition of Q.
For the introduction and elimination axioms for n.c. inductive predicates

there is nothing to show since these axioms are n.c. as well. The only
exception are one-clause-nc inductive predicates (for instance ExNc, CapNc
and Leibniz equality) where the competitor predicate in the elimination
axiom can be c.r. (cf. 4.1.3). But for these the identity is a realizer:

(λzz) r ∀nc~x (Ir~x→ ∀nc~y ( ~A→nc X~r )→ X~x )

∀~x(Ir~x→ (λzz) r (∀nc~y ( ~A→nc X~r )→ X~x ))

∀~x(Ir~x→ ∀z(z r ∀nc~y ( ~A→nc X~r )→ z r X~x ))

∀~x(Ir~x→ ∀z(∀~y( ~A→ z r X~r )→ z r X~x ))

which is an instance of the same elimination axiom.
We have already seen (in 4.2.2) that identities are realizers for the in-

variance axioms. �

Remark. We finally show that general recursion provides a realizer for
general induction. Recall that according to (18) general induction is the
schema

∀µ∈T∀x∈T (ProgµxPx→ Px)

where ProgµxPx expresses “progressiveness” w.r.t. the measure function µ
and the order <:

ProgµxPx := ∀x∈T (∀y∈T (µy < µx→ Py)→ Px).

We need to show

F r ∀µ,x∈T (ProgµxPx→ Px),
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that is,

∀µ,x∈T∀g(g r ∀x∈T (∀y∈T ;µy<µxPy → Px)→ Fµxg r Px).

Fix µ, x, g and assume the premise, which unfolds into

(27) ∀x∈T,f (∀y∈T ;µy<µx(fy r Py)→ gxf r Px).

We have to show Fµxg r Px. To this end we use an instance of general
induction with the formula Fµxg r Px, that is,

∀µ,x∈T (∀x∈T (∀y∈T ;µy<µx(Fµyg r Py)→ Fµxg r Px)→ Fµxg r Px).

It suffices to prove the premise. Assume ∀y∈T ;µy<µx(Fµyg r Py) for a fixed
x ∈ T . We must show Fµxg r Px. Recall that by definition (10)

Fµxg = gxf0 with f0 := λy[if µy < µx then Fµyg else ε].

Hence we can apply (27) to x, f0, and it remains to show

∀y∈T ;µy<µx(f0y r Py).

Fix y ∈ T with µy < µx. Then f0y = Fµyg, and by the last assumption we
have Fµyg r Py.



CHAPTER 5

Computational content of classical proofs

Often in mathematics existence proofs are indirect, i.e., assuming that
there is no solution of a problem one derives a contradiction.

Examples. 1. The first one is Fürstenberg’s (1955) topological proof of
the infinity of primes; it is the fifth of “Six proofs of the infinity of primes”
in Aigner and Ziegler’s “Proofs from THE BOOK” (2004, Problem 1). Call
a set X of natural numbers open if every x ∈ X starts an arithmetic pro-
gression contained in X, i.e., ∀x∈X∃b>0∀n(x + bn ∈ X). Clearly arbitrary
unions and finite intersections of open sets are open, i.e., we have a topo-
logy. Let Np be the set of multiples of a positive number p. Then Np is
not only open but also closed, since it is the complement is a finite union of
open sets. The only thing we assume on primes is that every number > 1
has a prime divisor. Now assume that there would be only finitely many
primes p0, p1, . . . , pm−1. Since

⋃
l<mNpl is closed, its complement is open

and therefore infinite, a contradiction.
2. The second example (suggested by Yiannis Moschovakis) is Euclid’s

result that the greatest common divisor of two integers is a linear combina-
tion of the two. The usual proof considers the ideal (a1, a2) generated by the
two numbers and uses the fact the every ideal in the integers is a principal
ideal. Its least positive element has a representation |k1a1− k2a2| with non-
negative integers k1, k2. It is a common divisor of a1 and a2 (since otherwise
the remainder of its division by ai would be a smaller positive element of
the ideal), and it is the greatest common divisor (since any common divisor
of a1 and a2 must also be a divisor of |k1a1 − k2a2|).

Clearly such proofs only implicitly provide a solution, and it is a chal-
lenge to access the hidden computational content. In the first example this
can be done1 by slightly modifying the argument. Call X uniformly open if
∃b>0∀x∈X∀n(x + bn ∈ X); the number b is a witness of uniform openness.
Again arbitrary unions and finite intersections of uniformly open sets are
uniformly open; witnesses in the latter case are finite products of the given
witnesses. Since

⋃
l<mNpl is uniformly closed with witness b :=

∏
l<m pl,

1git/minlog/examples/classical/fuerst.scm
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its complement is uniformly open, and since it contains 1, it also contains
1 + b. — This is the standard constructive proof of the infinity of primes.

For the second example2 one can use general tools from proof theory, the
main ones being the Dialectica interpretation of Gödel (1958), and a refined
form of the so-called A-translation of Friedman (1978) and Dragalin (1979).
Minlog implements both; however, here we only deal with the latter. Before
going into the technicalities, let us first discuss what the A-translation is,
and why there is a need to refine it.

5.1. A-translation

It is well known that from a derivation of a classical existential formula
∃̃yA := ∀y(A→ ⊥)→ ⊥ one generally cannot read off an instance. A simple
example has been given by Kreisel: let R be a primitive recursive relation
such that ∃̃zRxz is undecidable. Clearly – even logically –

` ∀x∃̃y∀z(Rxz → Rxy)

but there is no computable f satisfying

∀x∀z(Rxz → R(x, f(x))),

for then ∃̃zRxz would be decidable: it would be true if and only if R(x, f(x))
holds.

However, it is well known that in case ∃̃yG with G quantifier-free one
can read off an instance. Here is a simple idea of how to prove this: replace
⊥ anywhere in the proof by ∃yG. Then the end formula ∀y(G→ ⊥)→ ⊥ is
turned into ∀y(G→ ∃yG)→ ∃yG, and since the premise is trivially provable,
we have the claim.

Unfortunately this simple argument is not quite correct. The problem
is that both D and G may contain ⊥ and hence are changed by the substi-
tution. To obtain a constructive proof which can be used for extraction we
should employ the arithmetical falsity F rather than the logical one, ⊥. To
repair this failure we require the following DG-property. Let AF denote the
result of substituting ⊥ by F in A.

DF → D,

(GF → ⊥)→ G→ ⊥.
(28)

Using (28) we can now correct the argument: from the given derivation of
D → ∀y(G→ ⊥)→ ⊥ we obtain

DF → ∀y(GF → ⊥)→ ⊥,

2git/minlog/examples/classical/euclid.scm
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since DF → D and (GF → ⊥)→ G→ ⊥. Substituting ⊥ by ∃yGF gives

DF → ∀y(GF → ∃yGF)→ ∃yGF.

Since ∀y(GF → ∃yGF) is derivable we obtain DF → ∃yGF as desired.
Therefore we need to pick our assumptions D and goal formulas G from

appropriately chosen sets D and G which guarantee the DG-property (28).
An easy way to achieve this is to replace in D and G every atomic

formula P different from ⊥ by its double negation (P → ⊥) → ⊥. This
corresponds to the original A-translation of Friedman (1978). However, then
the computational content of the resulting constructive proof is unnecessarily
complex, since each occurrence of ⊥ gets replaced by the c.r. formula ∃yGF.

Let us now see how we can eliminate unnecessary double negations. To
this end we define certain sets D and G of formulas which ensure that their
elements D ∈ D and G ∈ G satisfy the DG-property (28).

5.2. Definite and goal formulas

We simultaneously inductively define the classes D of definite formulas,
G of goal formulas, R of relevant definite formulas and I of irrelevant goal
formulas. Let D, G, R, I range over D, G, R, I, respectively, P over prime
formulas distinct from ⊥, and D0 over quantifier-free formulas in D.
D, G, R and I are generated by the clauses

(a) R, P, I → D, ∀xD ∈ D.
(b) I, ⊥, R→ G, D0 → G ∈ G.
(c) ⊥, G→ R, ∀xR ∈ R.
(d) P, D → I, ∀xI ∈ I.

Let AF denote A[⊥ := F], and ¬A, ¬⊥A abbreviate A→ F, A→ ⊥.

Lemma. We have derivations from F→ ⊥ and F→ P of

DF → D,(29)

G→ ¬⊥¬⊥GF,(30)

¬⊥¬RF → R,(31)

I → IF.(32)

This result is due to Ishihara (2000) and has been (independently) re-
discovered in Berger et al. (2002). The proof below is from Schwichtenberg
and Wainer (2012, pp.364-367).

Proof. We prove (30)–(33) simultaneously, by induction on formulas.
(30). Case ⊥. Then ⊥F = F and the claim follows from our assumption

F→ ⊥. Case P . Obvious. Case ∀xD. By induction hypothesis (30) for D
we have DF → D, which clearly implies ∀xDF → ∀xD.
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Case R.

|
¬⊥¬RF → R

F→ ⊥
¬RF RF

F
⊥

¬⊥¬RF

R

RF → R

Here we have used (32) and F→ ⊥.
Case I → D.

|
DF → D

IF → DF

|
I → IF I

IF

DF

D

(IF → DF)→ I → D

Here we have used the induction hypotheses (33) for I and (30) for D.
(31). Case ⊥. Clear. Case P . Clear, since PF is P . Case I. This is

clear again, using the induction hypothesis (33).
Case R → G. We have to prove (R → G) → ¬⊥¬⊥(RF → GF). Let

D1[R→ G,¬⊥(RF → GF)] : ¬⊥R be

|
G→ ¬⊥¬⊥GF

R→ G R
G

¬⊥¬⊥GF

¬⊥(RF → GF)

GF

RF → GF

⊥
¬⊥GF

⊥
¬⊥R

(by induction hypothesis (31) for G) and D2[¬⊥(RF → GF)] : ¬⊥¬RF be

¬⊥(RF → GF)

¬RF RF

F
...

GF

RF → GF

⊥
¬⊥¬RF
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Note that GF is derivable from F, using our assumption F→ P .

D1[R→ G,¬⊥(RF → GF)]

|
¬⊥R

|
¬⊥¬RF → R

D2[¬⊥(RF → GF)]

|
¬⊥¬RF

R

⊥
(R→ G)→ ¬⊥¬⊥(RF → GF)

Here we have used the induction hypothesis (32) for R.
Case D0 → G. We have to prove (D0 → G) → ¬⊥¬⊥(DF

0 → GF). Let
D1[D0 → G,¬⊥(DF

0 → GF)] : ¬⊥D0 and D2[¬⊥(DF
0 → GF)] : ¬⊥¬DF

0 be as
above. We use (DF

0 → ⊥)→ (¬DF
0 → ⊥)→ ⊥, i.e., case distinction on DF

0 .
Hence it suffices to derive from D0 → G and ¬⊥(DF

0 → GF) both ¬⊥DF
0

and ¬⊥¬DF
0 ; recall that our goal is (D0 → G)→ ¬⊥(DF

0 → GF)→ ⊥. The
negative case is provided by D2[¬⊥(DF

0 → GF)], and the positive case by

D1[D0 → G,¬⊥(DF
0 → GF)]

|
¬⊥D0

|
DF

0 → D0 DF
0

D0

⊥
¬⊥DF

0

Here we have used the induction hypothesis (30) for D0.
(32). Case ⊥. Clearly ¬⊥¬⊥(F→ F) is derivable.
Case ∀xR.

|
¬⊥¬RF → R

¬⊥¬∀xRF

¬RF

∀xRF

RF

F

¬∀xRF

⊥
¬⊥¬RF

R
∀xR

¬⊥¬∀xRF → ∀xR

Here we have used the induction hypothesis (32) for R.
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Case G→ R.

|
¬⊥¬RF → R

|
G→ ¬⊥¬⊥GF G

¬⊥¬⊥GF

¬⊥¬(GF → RF)

¬RF
GF → RF GF

RF

F

¬(GF → RF)

⊥
¬⊥GF

⊥
¬⊥¬RF

R

¬⊥¬(GF → RF)→ G→ R

Here we have used the induction hypotheses (32) for R and (31) for G.
(33). Case P . Clear. Case ∀xI. This is clear again, using the induction

hypothesis (33) for I.
Case D → I.

|
I → IF

D → I

|
DF → D DF

D
I

IF

(D → I)→ DF → IF

Here we have used the induction hypotheses (33) for I and (30) for D. �

Remark. Is D the largest class of formulas such that DF → D is prov-
able intuitionistically? This is not the case, as the following example shows.

S := ∀x(((Qx→ F)→ F)→ Qx),

D := (∀xQx→ ⊥)→ ⊥.

One can easily derive (S → D)F → S → D, since SF is S and a derivation
of DF → S → D can be found easily.

However, S → D /∈ D, since D /∈ D. This is because D is neither (i) in
R nor (ii) of the form I → D1. For (i), observe that if D were in R, then
its premise ∀xQx → ⊥ would be in G, hence ∀xQx in R, which is not the
case. For (ii), observe that ∀xQx→ ⊥ is not in I bcause ⊥ /∈ I.

It is an open problem to find a useful characterization of the class of
formulas such that DF → D is provable intuitionistically.

We give some examples of definite and goal formulas. Keep in mind that
R ⊆ D and I ⊆ G.

• P ∈ D ∩ I.
• ⊥ ∈ R ∩ G.
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• P → ⊥ ∈ R ∩ G.
• (P → ⊥)→ ⊥ ∈ R ∩ G.

Lemma. C ∈ D ∩ G for C quantifier-free such that no implication in C
has ⊥ as its final conclusion, and C ∈ R (∈ I) if and only if ⊥ is (is not)
the final conclusion of C.

Proof. The cases P and ⊥ are clear. Case C → R. Since C ∈ G we
have C → R ∈ R, and since C ∈ D and R ∈ G we have C → R ∈ G.

Case C → I. Since C ∈ I (because ⊥ is not the final conclusion of C)
and I ∈ D we have C → I ∈ D, and since C ∈ D we have C → I ∈ I. �

Note that a further condition on C except being quantifier-free is needed
since for instance ⊥ → P /∈ D.

Lemma. For goal formulas ~G = G1, . . . , Gn we have a derivation from
F→ ⊥ of

(33) (~GF → ⊥)→ ~G→ ⊥.

Proof. Assume F→ ⊥. By (31)

Gi → (GF
i → ⊥)→ ⊥

for all i = 1, . . . , n. Now the assertion follows by minimal logic: assume
~GF → ⊥ and ~G; we must show ⊥. By G1 → (GF

1 → ⊥) → ⊥ it suffices to
prove GF

1 → ⊥. Assume GF
1 . By G2 → (GF

2 → ⊥) → ⊥ it suffices to prove
GF

2 → ⊥. Assume GF
2 . Repeating this pattern, we finally have assumptions

GF
1 , . . . , G

F
n available, and obtain ⊥ from ~GF → ⊥. �

5.3. Extraction from weak existence proofs

Theorem (Strong from weak existence proofs). Assume that for ar-

bitrary formulas ~A, definite formulas ~D and goal formulas ~G we have a
derivation M∃̃ of

(34) ~A→ ~D → ∀y(~G→ ⊥)→ ⊥.

Then from F → ⊥ and F → P for all prime formulas P in ~D, ~G we can
derive

~A→ ~DF → ∀y(~GF → ⊥)→ ⊥.
In particular, substitution of the formula

∃y ~GF := ∃y(GF
1 ∧ · · · ∧GF

n )

for ⊥ yields a derivation M∃ from the F→ P of

(35) ~A[⊥ := ∃y ~GF]→ ~DF → ∃y ~GF.
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Proof. The first assertion follows from (30) (to infer ~D from ~DF) and

(??) (to infer ~G → ⊥ from ~GF → ⊥). The second assertion is a simple

consequence since ∀y(~GF → ∃y ~GF) and F→ ∃y ~GF are both derivable. �

We shall apply the method of realizability to extract computational con-
tent from the resulting strong existence proof M∃. Recall that this proof
essentially follows the given weak existence proof M∃̃. The only difference

is that proofs of (30) (to infer ~D from ~DF) and (??) (to infer ~G→ ⊥ from
~GF → ⊥) have been inserted. Therefore the extracted term can be struc-
tured in a similar way, with one part determined solely by M∃̃ and another

part depending only on the definite formulas ~D and and goal formulas ~G. –

For simplicity let ~G consist of a single goal formula G.
To make the method work we need to assume that all prime formulas P

appearing in ~DF, GF are n.c. (for instance, equalities).

Lemma. Let D be a definite and G a goal formula. Assume that all
prime formulas P in DF, GF are n.c.

(a) We have a term tD such that

DF → tD r D

is derivable from ∀y(F→ y r ⊥) and F→ P .
(b) We have a term sG such that

(GF → v r ⊥)→ w r G→ sGvw r ⊥

is derivable from ∀y(F→ y r ⊥) and F→ P .

Proof. By the assumption all formulas DF, GF are n.c. as well.
(a) By (30) we have a derivation ND of DF → D from assumptions

F→ ⊥ and F→ P . By the soundness theorem we can take tD := et(ND).
(b) By (31) we have a derivation HG of (GF → ⊥) → G → ⊥ from

assumptions F→ ⊥ and F→ P . Observe that the following are equivalent:

et(HG) r ((GF → ⊥)→ G→ ⊥),

∀v,w(v r (GF → ⊥)→ w r G→ et(HG)vw r ⊥),

∀v,w((GF → v r ⊥)→ w r G→ et(HG)vw r ⊥).

Hence we can take sG := et(HG). �

Theorem (Extraction from weak existence proofs). Assume that for

definite formulas ~D and a goal formula G(y) we have a derivation M∃̃ of

~D → ∀y(G(y)→ ⊥)→ ⊥.
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Assume that all prime formulas P in ~DF, GF(y) are n.c. Let t1, . . . , tn and
s be terms for D1, . . . , Dn and G according to parts (a) and (b) of the lemma
above. Then from assumptions F→ P we can derive

~DF → GF(et(M ′∃̃)t1 . . . tns),

where M ′∃̃ is the result of substituting ∃yGF(y) for ⊥ in M∃̃.

Proof. By the soundness theorem we have

et(M∃̃) r ( ~D → ∀y(G(y)→ ⊥)→ ⊥),

∀~u,x(~u r ~D → x r ∀y(G(y)→ ⊥)→ et(M∃̃)~ux r ⊥),

∀~u,x(~u r ~D → ∀y,w(w r G(y)→ xyw r ⊥)→ et(M∃̃)~ux r ⊥).

Instantiating ~u, x by ~t, s, respectively, we obtain

~t r ~D → ∀y,w(w r G(y)→ syw r ⊥)→ et(M∃̃)
~ts r ⊥.

Hence by part (a) of the lemma above we have a derivation of

~DF → ∀y,w(w r G(y)→ syw r ⊥)→ et(M∃̃)
~ts r ⊥

from ∀y(F→ y r ⊥) and F→ P . Substituting ⊥ by ∃yGF(y) gives

~DF → ∀y,w((w r G(y))[⊥ := ∃yGF(y)]→ GF(syw))→ GF(et(M ′∃̃)
~ts)

from F→ P . Substituting ⊥ by ∃yGF(y) in the formula derived in part (b)
of the lemma above gives

(GF(y)→ GF(v))→ (w r G(y))[⊥ := ∃yGF(y)]→ GF(svw)

from F→ P . Instantiating this with v := y we obtain a derivation of

~DF → GF(et(M ′∃̃)
~ts)

from F→ P , as required. �

5.4. Applications

5.4.1. List reversal. We first give an informal weak existence proof
for list reversal. Write vw for the result v ∗w of appending the list w to the
list v, vx for the result v ∗ x: of appending the one element list x: to the list
v, and xv for the result x :: v of constructing a list by writing an element x
in front of a list v, and omit the parentheses in R(v, w) for (typographically)
simple arguments. Assume

InitR: R([], []),

GenR: ∀v,w,x(Rvw → R(vx, xw)).

We view R as a predicate variable without computational content. The
reader should not be confused: of course these formulas involving R do
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express how a computation of the reverted list should proceed. But the
predicate R itself only represents the graph of the list reversal function.

Let us now prove

(36) ∀v∃̃wRvw ( := ∀v(∀w(Rvw → ⊥)→ ⊥)).

Fix R, v and assume InitR, GenR and the “false” assumption u : ∀w¬Rvw;
we need to derive a contradiction. To this end we prove that all initial
segments of v are non-revertible, which contradicts InitR. More precisely,
from u and GenR we prove

∀v2A(v2) with A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)

by induction on v2. For v2 = [] this follows from u0 : v1 [] = v and our
(“false”) assumption u. For the step case, assume u1 : v1(xv2) = v, fix w
and assume further u2 : Rv1w. We must derive a contradiction. We use the
induction hypotheses with v1x and xw to obtain the desidered contradiction.
This requires us to prove (i) (v1x)v2 = v and (ii) R(v1x, xw). But (i) follows
from u1 using properties of the append function, and (ii) follows from u2
using GenR.

We formalize this proof, to prepare it for the refined A-translation. The
following lemmata will be used:

Compat′ : ∀ncv,w(v =d w → Xw → Xv),

EqToEqD: ∀v,w(v = w → v =d w).

The proof term is

M :=λR,vλuInitRλuGenRλ
∀w¬Rvw
u (

Indv2,A(v2)vRvMBaseMStep [] Truth[] v=v [] uInitR)

with

MBase := λv1λ
v1[]=v
u0 (

Compat′ { v | ∀w¬Rvw }Rv v1 v (EqToEqD v1vu0)u),

MStep := λx,v2λ
A(v2)
u0 λv1λ

v1(xv2)=v
u1 λwλ

Rv1w
u2 (

u0(v1x)u1(xw)(uGenRv1wxu2)).

We now have a proof M of ∀v∃̃wRvw from InitR: D1 and GenR: D2, with
D1 := R([], []) and D2 := ∀v,w,x(Rvw → R(vx, xw)). Using the refined
A-translation we can replace ⊥ throughout by ∃wRvw. The end formula
∃̃wRvw := ¬∀w¬Rvw := ∀w(Rvw → ⊥) → ⊥ is turned into ∀w(Rvw →
∃wRvw) → ∃wRvw. Since its premise is an instance of existence introduc-
tion we obtain a derivation M∃ of ∃wRvw. Moreover, in this case neither the
Di nor any of the axioms used involves ⊥ in its uninstantiated formulas, and
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hence the correctness of the proof is not affected by the substitution. The
term neterm extracted in Minlog from a formalization of the proof above is

[R,v](Rec list nat=>list nat=>list nat=>list nat)v([v0,v1]v1)

([x,v0,g,v1,v2]g(v1++x:)(x::v2)) (Nil nat) (Nil nat)

with g a variable for binary functions on lists. In fact, the underlying algo-
rithm defines an auxiliary function h by

h([], v1, v2) := v2, h(xv, v1, v2) := h(v, v1x, xv2)

and gives the result by applying h to the original list and twice [].
Notice that the second argument of h is not needed. However, its pres-

ence makes the algorithm quadratic rather than linear, because in each re-
cursion step v1x is computed, and the list append function is defined by
recursion on its first argument. We will be able to get rid of this superfluous
second argument by decorating the proof. It will turn out that in the proof
(by induction on v2) of the formula A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)),
the variable v1 is not used computationally. Hence, in the decorated version
of the proof, we can use ∀ncv1 .

5.4.2. Integer square roots. For an unbounded function f : N → N
with f(0) = 0 we prove

∀n∃̃m(f(m) ≤ n < f(m+ 1)).

If e.g. f(m) = m2, then this formula expresses the existence of an integer
square root m := [

√
n] for any n. More formally, we prove

(37) ∀n∃̃m(¬(n < f(m)) ∧ n < f(m+ 1))

from the assumptions

v1 : ∀n¬(n < f(0)), v2 : ∀n(n < f(g(n))).

Here <N→N→B is the characteristic function of the natural ordering of the
natural numbers. We expressed f(m) ≤ n by ¬(n < f(m)) and f(0) = 0 by
∀n¬(n < f(0)) to keep the formal proof as simple as possible. In order to
have purely universal assumptions we had to express the unboundedness of
f by a witnessing function g.

Now let us prove (34). Let n be given and assume

u : ∀m(¬(n < f(m))→ n < f(m+ 1)→ ⊥).

We have to show ⊥. From v1 and u we inductively get ∀m¬(n < f(m)). For
m := g(n) this yields a contradiction to v2.

In Minlog, this proof is implemented as follows, after loading nat.scm:
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(add-var-name "f" "g" (py "nat=>nat"))

(set-goal "all f,g,n(

all n(n<f 0 -> bot) -> all n n<f(g n) ->

excl m((n<f m -> bot) ! n<f(m+1)))")

(assume "f" "g" "n" "v1" "v2" "u")

(assert "all m(n<f m -> bot)")

(ind)

(use "v1")

(use "u")

(assume "Assertion")

(use-with "Assertion" (pt "g n") "?")

(use "v2")

;; Proof finished.

(save "IntSqRt")

We have saved the proof and now normalize it.

(define proof (theorem-name-to-proof "IntSqRt"))

(define nproof (np proof))

Now we can apply the refined A-translation followed by term extraction and
normalization:

(define eterm

(atr-min-excl-proof-to-structured-extracted-term nproof))

(define neterm (nt eterm))

(pp (rename-variables neterm))

and obtain

[f,f0,n](Rec nat=>nat)(f0 n)0([n0,n1][if (n<f n0) n1 n0])

Informally, the result is h(g(n)) where h : N→ N is defined by

h(0) = 0, h(m+ 1) =

{
h(m) if n<f(m)

m else.



CHAPTER 6

Decorating proofs

In this chapter we are interested in “fine-tuning” the computational
content of proofs, by inserting decorations. Here is an example (due to
Constable) of why this is of interest. Suppose that in a proof M of a formula
C we have made use of a case distinction based on an auxiliary lemma
stating a disjunction, say L : A ∨ B. Then the extract et(M) will contain
the extract et(L) of the proof of the auxiliary lemma, which may be large.
Now suppose further that in the proof M of C the only computationally
relevant use of the lemma was which one of the two alternatives holds true,
A or B. We can express this fact by using a weakened form of the lemma
instead: L′ : A ∨u B. Since the extract et(L′) is a boolean, the extract of
the modified proof has been “purified” in the sense that the (possibly large)
extract et(L) has disappeared.

In Section 4.1 we consider the question of “optimal” decorations of
proofs: suppose we are given an undecorated proof, and a decoration of
its end formula. The task then is to find a decoration of the whole proof
(including a further decoration of its end formula) in such a way that any
other decoration “extends” this one. Here “extends” just means that some
connectives have been changed into their more informative versions, disre-
garding polarities. We show that such an optimal decoration exists, and
give an algorithm to construct it.

We then consider some applications: list reversal, computing the Fi-
bonacci numbers in continuation passing style, and finally the Maximal
Scoring Segment (MSS) algorithm. For instance in the latter case, directly
deriving such an algorithm from a proof leads to quadratic complexity. We
will see that the (automatically found) optimal decoration of this proof re-
sults in a linear extracted algorithm.

6.1. Decoration algorithm

We denote the sequent of a proof M by Seq(M); it consists of its context
and end formula.

The proof pattern P(M) of a proof M is the result of marking in c.r.
parts of M (i.e., not above a n.c. formula) all occurrences of implications

83
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and universal quantifiers as non-computational, except the “uninstantiated”
formulas of axioms and theorems. For instance, the induction axiom for N
consists of the uninstantiated formula ∀n(X0→ ∀n(Xn→ X(Sn))→ XnN)
with a predicate variable X and a predicate substitution X 7→ {x | A(x) }.
Notice that a proof pattern in most cases is not a correct proof, because at
axioms formulas may not fit.

We say that a formula D extends C if D is obtained from C by changing
some (possibly zero) of its occurrences of non-computational implications
and universal quantifiers into their computational variants → and ∀.

A proof N extends M if (i) N and M are the same up to variants
of implications and universal quantifiers in their formulas, and (ii) every
formula in c.r. parts of M is extended by the corresponding one in N . Every
proof M whose proof pattern P(M) is U is called a decoration of U .

Notice that if a proof N extends another one M , then FV(et(N)) is
essentially (that is, up to extensions of assumption formulas) a superset of
FV(et(M)). This can be proven by induction on N .

In the sequel we assume that every axiom has the property that for
every extension of its formula we can find a further extension which is an
instance of an axiom, and which is the least one under all further extensions
that are instances of axioms. This property clearly holds for axioms whose
uninstantiated formula only has → and ∀, for instance induction. However,
in ∀n(A(0) → ∀n(A(n) → A(Sn)) → A(nN)) the given extension of the
four A’s might be different. One needs to pick their “least upper bound” as
further extension.

We will define a decoration algorithm, assigning to every proof pattern
U and every extension of its sequent an “optimal” decoration M∞ of U ,
which further extends the given extension of its sequent.

Theorem. Under the assumption above, for every proof pattern U and
every extension of its sequent Seq(U) we can find a decoration M∞ of U
such that

(a) Seq(M∞) extends the given extension of Seq(U), and
(b) M∞ is optimal in the sense that any other decoration M of U whose

sequent Seq(M) extends the given extension of Seq(U) has the property
that M also extends M∞.

Proof. By induction on derivations. It suffices to consider derivations
with a c.r. endformula. For axioms the validity of the claim was assumed,
and for assumption variables it is clear.
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Case (→nc)+. Consider the proof pattern

Γ, u : A

| U
B (→nc)+, u

A→nc B

with a given extension ∆ ⇒ C →nc D or ∆ ⇒ C → D of its sequent
Γ ⇒ A →nc B. Applying the induction hypothesis for U with sequent
∆, C ⇒ D, one obtains a decoration M∞ of U whose sequent ∆1, C1 ⇒ D1

extends ∆, C ⇒ D. Now apply (→nc)+ in case the given extension is ∆ ⇒
C →nc D and xu /∈ FV(et(M∞)), and →+ otherwise.

For (b) consider a decoration λuM of λuU whose sequent extends the
given extended sequent ∆ ⇒ C →nc D or ∆ ⇒ C → D. Clearly the
sequent Seq(M) of its premise extends ∆, C ⇒ D. Then M extends M∞ by
induction hypothesis for U . If λuM derives a non-computational implication
then the given extended sequent must be of the form ∆ ⇒ C →nc D and
xu /∈ FV(et(M)), hence xu /∈ FV(et(M∞)). But then by construction we
have applied (→nc)+ to obtain λuM∞. Hence λuM extends λuM∞. If
λuM does not derive a non-computational implication, the claim follows
immediately.

Case (→nc)−. Consider a proof pattern

Φ,Γ

| U
A→nc B

Γ,Ψ

| V
A

(→nc)−

B

We are given an extension Π,∆,Σ ⇒ D of Φ,Γ,Ψ ⇒ B. Then we proceed
in alternating steps, applying the induction hypothesis to U and V .

(1) The induction hypothesis for U for the extension Π,∆⇒ A→nc D of

its sequent gives a decoration M1 of U whose sequent Π1,∆1 ⇒ C1 →c/nc D1

extends Π,∆ ⇒ A →nc D, where →c/nc means → or →nc. This already
suffices if A is n.c., since then the extension ∆1,Σ ⇒ C1 of V is a correct
proof (recall that in n.c. parts of a proof decorations of implications and
universal quantifiers can be ignored). If A is c.r.:

(2) The induction hypothesis for V for the extension ∆1,Σ⇒ C1 of its
sequent gives a decoration N2 of V whose sequent ∆2,Σ2 ⇒ C2 extends
∆1,Σ⇒ C1.

(3) The induction hypothesis for U for the extension Π1,∆2 ⇒ C2 →c/nc

D1 of its sequent gives a decoration M3 of U whose sequent Π3,∆3 ⇒
C3 →c/nc D3 extends Π1,∆2 ⇒ C2 →c/nc D1.

(4) The induction hypothesis for V for the extension ∆3,Σ2 ⇒ C3 of
its sequent gives a decoration N4 of V whose sequent ∆4,Σ4 ⇒ C4 extends
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∆3,Σ2 ⇒ C3. This process is repeated until no further proper extension
of ∆i, Ci is returned. Such a situation will always be reached since there is
a maximal extension, where all connectives are maximally decorated. But
then we easily obtain (a): Assume that in (4) we have ∆4 = ∆3 and C4 = C3.
Then the decoration

Π3,∆3

|M3

C3 →c/nc D3

∆4,Σ4

| N4

C4 →−D3

of UV derives a sequent Π3,∆3,Σ4 ⇒ D3 extending Π,∆,Σ⇒ D.
For (b) we need to consider a decoration MN of UV whose sequent

Seq(MN) extends the given extension Π,∆,Σ ⇒ D of Φ,Γ,Ψ ⇒ B. We
must show that MN extends M3N4. To this end we go through the alter-
nating steps again.

(1) Since the sequent Seq(M) extends Π,∆ ⇒ A →nc D, the induction
hypothesis for U for the extension ∆⇒ A→nc D of its sequent ensures that
M extends M1.

(2) Since then the sequent Seq(N) extends ∆1,Σ ⇒ C1, the induction
hypothesis for V for the extension ∆1,Σ ⇒ C1 of its sequent ensures that
N extends N2.

(3) Therefore Seq(M) extends the sequent Π1,∆2 ⇒ C2 →c/nc D1, and

the induction hypothesis for U for the extension Π1,∆2 ⇒ C2 →c/nc D1 of
U ’s sequent ensures that M extends M3.

(4) Therefore Seq(N) extends ∆3,Σ2 ⇒ C3, and induction hypothesis
for V for the extension ∆3,Σ2 ⇒ C3 of V ’s sequent ensures that N also
extends N4.

But since ∆4 = ∆3 and C4 = C3 by assumption, MN extends the
decoration M3N4 of UV constructed above.

Case (∀nc)+. Consider a proof pattern

Γ
| U
A (∀nc)+
∀ncx A

with a given extension ∆⇒ ∀ncx C or ∆⇒ ∀xC of its sequent. Applying the
induction hypothesis for U with sequent ∆ ⇒ C, one obtains a decoration
M∞ of U whose sequent ∆1 ⇒ C1 extends ∆ ⇒ C. Now apply (∀nc)+
in case the given extension is ∆ ⇒ ∀ncx C and x /∈ FV(et(M∞)), and ∀+
otherwise.

For (b) consider a decoration λxM of λxU whose sequent extends the
given extended sequent ∆⇒ ∀ncx C or ∆⇒ ∀xC. Clearly the sequent Seq(M)
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of its premise extends ∆⇒ C. ThenM extendsM∞ by induction hypothesis
for U . If λxM derives a non-computational generalization, then the given
extended sequent must be of the form ∆ ⇒ ∀ncx C and x /∈ FV(et(M)),
hence x /∈ FV(et(M∞)) (by the remark above). But then by construction
we have applied (∀nc)+ to obtain λxM∞. Hence λxM extends λxM∞. If
λxM does not derive a non-computational generalization, the claim follows
immediately.

Case (∀nc)−. Consider a proof pattern

Γ
| U

∀ncx A(x) r
(∀nc)−

A(r)

and let ∆⇒ C(r) be any extension of its sequent Γ⇒ A(r). The induction
hypothesis for U for the extension ∆ ⇒ ∀ncx C(x) produces a decoration
M∞ of U whose sequent extends ∆ ⇒ ∀ncx C(x). Then apply (∀nc)− or ∀−,
whichever is appropriate, to obtain the required M∞r.

For (b) consider a decoration Mr of Ur whose sequent Seq(Mr) extends
the given extension ∆ ⇒ C(r) of Γ ⇒ A(r). Then M extends M∞ by
induction hypothesis for U , and hence Mr extends M∞r. �

We illustrate the effects of decoration on a simple example involving
implications. Consider A → B → A with the trivial proof M := λAu1λ

B
u2u1.

Clearly only the first implication must transport possible computational
content. To “discover” this by means of the decoration algorithm we specify
as extension of Seq(P(M)) the formula A →nc B →nc A. The algorithm
then returns a proof of A→ B →nc A.

6.2. Applications

6.2.1. List reversal: decoration of the weak existence proof.
Recall the weak (or classical) existence proof for list reversal in 5.3.1. We
apply the general method of decorating proofs in this example. First we
present our proof in more detail, particularly by writing proof trees with
formulas. Recall that we essentially use list induction. The full derivation
M is obtained from

Ind v R v
A([])→ ∀x,v2(A(v2)→ A(xv2))→ A(v))

|MB

A([])

∀x,v2(A(v2)→ A(xv2))→ A(v)

|MS

∀x,v2(A(v2)→ A(xv2))

∀v1(v1v = v → ∀w¬∃Rv1w) (= A(v))
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CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w
∃+ R v

∀w¬∃Rvw
∀w¬∃Rv1w →+u1

v1 [] = v → ∀w¬∃Rv1w
∀v1(v1 [] = v → ∀w¬∃Rv1w) (= A([]))

Figure 1. Base derivation MB

[u0 : A(v2)] v1x

(v1x)v2=v → ∀w¬∃R(v1x,w) [u1 : v1(xv2)=v]

∀w¬∃R(v1x,w) xw

¬∃R(v1x, xw)

[u2 : Rv1w]

| N2

R(v1x, xw)

∃wRvw →+u2
¬∃Rv1w
∀w¬∃Rv1w →+u1

v1(xv2) = v → ∀w¬∃Rv1w
∀v1(v1(xv2)=v → ∀w¬∃Rv1w) (=A(xv2)) →+u0

A(v2)→ A(xv2)

∀x,v2(A(v2)→ A(xv2))

Figure 2. Step derivation MS

by applying it to [], Truth, [] and InitR and finally introducing ∀v. Here

Ind: ∀ncv,R∀w(A([])→ ∀x,v2(A(v2)→ A(xv2))→ A(w)),

A(v2) := ∀v1(v1v2 = v → ∀w¬∃Rv1w),

¬∃B := B → ∃wRvw.

The end formula then is ∀v∃wRvw. We have used the base derivation MB

in Figure 1 with N1 involving EqToEqD: ∀v,w(v = w → v =d w), and

CompatRev : ∀ncR,v,v1,v2(v1 =d v2 → ∀w¬∃Rv2w → ∀w¬∃Rv1w)

∃+ : ∀ncR,v∀w¬∃Rvw.

We have also used the step derivation MS in Figure 2 with N2 involving the
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assumption GenR: ∀v,w,x(Rvw → R(vx, xw)).
We now apply the decoration algorithm. Notice that the sequent or our

derivation consists of the context

InitR: R([], []) GenR: ∀v,w,x(Rvw → R(vx, xw))

and the end formula ∀v∃wRvw. Among the axioms used, the only ones in
c.r. parts are list induction, CompatRev and ∃+. If we now form the proof
pattern as defined above, we obtain a clash at the list induction axiom.
Recall that it is given by its uninstantiated formula

∀v(X([])→ ∀x,v2(X(v2)→ X(xv2))→ X(v))

and the predicate substitution X 7→ { v | A(v) }. When forming the proof

pattern, A(v2) is changed into Â(v2) := ∀ncv1(v1v2 = v → ∀ncw ¬∃Rv1w), but
the uninstantiated formula is not touched. The clash then consists in the
fact that the conclusion of the decorated induction axiom

∀ncv,R∀w(Â([])→ ∀x,v2(Â(v2)→ Â(xv2))→ Â(w)),

is a proper extension of what is in the proof pattern:

∀ncv,R,w(Â([])→nc ∀ncx,v2(Â(v2)→nc Â(xv2))→nc Â(w)).

The decoration algorithm now replaces the latter by the former. Similarly
in MB the conclusions of the decorated axioms CompatRev and ∃+

∀ncR,v,v1,v2(v1 =d v2 → ∀ncw ¬∃Rv2w → ∀ncw ¬∃Rv1w)

∀ncR,v∀w(Rvw → ∃wRvw)

are proper extensions of what is in the proof pattern

∀ncR,v,v1,v2(v1 =d v2 → ∀ncw ¬∃Rv2w →nc ∀ncw ¬∃Rv1w)

∀ncR,v,w(Rvw → ∃wRvw)

and the decoration algorithm replaces the latter by the former. But now
the end formula ∀w¬∃Rvw of the ∃+-derivation is a proper extension of the
premise of the conclusion ∀ncw ¬∃Rv2w → ∀ncw ¬∃Rv1w) of the CompatRev-
derivation. This requires us to go back into the CompatRev-derivation and
change the predicate substitution X 7→ { v | Â(v) } to X 7→ { v | A′(v) }
with A′(v2) := ∀ncv1(v1v2 = v → ∀w¬∃Rv1w). Thus we obtain the derivation
in Figure 3.

But now we have a clash where M ′B is used:

Ind v R v

Â([])→ ∀x,v2(Â(v2)→ Â(xv2))→ Â(v)

|M ′B
A′([])

∀x,v2(Â(v2)→nc Â(xv2))→nc Â(v)
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CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w
∃+ R v

∀w¬∃Rvw
∀w¬∃Rv1w →+u1

v1 [] = v → ∀w¬∃Rv1w
∀ncv1(v1 [] = v → ∀w¬∃Rv1w) (= A′([]))

Figure 3. Base derivation M ′B

Thus we have to go again into the left hand derivation and change the
predicate substitution X 7→ { v | Â(v) } used in the induction axiom into
X 7→ { v | A′(v) }. This gives us ∀x,v2(A′(v2)→ A′(xv2))→ A′(v).

Now the next clash appears where we used MS : we have to change
P(MS) with end formula ∀ncx,v2(Â(v2) →nc Â(xv2)) into a derivation M ′S of
∀x,v2(A′(v2)→ A′(xv2)). But this is easy, since no c.r. axioms are involved:
just change ∀ncx , ∀ncw everywhere into ∀x, ∀w.

Finally we obtain

Ind v R v
A′([])→ ∀x,v2(A′(v2)→ A′(xv2))→ A′(v))

|M ′B
A′([])

∀x,v2(A′(v2)→ A′(xv2))→ A′(v)

|M ′S
∀x,v2(A′(v2)→ A′(xv2))

∀ncv1(v1v = v → ∀w¬∃Rv1w) (= A′(v))

Applying this it to [], Truth, [] and InitR and finally introducing ∀v gives us
a decorated derivation of formula ∀v∃wRvw. The difference is that induction
is now used w.r.t. the formula A′(v2) := ∀ncv1(v1v2 = v → ∀w¬∃Rv1w) with
∀ncv1 rather than ∀v1 .

The extracted term neterm then is

[R,v](Rec list nat=>list nat=>list nat)v([v0]v0)

([x,v0,f,v1]f(x::v1))(Nil nat)

with f a variable for unary functions on lists. To run this algorithm one has
to normalize the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))

The returned value is the reverted list 4::3::2::1:. This time, the under-
lying algorithm defines an auxiliary function g by

g([], w) := w, g(x :: v, w) := g(v, x :: w)
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and gives the result by applying g to the original list and []. In conclusion,
we have obtained (by machine extraction from an automated decoration of
a weak existence proof) the standard linear algorithm for list reversal, with
its use of an accumulator.

6.2.2. Fibonacci numbers. An application of decoration occurs when
one derives double induction

∀n(Qn→ Q(Sn)→ Q(S(Sn)))→ ∀n(Q0→ Q1→ Qn)

in continuation passing style, i.e., not directly, but using as an intermediate
assertion (proved by induction)

∀n,m((Qn→ Q(Sn)→ Q(n+m))→ Q0→ Q1→ Q(n+m)).

After decoration, the formula becomes

∀n∀ncm ((Qn→ Q(Sn)→ Q(n+m))→ Q0→ Q1→ Q(n+m)).

This can be applied to obtain a continuation based tail recursive defi-
nition of the Fibonacci function, from a proof of its totality. Let G be the
(n.c.) graph of the Fibonacci function, defined by the clauses

G(0, 0), G(1, 1),

∀n,v,w(G(n, v)→ G(Sn,w)→ G(S(Sn), v + w)).

From these assumptions one can easily derive

∀n∃vG(n, v),

using double induction (proved in continuation passing style). The term
extracted from this proof is

[n](Rec nat=>nat=>(nat=>nat=>nat)=>nat=>nat=>nat)n([n0,k]k)

([n0,p,n1,k]p(Succ n1)([n2,n3]k n3(n2+n3)))

applied to 0, ([n0,n1]n0), 0 and 1.
An unclean aspect of this term is that the recursion operator has value

type
nat=>(nat=>nat=>nat)=>nat=>nat=>nat

rather than (nat=>nat=>nat)=>nat=>nat=>nat, which would correspond to
an iteration. However, we can repair this by decoration. After (automatic)
decoration of the proof, the extracted term becomes

[n](Rec nat=>(nat=>nat=>nat)=>nat=>nat=>nat)n([k]k)

([n0,p,k]p([n1,n2]k n2(n1+n2)))

applied to ([n0,n1]n0), 0 and 1 (k, p are variables of type nat=>nat=>nat

and (nat=>nat=>nat)=>nat=>nat=>nat, respectively.) This is iteration in
continuation passing style: the functional F recursively defined by

F (0, k) := k
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F (n+ 1, k) := F (n, λn,n′(k(n′, n+ n′)))

is applied to n, the left projection λn0,n1n0 and 0, 1.

6.2.3. Proof transformations. In the next two examples we allow
the decoration algorithm to substitute an auxiliary lemma used in the proof
by a lemma that we specify explicitly. The algorithm will verify if the lemma
passed to it as an argument is fitting and if this is the case, it will replace
the lemma used in the original proof by the specified one. If not, the initial
lemma is kept. This will allow for a certain control over the computational
content, as shown by the following examples.

6.2.3.1. Avoiding factorization. Our first example is an elaboration of
Constable’s idea described in the introduction. Let Pn mean “n is prime”.
Consider

∀n(Pn ∨r ∃dm,k>1(n = mk)) factorization,

∀n(Pn ∨u ∃dm,k>1(n = mk)) prime number test.

Euler’s ϕ-function has the properties{
ϕ(n) = n− 1 if Pn,

ϕ(n) < n− 1 if n is composed.

Suppose that somewhat foolishly we have used factorization and these prop-
erties to obtain a proof of

∀n(ϕ(n) = n− 1 ∨u ϕ(n) < n− 1).

Our goal is to get rid of the expensive factorization algorithm in the com-
putational content, via decoration.

The decoration algorithm arrives at the factorization theorem

∀n(Pn ∨r ∃dm,k>1(n = mk))

with the decorated formula

∀n(Pn ∨u ∃dm,k>1(n = mk)).

Since the prime number test can be considered instead of the factorization
lemma, we can specify that the decoration algorithm should try to replace
the former by the latter. In case this is possible, a new proof is constructed,
using the the prime number test lemma. Should this fail, the factorization
lemma is kept. As it turns out in this case, the replacement is possible.

In the Minlog implementation the difference is clearly visible. cFact

denotes the computational content of the factorization lemma Fact (i.e.,
the factorization algorithm), and cPTest the computational content of the
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lemma PTest expressing the prime number test. The extract from the orig-
inal proof involves computing (cFact n), i.e., factorizing the argument,
whereas after decoration the prime number test cPTest suffices.

(define eterm (proof-to-extracted-term nproof))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

;; [n][if (cFact n) True ([algC]False)]

(define decnproof (fully-decorate nproof "Fact" "PTest"))

(pp (nt (proof-to-extracted-term decnproof)))

;; cPTest

6.2.3.2. Maximal scoring segment. The second example is due to Bates
and Constable (1985), and deals with the “maximal scoring segment” (MSS)
problem. Let X be a set with a linear ordering ≤, and consider an infinite
sequence f : N → X of elements of X. Assume further that we have a
function M : (N → X) → N → N → X such that M(f, i, k) “measures”
the segment f(i), . . . , f(k). The task is to find a segment determined by
i ≤ k ≤ n such that its measure is maximal. To simplify the formalization
let us consider M and f fixed and define seg(i, k) := M(f, i, k).

Such a problem appears e.g. in computational biology, when one wants
to compute regions with high G,C content in DNA. Let

X := {G,C,A, T},
g : N→ X (gene),

f : N→ Z, f(i) :=

{
1 if g(i) ∈ {G,C},
−1 if g(i) ∈ {A, T},

seg(i, k) = f(i) + · · ·+ f(k).

Of course we can simply solve this problem by trying all possibilities;
these are O(n2) many. The first proof to be given below corresponds to
this general claim. Then we will show that for a more concrete problem
with the sum xi + · · · + xk as measure the proof can be simplified, using
monotonicity of the sum at an appropriate place. From this simplified proof
one can extract a better algorithm, which is linear rather than quadratic.
Our goal is to achieve this effect by decoration.

Let us be more concrete. The original specification is to find a maximal
segment xi, . . . , xk, i.e.,

∀n∃di≤k≤n∀i′≤k′≤n(seg(i′, k′) ≤ seg(i, k)).

A special case is to find the maximal end segment

∀n∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n)).
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We provide two lemmata proving the existence of a maximal end segment
for n+ 1. The first one is

L : ∀n∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

Its proof introduces an auxiliary variable m and proceeds by induction on
m, with n a parameter:

∀ncn ∀m≤n+1∃lj≤n+1∀j′≤m(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

The second one is

LMon : ∀ncn (ESn → Mon→ ∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1))).

It has as additional assumptions the existence ESn of a maximal end segment
for n

ESn : ∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n))

and the assumption Mon of monotonicity of seg

Mon : seg(i, k) ≤ seg(j, k)→ seg(i, k + 1) ≤ seg(j, k + 1).

The proof proceeds by cases on seg(j, n+ 1) ≤ seg(n+ 1, n+ 1). If ≤ holds,
take n+ 1, else the previous j.

We now prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

MaxSegMon : ∀n(∃di≤k≤n∀i′≤k′≤n(seg(i′, k′) ≤ seg(i, k)) ∧d

∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n)))

In the step, we compare the maximal segment i, k for n with the maximal
end segment j, n+ 1 provided separately. If ≤ holds, take the new i, k to be
j, n+ 1. Else take the old i, k.

Depending on how the existence of a maximal end segment was proved,
we obtain a quadratic or a linear algorithm. If we consider the first proof
involving induction on the auxiliary variable m, we obtain a quadratic algo-
rithm as follows.

(define eterm (proof-to-extracted-term

(theorem-name-to-proof "MaxSegMon")))

(add-var-name "ijk" (py "nat@@nat@@nat"))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

The result is

[le,seg,n](Rec nat=>nat@@nat@@nat)n(0@0@0)

([n0,ijk]

[if (le(seg left ijk right right ijk)

(seg((cL alpha)le seg n0(Succ n0))(Succ n0)))

((cL alpha)le seg n0(Succ n0))
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(left ijk)]@

(cL alpha)le seg n0(Succ n0)@

[if (le(seg left ijk right right ijk)

(seg((cL alpha)le seg n0(Succ n0))(Succ n0)))

(Succ n0)

(right right ijk)])

The computational content of L involves as additional recursion, since L was
proved by induction on m.

(pp (rename-variables (nt

(proof-to-extracted-term (theorem-name-to-proof "L")))))

[le,seg,n,n0](Rec nat=>nat)n0 0

([n1,n2][if (le(seg n2(Succ n))(seg(Succ n1)(Succ n)))

(Succ n1)

n2])

The two nested recursions give a quadratic algorithm.
Now how could the better proof be found by decoration? We have

L : ∀n∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)),

LMon : ∀ncn (ESn → Mon→ ∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1))).

The decoration algorithm arrives at L with

∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

LMon fits as well, its assumptions ESn and Mon are in the context, and it has
the less extended ∀ncn rather than ∀n, hence is preferred.

In Minlog we can do the decoration by executing

(define decproof

(decorate (theorem-name-to-proof "MaxSegMon") "L" "LMon"))

(define eterm (proof-to-extracted-term decproof))

(pp (rename-variables (nt eterm)))

[le,seg,n](Rec nat=>nat@@nat@@nat)n(0@0@0)

([n0,ijk]

[if (le(seg left ijk right right ijk)

(seg((cLMon alpha)le seg n0 left right ijk)

(Succ n0)))

((cLMon alpha)le seg n0 left right ijk)

(left ijk)]@

(cLMon alpha)le seg n0 left right ijk@

[if (le(seg left ijk right right ijk)

(seg((cLMon alpha)le seg n0 left right ijk)
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(Succ n0)))

(Succ n0)

(right right ijk)])

The computational content cLMon of LMon is

(pp (rename-variables

(nt (proof-to-extracted-term

(theorem-name-to-proof "LMon")))))

[le,seg,n,n0][if (le(seg n0(Succ n))(seg(Succ n)(Succ n)))

(Succ n)

n0]

which does not involve recursion any more. Hence after decoration we have
a linear algorithm.



APPENDIX A

Denotational semantics: proofs

We show that every closed term M has a computable functional [[M ]] as
its denotation.

A.1. Unification

We show that for any two constructor terms one can decide whether
there exists a unifier, and if so, compute a most general one. A solution of
this problem has been given by Robinson (1965). In the formulation of the
algorithm below we follow Martelli and Montanari (1982).

By a constructor term P,Q (term for short) we mean a term built from
variables x, y, z and constructors C by application. A substitution is a finite
set ϑ = {P1/x1, . . . , Pn/xn} of pairs of variables and terms, such that xi 6= xj
for i 6= j, and Pi 6= xi for all i. An element Pi/xi of ϑ is called a binding
(of xi to Pi). By Pϑ we denote the result of simultaneously replacing each
variable xi in P by Pi, and call Pϑ the instance of P induced by ϑ. We
shall use ϑ, η, ζ for substitutions. Let ε be the empty substitution. For given
substitutions

ϑ = {P1/x1, . . . , Pn/xn}
η = {Q1/y1, . . . , Qm/ym},

the composition ϑη of ϑ and η is the substitution obtained by deleting in
the set

{P1η/x1, . . . , Pnη/xn, Q1/y1, . . . , Qm/ym}
all bindings Piη/xi such that Piη = xi, and also all bindings Qj/yj such that
yj ∈ {x1, . . . , xn}. A substitution ϑ is idempotent if ϑϑ = ϑ. A substitution
ϑ is called more general than η (written η ≤ ϑ), if there is a substitution ζ
such that η = ϑζ. ϑ and η are equivalent, if ϑ ≤ η ≤ ϑ.

It is easy to see that (Pϑ)η = P (ϑη), and that composition is associative.
We now come to the unification problem. By this we mean the question

whether for two given terms P,Q there is a substitution ϑ “unifying” the
two terms, i.e., with the property Pϑ = Qϑ.

Let E denote finite equation systems, i.e., multisets

{P1 = Q1, . . . , Pn = Qn}
97
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of equations between terms (more precisely pairs of terms). Consider {⊥} as
a (contradictory) equation system. A substitution ϑ unifies E, if for every
equation P = Q in E we have Pϑ = Qϑ; no ϑ unifies {⊥}. ϑ is a most
general unifier (mgu) of E, if ϑ is a unifier of E and η ≤ ϑ for every unifier
η of E.

The following characterization of idempotent mgus will be useful in the
proof of the Unification Theorem below.

Lemma (Characterization of idempotent mgu’s). Let ϑ be a unifier of
E. Then ϑ is an idempotent mgu of E iff η = ϑη for all unifiers η of E.

Proof. Assume that ϑ is a unifier of E.
→. Let ϑ be an idempotent mgu of E, and assume that η is a unifier of

E. Since ϑ is a mgu of E, we have η = ϑζ for some substitution ζ. Hence
η = ϑζ = ϑϑζ = ϑη.
←. Assume that η = ϑη for all unifiers η of E. Now let η be a unifier

of E. Then η ≤ ϑ; therefore ϑ is a mgu. Since ϑ is a unifier, by assumption
we have ϑ = ϑϑ. �

Definition (Unification algorithm). E 7→ϑ E
′ is defined by

(a) {P = x} ∪ E 7→ε {x = P} ∪ E, if P is not a variable.
(b) {x = x} ∪ E 7→ε E.
(c) {CP1 . . . Pn = CQ1 . . . Qn} ∪ E 7→ε {P1 = Q1, . . . Pn = Qn} ∪ E.
(d) {CP1 . . . Pn = C′Q1 . . . Qn} ∪ E 7→ε {⊥} if C 6= C′.
(e) {x = P, P1(x) = Q1(x), . . . , Pn(x) = Qn(x)} 7→{P/x}
{P1(P ) = Q1(P ), . . . Pn(P ) = Qn(P )} if x /∈ FV(P ).

(f) {x = P} ∪ E 7→ε {⊥}, if x ∈ FV(P ) and P 6= x.

Proposition. Assume E 7→ϑ E
′.

(a) If η′ is a unifier of E′, then ϑη′ is a unifier of E.
(b) If η is a unifier of E, then η = ϑη and η is a unifier of E′.

Proof. By cases according to the definition of E 7→ϑ E′. Clearly it
suffices to treat case (e).

Let η′ be a unifier of E′. Then {P/x}η′ is a unifier of E.
Let η be a unifier of E. Then xη = Pη, hence η = {P/x}η (since both

substitutions coincide on all variables), and moreover

Pi{P/x}η = Piη = Qiη = Qi{P/x}η.
Hence η is a unifier of E′. �

Corollary. Assume

E1 7→ϑ1 E2 7→ϑ2 . . . En 7→ϑn En+1.

(a) If ϑ is a unifier of En+1, then ϑ1 . . . ϑnϑ is a unifier of E1.
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(b) If η is a unifier of E1, then η = ϑ1 . . . ϑnη and η is a unifier of En+1.

Proof. The first part clearly follows from the first part of the Propo-
sition. The second part is proved by induction on n. For n = 0 there is
nothing to show. In the step we split the assumption into

E1 7→ϑ1 E2 and E2 7→ϑ2 . . . En 7→ϑn En+1.

By the second part of the Proposition we have that η = ϑ1η is a unifier of
E2. Hence by IH η = ϑ2 · · ·ϑnη is a unifier of En+1. Moreover we have
η = ϑ1η = ϑ1ϑ2 . . . ϑnη. �

Unification Theorem. Let E be a finite equation system. Then every
sequence

E = E1 7→ϑ1 E2 7→ϑ2 . . .

terminates with En+1 = ∅ or En+1 = {⊥}. In the first case E is unifi-
able, and ϑ1 . . . ϑn is an idempotent mgu of E. In the second case E is not
unifiable.

Proof. We first show termination using the lexicographic ordering of
N3. To every E = {P1 = Q1, . . . , Pn = Qn} assign a triple (n1, n2, n3) ∈ N3

by

n1 := number of variables in E,

n2 := number of occurrences of variables and constructors in E,

n3 := number of equations P = x in E such that P is not a variable.

In every step E 7→ϑ E
′ the assigned triple decreases w.r.t. the lexicographic

ordering of N3. This can be verified easily by considering the different cases:
For (a), n1, n2 remain unchanged, and n3 decreases. For (b), (c), (d) and
(f), n2 decreases, and n1 does not increase. For (e), n1 decreases. Hence our
given sequence E1 7→ϑ1 E2 7→ϑ2 . . . terminates with En 7→ϑn En+1. Then it
is easy to see that either En+1 = ∅ or En+1 = {⊥}.

Case En+1 = ∅. By the Corollary ϑ1 . . . ϑn is a unifier of E, and by the
Proposition we have η = ϑ1 . . . ϑnη for every unifier η of E. Hence by the
characterization of idempotent mgu’s ϑ1 . . . ϑn is an idempotent mgu of E.

Case En+1 = {⊥}. Then by the proposition E is not unifiable. �

A.2. Ideals as denotations of terms

Recall the definition of the relation (~U, a) ∈ [[λ~xM ]] in Section 2.3

The height of a derivation of (~U, a) ∈ [[λ~xM ]] is defined as usual, by
adding 1 at each rule. We define its D-height similarly, where only rules
(D) count.
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We begin with some simple consequences of this definition. The following
transformations preserve D-height:

~V ` ~U → (~U, a) ∈ [[λ~xM ]]→ (~V , a) ∈ [[λ~xM ]],(38)

(~U, V, a) ∈ [[λ~x,yM ]]↔ (~U, a) ∈ [[λ~xM ]] if y /∈ FV(M),(39)

(~U, V, a) ∈ [[λ~x,y(My)]]↔ (~U, V, a) ∈ [[λ~xM ]] if y /∈ FV(M),(40)

(~U, ~V , a) ∈ [[λ~x,~y (M(~P (~y )))]]↔ (~U, ~P (~V ), a) ∈ [[λ~x,~z (M(~z ))]].(41)

Proof. (36) and (37) are both proved by easy inductions on the respec-
tive derivations.

(38). Assume (~U, V, a) ∈ [[λ~x,y(My)]]. By (A) we then have W such

that (~U, V,W ) ⊆ [[λ~x,yy]] (i.e., V `W ) and (~U, V,W, a) ∈ [[λ~x,yM ]]. By (36)

from the latter we obtain (~U, V, V, a) ∈ [[λ~x,yM ]]. Now since y /∈ FV(M),

(37) yields (~U, V, a) ∈ [[λ~xM ]], as required. Conversely, assume (~U, V, a) ∈
[[λ~xM ]]. Since y /∈ FV(M), (37) yields (~U, V, V, a) ∈ [[λ~xM ]]. Clearly we

have (~U, V, V ) ⊆ [[λ~x,yy]]. Hence by (A) (~U, V, a) ∈ [[λ~x,y(My)]], as required.
Notice that the D-height did not change in these transformations.

(39). By induction on ~P , with a side induction on M . We distinguish
cases on M . The cases xi, C and D are follow immediately from (37). In
case MN the following are equivalent by induction hypothesis:

(~U, ~V , a) ∈ [[λ~x,~y ((MN)(~P (~y )))]]

∃W ((~U, ~V ,W ) ⊆ [[λ~x,~y (N(~P (~y )))]] ∧ (~U, ~V ,W, a) ∈ [[λ~x,~y (M(~P (~y )))]])

∃W ((~U, ~P (~V ),W ) ⊆ [[λ~x,~y (N(~z ))]] ∧ (~U, ~P (~V ),W, a) ∈ [[λ~x,~y (M(~z ))]])

(~U, ~P (~V ), a) ∈ [[λ~x,~y ((MN)(~z ))]].

The final case is where M is zi. Then we have to show

(~U, ~V , a) ∈ [[λ~x,~y(P (~y ))]]↔ P (~V ) ` a.

We distinguish cases on P (~y ). If P (~y ) is yj , then both sides are equivalent

to Vj ` a. In case P (~y ) is (C ~Q)(~y ) the following are equivalent, using the

induction hypothesis for ~Q(~y )

(~U, ~V , a) ∈ [[λ~x,~y((C ~Q)(~y ))]]

(~U, ~V , a) ∈ [[λ~x,~y(C ~Q(~y ))]]

(~U, ~Q(~V ), a) ∈ [[λ~x,~u(C~u )]]

(~U, ~Q(~V ), a) ∈ [[λ~xC]] by (38)

∃ ~a∗(a = C ~a∗ ∧ ~Q(~V ) ` ~a∗)
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C ~Q(~V ) ` a. �

Let∼ denote the equivalence relation on formal neighborhoods generated
by entailment, i.e., U ∼ V means (U ` V ) ∧ (V ` U).

(42) If ~U ` ~P (~V ), then there are ~W such that ~U ∼ ~P ( ~W ) and ~W ` ~V .

Proof. By induction on ~P . The cases x and 〈〉 are clear, and in case
~P ,Q we can apply the induction hypothesis. It remains to treat the case

C~P (~x ). Since U ` C~P (~V ) there is a ~b∗0 such that C~b∗0 ∈ U . Let

Ui := { a | ∃ ~a∗(C ~a∗ ∈ U ∧ a = a∗i ) }.

For the constructor pattern C~x consider C~U . By definition

C~U = {C ~a∗ | a∗i ∈ Ui if Ui 6= ∅, and a∗i = ∗ otherwise }.

We first show U ∼ C~U . Assume C ~a∗ ∈ C~U . For each i, if Ui 6= ∅, then there

is an ~a∗i such that C ~a∗i ∈ U and a∗ii = a∗i , and if Ui = ∅ then a∗i = ∗. Hence

U ⊇ {C ~a∗i | Ui 6= ∅ } ∪ {C~b∗0} ` C ~a∗.

Conversely assume C ~a∗ ∈ U . We define C~b∗ ∈ C~U by b∗i = a∗i if a∗i 6= ∗,
b∗i = ∗ if Ui = ∅, and otherwise (i.e., if a∗i = ∗ and Ui 6= ∅) take an arbitrary

b∗i ∈ Ui. Clearly {C~b∗} ` C ~a∗.

By definition ~U ` ~P (~V ). Hence by induction hypothesis there are ~W

such that ~U ∼ ~P ( ~W ) and ~W ` ~V . Therefore U ∼ C~U ∼ C~P ( ~W ). �

Lemma (Unification). If ~P1(~V1) ∼ · · · ∼ ~Pn(~Vn), then ~P1, . . . , ~Pn are

unifiable with a most general unifier ϑ and there exists ~W such that

(~P1ϑ)( ~W ) = · · · = (~Pnϑ)( ~W ) ∼ ~P1(~V1) ∼ · · · ∼ ~Pn(~Vn).

Proof. Assume ~P1(~V1) ∼ · · · ∼ ~Pn(~Vn). Then ~P1(~V1), . . . , ~Pn(~Vn)

are componentwise consistent and hence ~P1, . . . , ~Pn are unifiable with a

most general unifier ϑ. We now proceed by induction on ~P1, . . . , ~Pn. If
they are either all empty or all variables the claim is trivial. In the case

(~P1, P1), . . . , (~Pn, Pn) it follows from the linearity condition on variables that

a most general unifier of (~P1, P1), . . . , (~Pn, Pn) is the union of most general

unifiers of ~P1, . . . , ~Pn and of P1, . . . , Pn. Hence the induction hypothesis ap-

plies. In the case C~P1, . . . ,C~Pn the assumption C~P1(~V1) ∼ · · · ∼ C~Pn(~Vn)

implies ~P1(~V1) ∼ · · · ∼ ~Pn(~Vn) and hence again the induction hypothesis
applies. The remaining case is when some are variables and the other ones

of the form C~Pi, say x,C~P2, . . . ,C~Pn. By assumption

V1 ∼ C~P2(~V2) ∼ · · · ∼ C~Pn(~Vn).
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By induction hypothesis we obtain the required ~W such that

(~P2ϑ)( ~W ) = · · · = (~Pnϑ)( ~W ) ∼ ~P2(~V2) ∼ · · · ∼ ~Pn(~Vn). �

We need a final preparation before we can tackle consistency of [[λ~xM ]].
The information systems Cρ enjoy the pleasant property of coherence, which
amounts to the possibility to locate inconsistencies in two-element sets of
data objects. Generally, an information system A = (A,Con,`) is coherent
if it satisfies: U ⊆ A is consistent if and only if all of its two-element subsets
are.

Lemma. Let A and B be information systems. If B is coherent, then
so is A→ B.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B) be information
systems, and consider {(U1, b1), . . . , (Un, bn)} ⊆ ConA ×B. Assume

∀1≤i<j≤n({(Ui, bi), (Uj , bj)} ∈ Con).

We have to show {(U1, b1), . . . , (Un, bn)} ∈ Con. Let I ⊆ {1, . . . , n} and⋃
i∈I Ui ∈ ConA. We must show { bi | i ∈ I } ∈ ConB. Now since B

is coherent by assumption, it suffices to show that {bi, bj} ∈ ConB for all
i, j ∈ I. So let i, j ∈ I. By assumption we have Ui ∪ Uj ∈ ConA, and hence
{bi, bj} ∈ ConB. �

By a similar argument we can prove

Lemma (Coherence). The information systems Cρ are all coherent.

Proof. By induction of the height |U | of consistent finite sets of tokens
in Cρ, as defined in parts (c) and (d) of the definition in 2.1.5. �

Lemma (Consistency). [[λ~xM ]] is consistent.

Proof. Let (~Ui, ai) ∈ [[λ~xM ]] for i = 1, 2. By coherence it suffices

to prove that (~U1, a1) and (~U2, a2) are consistent. We shall prove this by
induction on the maximum of the D-heights and a side induction on the
maximum of the heights.

Case (V). Let (~U1, a1), (~U2, a2) ∈ [[λ~xxi]], and assume that ~U1 and ~U2 are
componentwise consistent. Then U1i ` a1 and U2i ` a2. Since U1i ∪ U2i is
consistent, a1 and a2 must be consistent as well.

Case (C). For i = 1, 2 we have

~Vi ` ~a∗i
(~Ui, ~Vi,C ~a∗i ) ∈ [[λ~xC]]

.

Assume ~U1, ~V1 and ~U2, ~V2 are componentwise consistent. The consistency of

C ~a∗1 and C ~a∗2 follows from ~Vi ` ~a∗i and the consistency of ~V1 and ~V2.
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Case (A). For i = 1, 2 we have

(~Ui, Vi, ai) ∈ [[λ~xM ]] (~Ui, Vi) ⊆ [[λ~xN ]]

(~Ui, ai) ∈ [[λ~x(MN)]]
.

Assume ~U1 and ~U2 are componentwise consistent. By the side induction
hypothesis for the right premises V1 ∪ V2 is consistent. Hence by the side
induction hypothesis for the left hand sides a1 and a2 are consistent.

Case (D). For i = 1, 2 we have

(~Ui, ~Vi, ai) ∈ [[λ~x,~yiMi(~yi)]] ~Wi ` ~Pi(~Vi)
(~Ui, ~Wi, ai) ∈ [[λ~xD]]

(D)

for computation rules D~Pi(~yi) = Mi(~yi). Assume ~U1, ~W1 and ~U2, ~W2 are
componentwise consistent; we must show that a1 and a2 are consistent.

Since ~W1 ∪ ~W2 ` ~Pi(~Vi) for i = 1, 2, by (40) there are ~V ′1 ,
~V ′2 such that

~V ′i ` ~Vi and ~W1 ∪ ~W2 ∼ ~Pi(~V
′
i ). Then by the unification lemma there are ~W

such that (~P1ϑ)( ~W ) = (~P2ϑ)( ~W ) ∼ ~Pi(~V
′
i ) ` ~Pi(~Vi) for i = 1, 2, where ϑ is

the most general unifier of ~P1 and ~P2. But then also

(~yiϑ)( ~W ) ` ~Vi,

and hence by (36) we have

(~Ui, (~yiϑ)( ~W ), ai) ∈ [[λ~x,~yiMi(~yi)]]

with lesser D-height. Now (39) gives

(~Ui, ~W, ai) ∈ [[λ~x,~zMi(~yi)ϑ]]

without increasing the D-height. Notice that M1(~yi)ϑ = M2(~yi)ϑ by our
condition on computation rules. Hence the induction hypothesis applied to

(~U1, ~W, a1), (~U2, ~W, a2) ∈ [[λ~x,~zM1(~y1)ϑ]] implies the consistency of a1 and
a2, as required. �

Lemma (Deductive closure). [[λ~xM ]] is deductively closed, i.e., if W ⊆
[[λ~xM ]] and W ` (~V , b), then (~V , b) ∈ [[λ~xM ]].

Proof. By induction on the maximum of the D-heights and a side
induction on the maximum of the heights of W ⊆ [[λ~xM ]]. We distinguish
cases on the last rule of these derivations (which is determined by M).

Case (V). For all (~U, a) ∈W we have

Ui ` a
(~U, a) ∈ [[λ~xxi]]

.
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We must show Vi ` b. By assumption W ` (~V , b), hence W~V ` b. It suffices

to prove Vi ` W~V . Let c ∈ W~V ; we show Vi ` c. There are ~U such that
~V ` ~U and (~U, c) ∈W . But then by the above Ui ` c, hence Vi ` Ui ` c.

Case (A). Let W = {(~U1, a1), . . . , (~Un, an)}. For each (~Ui, ai) ∈W there
is Ui such that

(~Ui, Ui, ai) ∈ [[λ~xM ]] (~Ui, Ui) ⊆ [[λ~xN ]]

(~Ui, ai) ∈ [[λ~x(MN)]]
.

Define U :=
⋃
{Ui | ~V ` ~Ui }. We first show that U is consistent. Let

a, b ∈ U . There are i, j such that a ∈ Ui, b ∈ Uj and ~V ` ~Ui, ~Uj . Then ~Ui
and ~Uj are consistent; hence by the consistency of [[λ~xN ]] proved above a
and b are consistent as well.

Next we show (~V , U) ⊆ [[λ~xN ]]. Let a ∈ U ; we show (~V , a) ∈ [[λ~xN ]]. Fix

i such that a ∈ Ui and ~V ` Ui, and let Wi := { (~Ui, b) | b ∈ Ui } ⊆ [[λ~xN ]].
Since by the side induction hypothesis [[λ~xN ]] is deductively closed it suffices

to prove Wi ` (~V , a), i.e., { b | b ∈ Ui ∧ ~V ` ~Ui } ` a. But the latter set
equals Ui, and a ∈ Ui.

Finally we show (~V , U, b) ⊆ [[λ~xM ]]. Let

W ′ := {(~U1, U1, a1), . . . , (~Un, Un, an)} ⊆ [[λ~xM ]].

By side induction hypothesis it suffices to prove that W ′ ` (~V , U, b), i.e.,

{ ai | ~V ` ~Ui ∧ U ` Ui } ` b. But by definition of U the latter set equals

{ ai | ~V ` ~Ui }, which in turn entails b because by assumption W ` (~V , b).

Now we can use (A) to infer (~V , b) ∈ [[λ~xM ]], as required.

Case (C). Assume W ⊆ [[λ~xC]]. Then W consists of (~U, ~U ′,C ~a∗) such

that ~U ′ ` ~a∗. Assume further W ` (~V , ~V ′, b). Then

{C ~a∗ | ∃~U,~U ′((~U, ~U
′,C ~a∗) ∈W ∧ ~V ` ~U ∧ ~V ′ ` ~U ′) } ` b.

By definition of entailment b has the form C~b∗ such that

Wi := { a | ∃~U,~U ′, ~a∗(a = a∗i ∧ (~U, ~U ′,C ~a∗) ∈W ∧ ~V ` ~U ∧ ~V ′ ` ~U ′) } ` b∗i .

We must show (~V , ~V ′,C~b∗) ∈ [[λ~xC]], i.e., ~V ′ ` ~b∗. It suffices to show V ′i `
Wi, for every i. Let a ∈ Wi. Then there are ~U, ~U ′, ~a∗ such that a = a∗i ,

(~U, ~U ′,C ~a∗) ∈W and ~V ′ ` ~U ′. Hence V ′i ` U ′i ` a∗i = a.

Case (D). Let W = {(~U1, ~U
′′
1 , a1), . . . , (

~Un, ~U
′′
n , an)}. For every i there is

an ~U ′i such that

(~Ui, ~U
′
i , ai) ∈ [[λ~x,~yiMi(~yi)]] ~U ′′i ` ~Pi(~U ′i)

(~Ui, ~U ′′i , ai) ∈ [[λ~xD]]
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for D~Pi(~yi) = Mi(~yi) a computation rule. Assume W ` (~V , ~V ′′, b). We must

prove (~V , ~V ′′, b) ∈ [[λ~xD]]. Let

I := { i | 1 ≤ i ≤ n ∧ ~V ` ~Ui ∧ ~V ′′ ` ~U ′′i }.

Then { ai | i ∈ I } ` b, hence I 6= ∅. For i ∈ I we have ~V ′′ ` ~U ′′i ` ~Pi(~U
′
i),

hence by (40) there are ~V ′i such that ~V ′′ ∼ ~Pi(~V
′
i ) and ~V ′i ` ~U ′i . In particular

for i, j ∈ I
~V ′′ ∼ ~Pi(~V

′
i ) ∼ ~Pj(~V

′
j ).

To simplify notation assume I = {1, . . . ,m}. Hence by the unification lemma
~P1, . . . , ~Pm are unifiable with a most general unifier ϑ and there exists ~W
such that

(~P1ϑ)( ~W ) = · · · = (~Pmϑ)( ~W ) ∼ ~P1(~V
′
1) ∼ · · · ∼ ~Pm(~V ′m).

Let i, j ∈ I. Then by the conditions on computation rules Miϑ = Mjϑ. Also

(~yiϑ)( ~W ) ` ~V ′i ` ~U ′i . Therefore by (36)

(~V , (~yiϑ)( ~W ), ai) ∈ [[λ~x,~yiMi(~yi)]]

and hence by (39)

(~V , ~W, ai) ∈ [[λ~x,~yiMi(~yiϑ)]].

But Mi(~yiϑ) = Miϑ = M1ϑ = M1(~y1ϑ) and hence for all i ∈ I

(~V , ~W, ai) ∈ [[λ~x,~yiM1(~y1ϑ)]].

Therefore X := { (~V , ~W, ai) | i ∈ I } ⊆ [[λ~x,~yiM1(~y1ϑ)]]. Since { ai | i ∈
I } ` b, we have X ` (~V , ~W, b) and hence the induction hypothesis implies

(~V , ~W, b) ∈ [[λ~x,~yiM1(~y1ϑ)]]. Using (39) again we obtain (~V , (~yiϑ)( ~W ), b) ∈
[[λ~x,~yiM1(~y1)]]. Since ~V ′′ ∼ ~P1(~V

′
1) ∼ ~P1((~y1ϑ)( ~W )) we obtain (~V , ~V ′′, b) ∈

[[λ~xD]], by (D). �

Corollary. [[λ~xM ]] is an ideal.

A.3. Preservation of values

We now prove that our definition above of the denotation of a term
is reasonable in the sense that it is not changed by an application of the
standard (β- and η-) conversions or a computation rule. For the β-conversion
part of this proof it is helpful to first introduce a more standard notation,
which involves variable environments.

Definition. Assume that all free variables in M are among ~x. Let

[[M ]]
~U
~x := { b | (~U, b) ∈ [[λ~xM ]] } and [[M ]]~u,

~V
~x,~y :=

⋃
~U⊆~u[[M ]]

~U,~V
~x,~y .
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From (37) we obtain [[M ]]
~U,V
~x,y = [[M ]]

~U
~x if y /∈ FV(M), and similarly for

ideals ~u, v instead of ~U, V . We have a useful monotonicity property, which
follows from the deductive closure of [[λ~xM ]].

Lemma. (a) If ~V ` ~U , a ` b and a ∈ [[M ]]
~U
~x , then b ∈ [[M ]]

~V
~x .

(b) If ~v ⊇ ~u, a ` b and a ∈ [[M ]]~u~x, then b ∈ [[M ]]~v~x.

Proof. (a) ~V ` ~U , a ` b and (~U, a) ∈ [[λ~xM ]] together imply (~V , b) ∈
[[λ~xM ]], by the deductive closure of [[λ~xM ]]. (b) follows from (a). �

Lemma. (a) [[xi]]
~U
~x = U i and [[xi]]

~u
~x = ui.

(b) [[λyM ]]
~U
~x = { (V, b) | b ∈ [[M ]]

~U,V
~x,y } and [[λyM ]]~u~x = { (V, b) | b ∈ [[M ]]~u,V~x,y }.

(c) [[MN ]]
~U
~x = [[M ]]

~U
~x [[N ]]

~U
~x and [[MN ]]~u~x = [[M ]]~u~x[[N ]]~u~x.

Proof. (b) It suffices to prove the first part. But (V, b) ∈ [[λyM ]]
~U
~x and

b ∈ [[M ]]
~U,V
~x,y are both equivalent to (~U, V, b) ∈ [[λ~x,yM ]].

(c) For the first part we argue as follows.

c ∈ [[M ]]
~U
~x [[N ]]

~U
~x ↔ ∃V⊆[[N ]]

~U
~x

((V, c) ∈ [[M ]]
~U
~x )

↔ ∃V ((~U, V ) ⊆ [[λ~xN ]] ∧ (~U, V, c) ∈ [[λ~xM ]])

↔ (~U, c) ∈ [[λ~x(MN)]] by (A)

↔ c ∈ [[MN ]]
~U
~x .

The second part is an easy consequence:

c ∈ [[M ]]~u~x[[N ]]~u~x ↔ ∃V⊆[[N ]]~u
~x
((V, c) ∈ [[M ]]~u~x)

↔ ∃V⊆[[N ]]~u
~x
∃~U⊆~u((V, c) ∈ [[M ]]

~U
~x )

↔ ∃~U1⊆~u∃V⊆[[N ]]
~U1
~x

∃~U⊆~u((V, c) ∈ [[M ]]
~U
~x )

↔(∗) ∃~U⊆~u∃V⊆[[N ]]
~U
~x

((V, c) ∈ [[M ]]
~U
~x )

↔ ∃~U⊆~u(c ∈ [[M ]]
~U
~x [[N ]]

~U
~x )

↔ ∃~U⊆~u(c ∈ [[MN ]]
~U
~x ) by the first part

↔ c ∈ [[MN ]]~u~x.

Here is the proof of the equivalence marked (∗). The upward direction is

obvious. For the downward direction we use monotonicity. Assume ~U1 ⊆ ~u,

V ⊆ [[N ]]
~U1
~x , ~U ⊆ ~u and (V, c) ∈ [[M ]]

~U
~x . Let ~U2 := ~U1 ∪ ~U ⊆ ~u. Then by

monotonicity V ⊆ [[N ]]
~U2
~x and (V, c) ∈ [[M ]]

~U2
~x . �
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Corollary. [[λyM ]]~u~xv = [[M ]]~u,v~x,y.

Proof.

b ∈ [[λyM ]]~u~xv ↔ ∃V⊆v((V, b) ∈ [[λyM ]]~u~x)

↔ ∃V⊆v(b ∈ [[M ]]~u,V~x,y ) by the lemma, part (b)

↔ b ∈ [[M ]]~u,v~x,y. �

Lemma (Substitution). [[M(z)]]
~u,[[N ]]~u~x
~x,z = [[M(N)]]~u~x.

Proof. By induction on M , and cases on the form of M .
Case λyM . For readability we leave out ~x and ~u.

[[λyM(z)]][[N ]]
z = { (V, b) | b ∈ [[M(z)]][[N ]],V

z,y }
= { (V, b) | b ∈ [[M(N)]]Vy } by induction hypothesis

= [[λyM(N)]] by the last lemma, part (b)

= [[(λyM)(N)]].

The other cases are easy. �

Lemma (Preservation of values, β). [[(λyM(y))N ]]~u~x = [[M(N)]]~u~x.

Proof. Again we leave out ~x, ~u. By the last two lemmata and the

corollary, [[(λyM(y))N ]] = [[λyM(y)]][[N ]] = [[M(y)]]
[[N ]]
y = [[M(N)]]. �

Lemma (Preservation of values, η). [[λy(My)]]~u~x = [[M ]]~u~x if y /∈ FV(M).

Proof.

(V, b) ∈ [[λy(My)]]~u~x ↔ ∃~U⊆~u((~U, V, b) ∈ [[λ~x,y(My)]])

↔ ∃~U⊆~u((~U, V, b) ∈ [[λ~xM ]]) by (38)

↔ (V, b) ∈ [[M ]]~u~x. �
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