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• Geoadditive Regression: Models and Applications
(with Ludwig Fahrmeir & Stefan Lang)

• Regularisation Priors
(with Ludwig Fahrmeir, Susanne Konrath & Fabian Scheipl)

• Model Choice and Variable Selection in Geoadditive Regression Models
(with Torsten Hothorn & Gerhard Tutz)
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Childhood Malnutrition in Zambia

• Data obtained from MEASURE Demographic and Health Surveys (DHS).

• Conducted more than 200 surveys in 75 countries to advance global understanding
of health and population trends in developing countries.

• Nationally representative data on fertility, family planning, maternal and child health,
as well as child survival, HIV/AIDS, malaria, and nutrition.

• In the following: Z-score for chronic undernutrition (insufficient height for age,
stunting) in Zambia:

Zi =
heighti −median height

standard deviation

• Median and standard deviation are obtained from a reference population.
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• The Z-score shall be related to covariates including age of the child, duration of
breastfeeding, age of the mother at birth, body mass index of the mother, etc.

• Descriptive analyses hint at the presence of nonlinear and spatial effects in the data.
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⇒ Usual linear models are not appropriate.
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• Replace the linear model by a geoadditive model

Z = f1(agec, bf ) + f2(agem) + f3(height) + f4(bmi) + fspat(region) + u′γ + ε.

where

– f1(agec, bf ) is an interaction effect between age of the child and duration of
breastfeeding,

– f2, f3, f4 are nonlinear effects of the age, height and body mass index of the
mother,

– fspat is a spatial effect, and

– u′γ is a linear predictor capturing parametric effects (of categorical covariates).
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Model Components and Priors

• Smooth model components: Approximate a function f(x) by a linear combination
of B-spline basis functions

f(x) =
∑

j

βjBj(x)
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• B-spline fit for different numbers of knots:

5 basis functions 10 basis functions

20 basis functions 40 basis functions
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• Unconstrained estimation crucially depends on the number of basis functions.

⇒ Add a regularisation term to the likelihood that enforces smoothness.

• Popular approach: Squared derivative penalty, e.g.

pen(f) = λ

∫
(f ′′(x))2dx

• Easy approximation for B-splines: Difference penalties, e.g.

pen(β) = λ
∑

j

(βj − βj−1)2 = λβ′Kβ

• Smoothing parameter λ governs the impact of the penalty (should be estimated).

• Corresponds to random walk prior in a Bayesian setting:

βj = βj−1 + uj, uj ∼ N(0, τ2).
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• Spatial effects: Estimate a separate parameter βs for each region.

• Estimation becomes unstable if the number of regions is large relative to the sample
size.

⇒ Regularised estimation to enforce spatial smoothness.

• Effects of neighboring regions (common boundary) should be similar.

• Define a penalty term based on differences between neighboring parameters:

pen(β) = λ
∑

s

∑

r∈N(s)

(βs − βr)2

where N(s) denotes the set of neighbors of region s.

• In a stochastic formulation equivalent to a Markov random field prior.
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Bayesian Inference

• Unifying framework:

– All vectors of function evaluations can be written as the product of a design matrix
Xj and a vector of regression coefficients βj, i.e. fj = Xjβj.

– Regularisation penalties are quadratic forms λjβ
′
jKjβj corresponding to Gaussian

priors

p(β|τ2) ∝ exp

(
− 1

2τ2
j

β′jKjβj

)
.

– The variance τ2
j is a transformation of the smoothing parameter λj.

– In many cases, the penalty matrix Kj is rank-deficient.

• The unifying framework allows to devise equally general inferential procedures.
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• Mixed model based empirical Bayes inference:

– Consider the variances / smoothing parameters as unknown constants to be
estimated by mixed model methodology.

– Decompose the vector of regression coefficients into (unpenalised) fixed effects
and (penalised) random effects.

– Penalised likelihood estimation of the regression coefficients in the mixed model
(posterior modes).

– Marginal likelihood estimation of the variance and smoothing parameters (Laplace
approximation).

• Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques:

– Assign inverse gamma priors to the variance / smoothing parameters.

– Metropolis-Hastings update for the regression coefficients (based on iteratively
weighted least squares-proposals).

– Gibbs sampler for the variances (inverse gamma with updated parameters).
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Results
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Bayesian Regularisation Priors

• Regularisation in regression models with a large number of covariates: Enforce sparse
models where most of the regression coefficients are (close to) zero.

• Examples: Gene expression data but also social science and economic applications.

• Most well-known approach: Ridge regression.

• Add a quadratic penalty to the log-likelihood:

lpen(β) = l(β)− λ

p∑

j=1

β2
j → max

β
.

• Ridge regression fits into the framework of geoadditive regression models but does
not induce enough sparsity.
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• LASSO penalty: Replace quadratic penalty with absolute value penalty:

lpen(β) = l(β)− λ

p∑

j=1

|βj| → max
β

.

ridge
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• LASSO imposes more sparsity but the solution is computationally more demanding,
in particular in combination with geoadditive regression terms and for non-Gaussian
models.
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• Ridge and LASSO correspond to prior distributions in a Bayesian interpretation:

Ridge = Gaussian prior

p(βj|λ) ∝ exp
(−λβ2

j

)
LASSO = Laplace prior

p(βj|λ) ∝ exp (−λ|βj|)

• Convenient feature of the Laplace prior: Can be written as a scale mixture of
Gaussians

p(βj|λ) =
∫ ∞

0

p(βj|τ2
j )p(τ2

j |λ)dτ2
j

where

βj|τ2
j ∼ N(0, τ2

j ) and τ2
j |λ ∼ Exp

(
λ2

2

)
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• Bayesian interpretation: Hierarchical prior formulation.
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• Advantage: Estimation based on MCMC recurs to the computationally simpler case
of ridge regression with an additional update step for the variances.

⇒ Update schemes developed in geoadditive regression become available.

• Easily combined with nonparametric or spatial effects.

• Also applicable for non-Gaussian regression models.

• The concept extends to other types of priors that can be written as scale mixture of
normals.
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Model Choice and Variable Selection in Geoadditive Regression

• Bayesian regularisation priors can be seen as an indirect approach to variable selection
for high-dimensional predictors.

• Drawbacks (if model choice and variable selection are of direct interest):

– Coefficients will be close to zero but not equal to zero.

– No model choice for spatial effects, nonparametric components, etc.

• Boosting procedures have proven to be a useful (non-Bayesian) tool for model choice
and variable selection.

• Principal idea of boosting: Repeated fitting of base-learning procedures to updated
negative gradients of a loss function (”residuals”).
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• Componentwise boosting algorithm for geoadditive regression:

– Choose a suitable loss function, e.g. the log-likelihood.

– Define separate base-learners for all model components (possibly even more than
one base-learner).

– Iteratively apply all base-learners in sequence and update only the best-fitting
component.

– Compute updated residuals.

• Boosting implements both variable selection and model choice:

– Variable selection: Stop the boosting procedure after an appropriate number of
iterations (for example based on AIC reduction).

– Model choice: Consider concurring base-learning procedures for the same covariate,
e.g. linear vs. non-linear modeling.
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• Base-learning procedures in geoadditive regression: Penalised least squares fits

Xj(X ′
jXj + λjKj)−1X ′

j.

with fixed smoothing parameters λj

• Crucial point: Make the base-learners comparable in terms of their complexity
(otherwise biased selection results).

• General complexity measures: equivalent degrees of freedom

df(λj) = trace(Xj(X ′
jXj + λjKj)−1X ′

j).

• Choose the smoothing parameters such that

df(λj) = 1.

• Requires reparameterisation for some effects (e.g. penalised splines).
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Habitat Suitability Analyses

• Identify factors influencing habitat suitability for breeding bird communities.

• Variable of interest: Counts of subjects from different species collected at 258
observation plots in a Northern Bavarian forest district.

• Research questions:

a) Which covariates influence habitat suitability (31 covariates in total)? Does spatial
correlation have an impact on variable selection?

b) Are there non-linear effects of some of the covariates?

c) Are effects varying spatially?

• All questions can be addressed with the boosting approach.

• In the following only results on a).
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• Selection frequencies in a spatial Poisson-GLM:

GST DBH AOT AFS DWC LOG SNA COO

non-spatial GLM 0 0 0 0.06 0.3 0 0.01 0

spatial with 5 df 0 0.02 0 0.01 0.05 0 0.01 0

spatial with 1 df 0 0 0 0.06 0.15 0 0 0

COM CRS HRS OAK COT PIO ALA MAT

non-spatial GLM 0.03 0.04 0.03 0.05 0.06 0 0.04 0.06

spatial with 5 df 0 0.01 0 0 0 0 0.01 0.05

spatial with 1 df 0.03 0.02 0.02 0.04 0.05 0 0.03 0.04

GAP AGR ROA LCA SCA HOT CTR RLL

non-spatial GLM 0.03 0 0 0.1 0.07 0 0 0

spatial with 5 df 0.01 0 0.01 0.01 0.01 0 0 0

spatial with 1 df 0.03 0 0 0.07 0.06 0 0 0

BOL MSP MDT MAD COL AGL SUL spatial

non-spatial GLM 0 0.06 0 0 0.05 0 0 0

spatial with 5 df 0 0 0 0 0.03 0 0 0.76

spatial with 1 df 0 0.04 0 0 0.04 0 0 0.3
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• Spatial effects for high and low degrees of freedom:
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• Spatial correlation has non-negligible influence on variable selection.

• Making terms comparable in terms of complexity is essential to obtain valid results.
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Summary

• Geoadditive regression is a useful extension of classical regression models.

• Can be adapted to

– Categorical regression models (Forest health, Brand choice).

– Survival Modelling (Leukemia, Childhood mortality).

• Variable selection and model choice algorithms are under development.

• Accompanying software exists (BayesX, mboost).

• Bayesian approaches provide full inferential details (measures of uncertainty, credible
intervals).

• Boosting algorithms implement model choice and variable selection but provide only
point estimates.
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• Some ongoing projects:

– Measurement error in semiparametric regression models
(with Ciprian Crainiceanu, Johns-Hopkins University Baltimore; Susanne Breitner,
GSF - National Research Center for Environment and Health Munich)

– Interval censored multi-state models
(with Martin Daumer, Sylvia Lawry Centre for Multiple Sclerosis Research; Ludwig
Fahrmeir, LMU Munich)

– Geoadditive Analysis of the Determinants of Gender Bias in Mortality in India
(with Jan Priebe, Georg-August-University Göttingen)

– Flexible Semiparametric Regression for the Analysis of Human Sleep
(with Stefanie Kalus & Alexander Yassouridis, Max-Planck-Institute for Psychiatry,
Munich)

– Semiparametric Discrete Choice Models for the Analysis of Consumer Choice
Behaviour
(with Bernhard Baumgartner, University of Regensburg; Winfried Steiner, Clausthal
University of Technology)
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Boosting Example

• Linear model with quadratic loss function ρ(y, η) = |y − η|2.
– The gradient of the loss function yields the least squares residuals.

– Base-learner: Least-squares fit ĝ.

– In each iteration, update η via

η̂[m] = η̂[m−1] + 0.1ĝ

i.e. multiply the current fit with a reduction factor.
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