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Thomas Kneib Data and Scientific Question

Data and Scientific Question

• Childhood malnutrition is commonly assessed by Z-scores formed from an appropriate
anthropometric indicator AI relative to a reference population:

Zi =
AIi − µ

σ

where µ and σ refer to median and standard deviation in the reference population.

• Chronic undernutrition (stunting) is measured by insufficient height for age.

• Children are classified as stunted based on lower quantiles from reference charts such
as the WHO Child Growth Standards.
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WHO Child Growth Standards
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• We used data from the 2005/06 India Demographic and Health Survey
(http://www.measuredhs.com).

• Nationally representative cross-sectional study on fertility, family planning, maternal
and child health, as well as child survival, HIV/AIDS, and nutrition.

• Information on 37.632 children is available (after excluding observations with missing
information).

• Possible determinants of childhood malnutrition:

Child-specific factors: age, gender, duration of breastfeeding, . . .

Maternal factors: age, body mass index, years of education,
employment status, . . .

Household factors: place of residence, electricity, radio, tv, . . .

(21 risk factors in total).
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• Regression models aim at quantifying the impact of covariates on undernutrition
where the Z-score forms the response.

• Most common approach: Direct regression of the Z-score on covariates

Z = x′β + ε, ε ∼ N(0, σ2).

• Difficulties:

– All effects are assumed to be linear while effects of continuous covariates may be
suspected to be nonlinear.

– The direct regression model explains the expectation of Z, i.e. it focusses on the
average nutritional status.

– Restrictive assumptions on the error terms ε.

⇒ Additive quantile regression models.
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Additive Quantile Regression Models

• Quantile regression aims at describing conditional quantiles in terms of covariates
instead of the mean.

• We will consider 1%, 5% and 50% quantiles corresponding to severe and average
malnutrition.

• Formulation in terms of a loss function:

β̂τ = argmin
βτ

n∑
i=1

ρτ(Zi − x′iβτ)

where

ρτ(u) =

{
u τ u ≥ 0
u(τ − 1) u < 0

and τ denotes the quantile of interest.
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• Equivalent formulation as a regression problem:

Zi = x′iβτ + ετi

where ετi are independent error terms subject to

Fετi(τ) = 0

with the cumulative distribution function Fετi(τ).

• Important:

– No explicit distributional assumption on the errors.

– Errors are not assumed to be identically distributed.

⇒ Quantile regression allows for heteroscedasticity.
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• Additive quantile regression models extend the linear predictor x′iβ with nonlinear
effects of continuous covariates:

Zi = x′iβτ +
q∑
j=1

fτj(zij) + ετi.

• The functions fτj(zj) shall be estimated nonparametrically with only qualitative
assumptions about their smoothness.
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Statistical Inference

• Boosting is a simple but versatile iterative stepwise gradient descent algorithm.

• General aim: Finding the solution to the minimisation problem

η∗ = argmin
η

E[L(Z, η)]

where L is a loss function and η denotes the predictor of a regression model.

• In practice: Estimation of η∗ by minimizing the empirical loss

1
n

n∑
i=1

L(Zi, ηi)
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• Minimisation is achieved by iteratively fitting simple base-learning procedures to
updated residuals

u
[m]
i = − ∂

∂η
L(Zi, η)|η=η̂[m−1]

i

, i = 1, . . . , n

(negative gradient of the loss function).

• Componentwise boosting: Restrict gradient descent to directions induced by the
covariate effects and iteratively move along the steepest descent.

• For quantile regression, the loss function is given by the check function, i.e.

L(Zi, ηi) = ρτ(Zi − ηi)

and

u
[m]
i = −ρ′τ(Zi − η̂

[m−1]
i ) =


τ if Zi − η̂[m−1]

i > 0
0 if Zi − η̂[m−1]

i = 0
τ − 1 if Zi − η̂[m−1]

i < 0.
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• Least squares base-learner for parametric effects βl:

β̂
[m]

l = (X ′lX l)−1X ′lu
[m].

• Penalised spline base-learner for nonparametric effects f j:

f̂
[m]

j = (Z ′jZj + λjKj)−1Z ′ju
[m]

where

– Zj is a design matrix formed from a B-spline basis,

– Kj is a difference penalty that ensures smoothness of the estimated curve, and

– λj is a smoothing parameter chosen such that the base-learner has five degrees of
freedom.

Additive Quantile Regression for the Analysis of Childhood Malnutrition 12



Thomas Kneib Statistical Inference

• Schematic representation of a penalised spline fit:
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• Crucial tuning paramater: Number of boosting iterations mstop.

• Early stopping implements variable selection property.

• Choice of mstop based on cross-validation or booststrap.

• In our application, a third of the data were used as a validation sample to determine
mstop.
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Results
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τ = 0.05 τ = 0.1 τ = 0.5

Variable FI PI FI PI FI PI

cage 0.034 0.161 0.017 0.272 0.001 0.204

cfeed 0.273 0.084 0.125 0.069 0.020 0.174

csex 0.275 0.017 0.212 0.019 0.213 0.007

ctwin 0.328 0.035 0.128 0.025 0.063 0.012

cbord 0.061 0.092 0.057 0.071 0.032 0.046

mbmi 0.070 0.077 0.057 0.064 0.013 0.054

mage 0.106 0.161 0.082 0.092 0.035 0.175

medu 0.000 0.097 0.000 0.091 0.000 0.065

medupart 0.070 0.081 0.026 0.137 0.017 0.122

munem 0.277 0.021 0.302 0.009 0.303 0.002

mreli 0.786 0.006 0.212 0.012 0.064 0.013

resid 0.275 0.035 0.228 0.021 0.097 0.014

nodead 0.216 0.023 0.108 0.029 0.069 0.020

wealth 0.000 0.040 0.002 0.030 0.000 0.031

electricity 0.811 0.006 0.711 0.000 0.052 0.009

radio – – – – 0.236 0.003

fridge – – 0.948 0.000 0.036 0.011

bicycle 0.061 0.044 0.074 0.034 0.302 0.008

mcycle – – 0.610 0.002 0.045 0.016

car 0.255 0.019 0.100 0.018 0.047 0.013

mstop = 107754 mstop = 84966 mstop = 41702

FI =
First iteration where variable is selected

mstop
PI =

Number of iterations where variable is selected

mstop
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Summary

• Quantile regression models are a valuable tool for exploring risk factors for extreme
forms of stunting.

• Estimation of quantile regression by boosting offers the following advantages:

– Flexible predictor specification including nonlinear effects of continuous covariates.

– Implicit variable selection via early stopping.

– Implemented in the R add-on package mboost, freely available from CRAN
(http://www.r-project.org).

• Future work: Extensions of the algorithm to include random and spatial effects.
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• The proposed approach has also been benchmarked against a previous suggestion
based on total variation regularisation by Koenker et al. (1994) in a simulation study.

Total variation regularization Boosting
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• The boosting approach is a strong competitor in terms of estimation accuracy and
allows for considerably more complex model specifications.
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• Reference: Fenske, N., Kneib, T. & Hothorn, T. (2009). Identifying risk factors for
severe childhood malnutrition by boosting additive quantile regression. Department
of Statistics, Technical Report 52, Ludwig-Maximilians-University Munich.

• A place called home:

http://www.staff.uni-oldenburg.de/thomas.kneib
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