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Thomas Kneib Leukemia survival data

Leukemia survival data

• Survival time of adults after diagnosis of acute myeloid leukemia.

• 1,043 cases diagnosed between 1982 and 1998 in Northwest England.

• 16 % (right) censored.

• Continuous and categorical covariates:

age age at diagnosis,
wbc white blood cell count at diagnosis,
sex sex of the patient,
tpi Townsend deprivation index.

• Spatial information in different resolution.
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• Classical Cox proportional hazards model:

λ(t; x) = λ0(t) exp(x′γ).

• Baseline-hazard λ0(t) is a nuisance parameter and remains unspecified.

• Estimate γ based on the partial likelihood.

• Questions / Limitations:

– Estimate the baseline simultaneously with covariate effects.

– Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).

– Spatially correlated survival times.

– Non-proportional hazards models / time-varying effects.

⇒ Structured hazard regression models.
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Structured hazard regression

• Replace usual parametric predictor with a flexible semiparametric predictor

λ(t; ·) = λ0(t) exp[f1(age) + f2(wbc) + f3(tpi) + fspat(si) + γ1sex]

and absorb the baseline

λ(t; ·) = exp[f0(t) + f1(age) + f2(wbc) + f3(tpi) + fspat(si) + γ1sex]

where

– f0(t) = log(λ0(t)) is the log-baseline-hazard,

– f1, f2, f3 are nonparametric functions of age, white blood cell count and
deprivation, and

– fspat is a spatial function.
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• f0(t), f1(age), f2(wbc), f3(tpi): P-splines

– Approximate fj by a B-spline of a certain degree (basis function approach).

– Penalize differences between parameters of adjacent basis functions to ensure
smoothness.

– Alternatives: Random walks, more general autoregressive priors.

• fspat(s): District-level analysis

– Markov random field approach.

– Generalization of a first order random walk to two dimensions.

– Consider two districts as neighbors if they share a common boundary.

– Assume that the expected value of fspat(s) is the average of the function
evaluations of adjacent sites.
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• fspat(s): Individual-level analysis

– Stationary Gaussian random field (kriging).

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Low-rank approximations to Gaussian random fields.

• Extensions

– Cluster-specific frailties.

– Surface smoothers based on two-dimensional P-splines.

– Varying coefficient terms with continuous or spatial effect modifiers.

– Time-varying effects based on varying coefficient terms with survival time as effect
modifier.

• Structured hazard regression handles all model terms in a unified way.
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Thomas Kneib Structured hazard regression

• Express fj as the product of a design matrix Zj and regression coefficients βj.

• Rewrite the model in matrix notation as

log(λ(t; ·)) = Z0(t)β0 + Z1β1 + Z2β2 + Z3β3 + Zspatβspat + Uγ.

• Bayesian approach: Assign an appropriate prior to βj.

• Frequentist approach: Assume (correlated) random effects distribution for βj.

• All priors can be cast into the general form

p(βj|τ2
j ) ∝ exp

(
− 1

2τ2
j

β′jKjβj

)

where Kj is a penalty matrix and τ2
j is a smoothing parameter.

• Type of the covariate and prior beliefs about the smoothness of fj determine special
Zj and Kj.
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Mixed model based inference

• Each parameter vector βj can be partitioned into an unpenalized part (with flat prior)
and a penalized part (with i.i.d. Gaussian prior), i.e.

βj = Zunp
j βunp

j + Zpen
j βpen

j

• This yields a variance components model

η = Xunpβunp + Xpenβpen

with
p(βunp) ∝ const βpen ∼ N(0, Λ)

and
Λ = blockdiag(τ2

0 I, . . . , τ2
spatI).

• Regression coefficients are estimated via a Newton-Raphson-algorithm.

• Numerical integration has to be used to evaluate the log-likelihood and its derivatives.
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• The variance components representation with proper priors allows for restricted
maximum likelihood / marginal likelihood estimation of the variance components:

L(Λ) =
∫

L(βunp, βpen, Λ)p(βpen)dβpendβunp → max
Λ

.

• The marginal likelihood can not be derived analytically.

• Some approximations lead to a simple Fisher-scoring-algorithm.

• Proved to work well in simulations and applications.

• We obtain empirical Bayes / posterior mode estimates.
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Results
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Software

• Estimation was carried out using BayesX, a public domain software package for
Bayesian inference.

• Available from

http://www.stat.uni-muenchen.de/~lang/bayesx

Modelling geoadditive survival data 12



Thomas Kneib Software

• Features (within a mixed model setting):

– Responses: Gaussian, Gamma, Poisson, Binomial, ordered and unordered
multinomial, Cox models.

– Nonparametric estimation of the log-baseline and time-varying effects based on
P-splines.

– Continuous covariates and time scales: Random Walks, P-splines, autoregressive
priors for seasonal components.

– Spatial Covariates: Markov random fields, stationary Gaussian random fields,
two-dimensional P-Splines.

– Interactions: Two-dimensional P-splines, varying coefficient models with
continuous and spatial effect modifiers.

– Random intercepts and random slopes (frailties).
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Discussion

• Comparison with fully Bayesian approach based on MCMC (Hennerfeind et al., 2003):

Cons:

– Credible intervals rely on asymptotic normality.

– Only plug-in estimates for functionals.

– Approximations for marginal likelihood estimation.

Pros:

– No questions concerning mixing and convergence.

– No sensitivity with respect to prior assumptions on variance parameters.

– Somewhat better point estimates (in simulations).

– Numerical integration is required less often.
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• Future work:

– More general censoring / truncation schemes.

– Event history / competing risks models
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