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Childhood Malnutrition in Developing and Transition Countries

• Malnutrition and childhood malnutrition in particular are among the main public
health problems in developing and transition countries.

• Halfing the proportion of malnourished people in developing countries until 2015 is
one of the United Nations Millennium goals.

• Statistical analyses can help in the development and evaluation of interventions.

• We use data from the 1998/99 India Demographic and Health Survey
(http://www.measuredhs.com).

• Nationally representative cross-sectional study on fertility, family planning, maternal
and child health, as well as child survival, HIV/AIDS, and nutrition.

• Information on 24.316 children is available (after excluding observations with missing
information).
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• Childhood malnutrition is assessed by a Z-score formed from an appropriate anthro-
pometric measure AI relative to a reference population:

Zi =
AIi − µ

σ

where µ and σ refer to median and standard deviation in the reference population.

• Chronic undernutrition (stunting) is measured by insufficient height for age.

• Children are classified as stunted based on lower quantiles from reference charts such
as the WHO Child Growth Standards.
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• Possible determinants of childhood malnutrition:

Child-specific factors: age, gender, duration of breastfeeding, . . .

Maternal factors: age, body mass index, years of education,
employment status, . . .

Household factors: place of residence, electricity, radio, tv, . . .

(21 covariates in total).

• In addition, we have information on the district a child lives in

⇒ Spatial alignment of the data.
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• Regression models aim at quantifying the impact of covariates on undernutrition
where the Z-score forms the response.

• Most common approach: Direct regression of the Z-score on covariates

Z = x′β + ε, ε ∼ N(0, σ2).

• Difficulties:

– All effects are assumed to be linear while effects of continuous covariates may be
suspected to be nonlinear.

– The model does not allow for spatial effects.

– The direct regression model explains the expectation of Z, i.e. it focusses on the
average nutritional status.

– Restrictive assumptions on the error terms ε.

⇒ Semiparametric quantile and expectile regression models.
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Quantile and Expectile Regression

• Quantile regression aims at describing conditional quantiles in terms of covariates
instead of the mean.

• Parametric quantile regression for quantile τ ∈ [0, 1]:

yi = x′iβτ + ετi

with independent errors
ετi ∼ Fεi Fεi(0) = τ.

• The condition Fτi ensures that the covariates act on the conditional quantiles of the
response:

Fyi
(x′iβ) = Fεi(0) = τ ⇒ Qyi

(τ) = F−1
yi

(τ) = x′iβτ .
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• Properties of parametric quantile regression:

– No explicit distributional assumption for the error terms.

– In particular, the errors are not identically distributed.

– Semiparametric approach including the possibility of variance heteroscedasticity.

• Estimation of quantile-specific parameters is based on minimising the loss function

β̂τ = argmin
βτ

n∑

i=1

wi(τ)|yi − x′iβτ |

with weights

wi(τ) =

{
τ yi − x′iβτ ≥ 0
(1− τ) yi − x′iβτ < 0

(asymmetrically weighted absolute residuals).
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• Empirical quantiles of an i.i.d. sample y1, . . . , yn can be characterised as

qτ = argmin
q

n∑

i=1

wi(τ)|yi − q|.

• In particular, the median is defined by

q0.5 = argmin
q

n∑

i=1

|yi − q|.

• Correspondingly, the arithmetic mean is given by

ȳ = argmin
e

n∑

i=1

(yi − e)2.
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• Asymmetrically weighted squared residuals yield empirical expectiles:

eτ = argmin
e

n∑

i=1

wi(τ)(yi − e)2.

• Expectile-specific regression coefficients can be obtained via asymmetrically weighted
least squares estimation:

β̂τ = argmin
βτ

n∑

i=1

wi(τ)(yi − x′iβτ)
2.

• Theoretical expectiles (of a continuous distribution) are the solutions of

(1− τ)
∫ e

−∞
|y − e|f(y)dy = τ

∫ ∞

e

|y − e|f(y)dy.
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Semiparametric Regression

• Semiparametric regression models replace the parametric predictor

ητi = β0 + β1xi1 + . . . + xipβp = x′iβ

with
ητi = β0 + f1(zi) + . . . + fp(zi)

where f1, . . . , fp are functions of different type depending on generic covariates z.
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• Examples:

– Linear effects: fj(z) = x′β.

– Nonlinear, smooth effects of continuous covariates: fj(z) = f(x).

– Varying coefficients: fj(z) = uf(x).

– Interaction surfaces: fj(z) = f(x1, x2).

– Spatial effects: fj(z) = fspat(s).

– Random effects: fj(z) = bc with cluster index c.
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• Generic model description based on

– a design matrix Zj, such that the vector of function evaluations f j = (fj(z1),
. . . , fj(zn))′ can be written as

f j = Zjγj.

– a quadratic penalty term

pen(fj) = pen(γj) = γ′jKjγj

which operationalises smoothness properties of fj.

• From a Bayesian perspective, the penalty term corresponds to a multivariate Gaussian
prior

p(γj) ∝ exp

(
− 1

2δ2
j

γ′jKjγj

)
.
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• Estimation then relies on a penalised fit criterion, e.g.

n∑

i=1

wi(τ)|yi − ητi|+
p∑

j=1

λjγ
′
jKjγj

with smoothing parameters λj ≥ 0.
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• Example 1. Penalised splines for nonlinear effects f(x):

– Approximate f(x) in terms of a linear combination of B-spline basis functions

f(x) =
∑

k

γkBk(x).

– Large variability in the estimates corresponds to large differences in adjacent
coefficients yielding the penalty term

pen(γ) =
∑

k

(∆dγk)2 = γ′D′
dDdγ

with difference operator ∆d and difference matrix Dd of order d.

– The corresponding Bayesian prior is a random walk of order d, e.g.

γk = γk−1 + uk, γk = 2γk−1 + γk−2 + uk

with uk i. i. d. N(0, δ2).
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• Example 2. Markov random fields for the estimation of spatial effects based on
regional data:

– Estimate a separate regression coefficient γs for each region, i.e. f = Zγ with

Z[i, s] =

{
1 observation i belongs to region s

0 otherwise

– Penalty term based on differences of neighboring regions:

pen(γ) =
∑

s

∑

r∈N(s)

(γs − γr)2 = γ′Kγ

where N(s) is the set of neighbors of region s and K is an adjacency matrix.

– An equivalent Bayesian prior structure is obtained based on Gaussian Markov
random fields.
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Markov Chain Monte Carlo Simulations

• Quantile regression models
yi = ητi + ετi

can be embedded in a Bayesian framework based on a suitable distributional assump-
tion for the error terms.

• Assume that ετi ∼ ALD(0, σ2, τ) (asymmetric Laplace distribution), with density

pεi(ε) =
τ(1− τ)

σ2
exp

(
−w(τ)

|ε|
σ2

)
.

• For the responses, this yields yi ∼ ALD(ητi, σ
2, τ) with

pyi(y) =
τ(1− τ)

σ2
exp

(
−w(τ)

|y − ητi|
σ2

)
.
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• The resulting likelihood is

p(y|ητ) ∝ exp

(
−

n∑

i=1

wi(τ)
|yi − ητi|

σ2

)
.

• Therefore the posterior mode is equivalent to the penalised asymmetrically weighted
absolute error estimate.
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• More precisely: The resulting point estimates coincide but the statistical estimates
have different properties.

• In particular, Bayesian quantile regression additionally assumes that

– the errors are identically distributed.

– the errors follow an asymmetric Laplace distribution.

• Consequences:

– The model is no longer semiparametric (with respect to the error distribution).

– The posterior is usually misspecified, such that measures of uncertainty should be
interpreted with care.
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• However, the posterior mean is easily obtained based on Markov chain Monte Carlo
simulation techniques (even for very complex predictor structures)

• A Gibbs sampler can be constructed based on a location scale mixture of normals
representation of the asymmetric Laplace distribution.

• Results in the imputation of additional unknowns but yields simple Gibbs updates.
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• Selected results for the malnutrition example:

– Estimates for the 5% quantile and the median.

– Note: Effects are centered and therefore the natural ordering of the 5% quantile
and the median is not visible.
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• Age of the child:
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• Duration of breastfeeding:
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• Body mass index of the mother:
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• Spatial effects:

Median

−175 1750

95%−Posterior Probabilities
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• Spatial effects:

5% Quantile

−175 1750

95%−Posterior Probabilities
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Asymmetrically Weighted Least Squares

• Expectile-specific parameters are easier to obtain since the criterion

n∑

i=1

wi(τ)(yi − ητi)2 +
p∑

j=1

λjγ
′
τjKjγτj

is differentiable with respect to the regression coefficients.

• Iteratively weighted penalised least squares estimation:

γ̂τj = (Z ′
jW (τ)Zj + λjKj)−1Z ′

jW (τ)(y − ητ + Zjγj).

• Smoothing parameters can be estimated based on a mixed model representation
similar as in mean regression.
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• Age of the child:
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• Spatial effect:

Mean

−125 1250

5% Expectile

−125 1250
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Boosting

• Boosting yields a generic approach for both quantiles and expectiles.

• The estimation problem is formulated as an empirical risk minimisation problem:

n∑

i=1

wi(τ)|yi − ητi| → min
ητ

bzw.
n∑

i=1

wi(τ)(yi − ητi)2 → min
ητ

• Main components of a boosting approach:

– A loss function defining the estimation problem.

– Suitable base-learning procedures for the model components.

• Estimation relies on the repeated application of the base-learning procedures to
negative gradients of the loss function (“residuals”).
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• Componentwise boosting yields structured, interpretable model.

• Penalised least squares estimates yield suitable base-learners for semiparametric
regression.
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Summary & Extensions

• Flexible, semiparametric regression beyond mean regression.

• More complex models than in our example are possible, including for example

– interaction surfaces.

– random effects.

– different types of spatial effects.

• Different inferential procedures are available

– MCMC simulation techniques.

– Mixed Models.

– Boosting.
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• Future work:

– Investigate properties of the statistical estimates resulting from quantile and
expectile regression

– In particular: How to perform inference for the estimated regression coefficients?

– Investigate properties of theoretical expectiles.

– Bayesian quantile regression based on flexible error distributions to avoid restrictive
assumptions on the error terms.
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