Numerical methods for time harmonic locally perturbed periodic media

Part 3

Sonia Fliss (Ecole Nationale Supérieure de Techniques Avancées)

Intensive Programme / Summer School "Periodic Structures in Applied Mathematics" Göttingen, August 18 - 31, 2013

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held Georg-August-UNIVERSITÄT responsible for any use which may be made of the information contained therein.

> D-2012-ERA/MOBIP-3-29749-1-6 Grant Agreement Reference Number:

Numerical methods for time harmonic scalar wave equation in locally perturbed periodic media - Part 3

<u>Sonia Fliss</u>

POEMS (UMR 7231 CNRS-INRIA-ENSTA)

Mainly based on joint works with Julien Coatleven, Patrick Joly and Jing-Rebecca Li

Assumption : The reference cell C is the unit square.

Assumption : The reference cell C is the unit square. Ω_i is a square made of $N \times N$ cells.

For the simplicity of the presentation, we shall assume that N = 1.

$$u^e_arepsilon = u^e_arepsilon(arphi)$$

$$T_{\varepsilon} \varphi := -\partial_n u_{\varepsilon}^e(\varphi)|_{\partial \Omega_i} \qquad \qquad T_{\varepsilon} : H^{\frac{1}{2}}(\partial \Omega_i) \longrightarrow H^{-\frac{1}{2}}(\partial \Omega_i)$$

Double symmetry and consequences

A subset \mathcal{O} of \mathbb{R}^2 , with barycenter at the origin, will be called doubly symmetric if it is invariant by the two symmetries S_1 and S_2 with respect to y = x and y = -x

A function $f : \mathcal{O} \longrightarrow \mathbb{C}$ is doubly symmetric if and only if $\forall \mathbf{x} \in \mathcal{O}, \quad f(S_1 \mathbf{x}) = f(S_2 \mathbf{x}) = f(\mathbf{x})$

Assumption : the function $\rho_{per}(\mathbf{x}) : C \longrightarrow \mathbb{R}^+$ is doubly symmetric.

Double symmetry and consequences

A vector space $V(\mathcal{O})$ of functions from \mathcal{O} into \mathbb{C} can be decomposed as :

$$V(\mathcal{O}) = V_{ss}(\mathcal{O}) \oplus V_{sa}(\mathcal{O}) \oplus V_{as}(\mathcal{O}) \oplus V_{ss}(\mathcal{O})$$

where by definition

$$V_{ss}(\mathcal{O}) = \left\{ \mathbf{v} \in V(\mathcal{O}) / \mathbf{v}(\mathbf{x}) = \mathbf{v}(S_1\mathbf{x}) = \mathbf{v}(S_2\mathbf{x}) \right\}$$
$$V_{sa}(\mathcal{O}) = \left\{ \mathbf{v} \in V(\mathcal{O}) / \mathbf{v}(\mathbf{x}) = \mathbf{v}(S_1\mathbf{x}) = -\mathbf{v}(S_2\mathbf{x}) \right\}$$
$$V_{as}(\mathcal{O}) = \left\{ \mathbf{v} \in V(\mathcal{O}) / \mathbf{v}(\mathbf{x}) = -\mathbf{v}(S_1\mathbf{x}) = \mathbf{v}(S_2\mathbf{x}) \right\}$$
$$V_{aa}(\mathcal{O}) = \left\{ \mathbf{v} \in V(\mathcal{O}) / \mathbf{v}(\mathbf{x}) = -\mathbf{v}(S_1\mathbf{x}) = -\mathbf{v}(S_2\mathbf{x}) \right\}$$

Double symmetry and consequences

A vector space $V(\mathcal{O})$ of functions from \mathcal{O} into \mathbb{C} can be decomposed as :

 $V(\mathcal{O}) = V_{ss}(\mathcal{O}) \oplus V_{sa}(\mathcal{O}) \oplus V_{as}(\mathcal{O}) \oplus V_{ss}(\mathcal{O})$

with projectors

$$\Pi_{ss} \boldsymbol{v}(\mathbf{x}) = \frac{1}{4} \Big\{ \boldsymbol{v}(\mathbf{x}) + \boldsymbol{v}(S_1\mathbf{x}) + \boldsymbol{v}(S_2\mathbf{x}) + \boldsymbol{v}(S_1S_2\mathbf{x}) \Big\}$$
$$\Pi_{as} \boldsymbol{v}(\mathbf{x}) = \frac{1}{4} \Big\{ \boldsymbol{v}(\mathbf{x}) - \boldsymbol{v}(S_1\mathbf{x}) + \boldsymbol{v}(S_2\mathbf{x}) - \boldsymbol{v}(S_1S_2\mathbf{x}) \Big\}$$
$$\Pi_{sa} \boldsymbol{v}(\mathbf{x}) = \frac{1}{4} \Big\{ \boldsymbol{v}(\mathbf{x}) + \boldsymbol{v}(S_1\mathbf{x}) - \boldsymbol{v}(S_2\mathbf{x}) - \boldsymbol{v}(S_1S_2\mathbf{x}) \Big\}$$
$$\Pi_{aa} \boldsymbol{v}(\mathbf{x}) = \frac{1}{4} \Big\{ \boldsymbol{v}(\mathbf{x}) - \boldsymbol{v}(S_1\mathbf{x}) - \boldsymbol{v}(S_2\mathbf{x}) + \boldsymbol{v}(S_1S_2\mathbf{x}) \Big\}$$

Double symmetry and consequences For any $(p,q) \in \{a,s\}^2$

$$\boldsymbol{\varphi} \in H_{pq}^{\frac{1}{2}}(\partial \Omega_i) \implies \boldsymbol{u}_{\varepsilon}^e(\boldsymbol{\varphi}) \in H_{pq}^1(\Delta;\Omega_e) \implies \partial_n \boldsymbol{u}_{\varepsilon}^e(\boldsymbol{\varphi}) \in H_{pq}^{-\frac{1}{2}}(\partial \Omega_i)$$

This property results from the fact that the Laplace operator and the multiplication by the doubly symmetric function ρ_{per} commute with the maps $u \longrightarrow u \circ S_j$, j = 1, 2

As a consequence
$$T_{\varepsilon}$$
 maps $H_{pq}^{\frac{1}{2}}(\partial\Omega_i)$ into $H_{pq}^{-\frac{1}{2}}(\partial\Omega_i) \subset \left(H_{pq}^{\frac{1}{2}}(\partial\Omega_i)\right)'$

$T_arepsilon =$	$T^{ss}_arepsilon$	0	0	0
	0	$T^{sa}_arepsilon$	0	0
	0	0	$T^{as}_arepsilon$	0
	0	0	0	$T^{aa}_arepsilon$

We are reduced to determine each T_{ε}^{pq} , $(p,q) \in \{a,s\}^2$. In the sequel (p,q) = (s,s).

For $\varphi \in H_{ss}^{\frac{1}{2}}(\partial \Omega_i)$, knowing φ on $\partial \Omega_i$ is equivalent to knowing φ on Σ_0 .

$$H_{ss}^{\frac{1}{2}}(\partial\Omega_{i}) \text{ is isomorphic to } H^{\frac{1}{2}}(\partial\Sigma_{0})$$

$$H_{ss}^{\frac{1}{2}}(\partial\Omega_{i}) \xrightarrow{\chi} H^{\frac{1}{2}}(\partial\Sigma_{0})$$

$$H_{ss}^{\frac{1}{2}}(\partial\Omega_{i}) \xleftarrow{\chi_{ss}^{*}} H^{\frac{1}{2}}(\partial\Sigma_{0})$$

14

A method for the construction of E_{ε}^{ss}

$$\Gamma^+ \equiv \Sigma^+ \qquad \Gamma^- \equiv \Sigma^-$$

$$u_{arepsilon}(arphi) = u_{arepsilon}^{H}(E_{arepsilon}^{ss}arphi)$$

A method for the construction of E_{ε}^{ss}

A method for the construction of E_{ε}^{ss}

$$D^{ss}_arepsilon ig(E^{ss}_arepsilon ig) \,=\, E^{ss}_arepsilon arphi$$

 $L|_{\Sigma_0} = Id$

Theorem : Characterization of E_{ε}^{ss}

The operator E_{ϵ}^{ss} is characterized as the unique solution of the problem

Find
$$E \in \mathcal{L}_0$$
 satisfying $D_{\varepsilon}^{ss} \circ E = E$

where
$$\mathcal{L}_0 = \left\{ L \in \mathcal{L}\left(H_{ss}^{\frac{1}{2}}(\partial \Omega_i), H^{\frac{1}{2}}(\partial \Omega_H)\right) / \forall \varphi, \ L\varphi = \varphi \text{ on } \Sigma_0 \right\}$$

We have to solve a linear equation with an affine constrain

Proof : we only need to prove the **uniqueness** of the solution

$$D_{\varepsilon}^{ss} \circ E = E \text{ and } E \in \overrightarrow{\mathcal{L}_{0}} \implies E = 0$$

$$\overrightarrow{\mathcal{L}_{0}} = \left\{ L \in \mathcal{L} \left(H_{ss}^{\frac{1}{2}}(\partial \Omega_{i}), H^{\frac{1}{2}}(\partial \Omega_{H}) \right) \ / \ \forall \varphi, \ L\varphi = 0 \text{ on } \Sigma_{0} \right\}$$

$$\forall \varphi \in H^{\frac{1}{2}}(\partial \Omega_{i}), \ D_{\varepsilon}^{ss} \circ E\varphi = E\varphi \text{ and } E \in \mathcal{L}_{0} \implies E\varphi = 0$$

$$\forall \psi \in H^{\frac{1}{2}}(\partial \Omega_{H}) \ / \ \psi = 0 \text{ on } \Sigma_{0} \qquad D_{\varepsilon}^{ss} \psi = \psi \implies \psi = 0$$