Müller, Marcus, Prof. Dr.


  • 1995 Dr. rer. nat. (Physics) Johannes Gutenberg University, Mainz
  • 1995, 1998 TRACS visitor EPCC, Edinburgh (collaboration with M. Cates)
  • 1995 - 1996 Postdoc (with M. Schick, University of Washington, Seattle)
  • 1997 - 1999 Postdoc (with K. Binder, Mainz)
  • 1999 Habilitation for Theoretical Physics, Mainz
  • 1999 - 2001 Hochschulassistent (C1), Mainz
  • 2001 - 2004 Hochschuldozent (C2), Mainz
  • 2002 - 2004 Heisenberg Fellow of the DFG
  • 2004 - 2005 Associate Professor for Physics, University of Wisconsin, Madison
  • since 2005 Lichtenberg-Professor der Volkswagenstiftung, Georg-August Universität, Göttingen
  • since 2008 Universitätsprofessor (W3), Institut für Theoretische Physik, Georg-August Universität, Göttingen



Major Research Interests

Using computer simulation and numerical self-consistent field theory, we study the statistical physics of soft matter with special focus on polymer physics, interfacial and wetting phenomena, and biologically motivated problems. We are interested in collective phenomena (e.g., pore formation and fusion of lipid membranes, phase separation in mixed polymer brushes, self-assembly of block copolymers, dewetting and motion of droplets on surfaces), in which many molecules participate. Both, equilibrium properties as well as the kinetics of structure formation or motion driven by external fields are investigated. Employing coarse-grained models that only incorporate the essential, relevant interactions we are able to systematically investigate collective phenomena on time scales of microseconds and length scales of 10-100nm. Another focus of our research is the development of models and computational techniques to speed up the simulation and to accurately calculate free energies and locate phase boundaries).

GGNB Marcus Müller Figure 1Figure 1: Transition state of the fusion process between two tense apposed bilayer membranes.


GGNB Marcus Müller Figure 2Figure 2: Bicontinuous morphology of a lamellar-forming diblock copolymer on a patterned substrate.



Homepage Department/Research Group

http://www.theorie.physik.uni-goettingen.de/forschung/mm/



Selected Recent Publications


  • Smirnova YG, Risselada HJ, Müller M (2019) Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. PNAS 116, 2571

  • Tarutani N, Tokudome Y, Jobbagy M, Soler-Illia G, Tang Q, Müller M, Takahashi M (2019) Highly ordered mesoporous hydroxide thin films through self-assembly of size-tailored nano-building blocks: A theoretical-experimental approach, Chem. Mater. 31, 322

  • Ting CL, Awasthi N, Müller M, Hub JS (2018) Metastable prepores in tension-free lipid bilayers, Phys. Rev. Lett. 120, 128103

  • Schneider L, Heck M, Wilhelm M, Müller M (2018) Transitions between lamellar orientations in shear flow, Macromolecules 51, 4642

  • Sun DW, Müller M (2017) Process-accessible states of block copolymers, Phys. Rev. Lett. 118, 067801