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Abstract 

The global challenge of ecosystem degradation and biodiversity loss affected by agricul-

tural crop expansion poses major problems for many countries in tropical Asia. Indonesia 

faces the issues linked to large scale lowland rainforest conversion into cash crop systems 

of oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis). Identification of synergy 

and trade-off effects for ecological and socioeconomic ecosystem functions is crucial to 

assure adequate biodiversity and ecosystem function conservation. Modelling avian α-

diversity as one facet of biodiversity is at the focus of the present study. Since birds pro-

vide a variety of ecosystem functions (e.g. pest control, seed dispersal, pollination), they 

are important entities to be considered in forests and agricultural systems. 

Generalized linear regression models are used to derive statistical relationships between 

bird species richness and habitat as well as species richness of other taxa. A dataset col-

lected in Jambi, Indonesia, of more than twenty potential predictor variables consisting 

of environmental, habitat and biodiversity variables is investigated in a regression analy-

sis by a stepwise variable selection procedure. The best fit model describing total bird 

species richness has a deviance explained of 57.2 % with a relative root-mean-square-

error of 26.08 %. The constructed model predicts the bird species richness from the spe-

cies richness of beetles, ants, the canopy openness and the surrounding land cover diver-

sity. 

After the regression model construction, the model is implemented in an already existing 

land use change model (EFForTS-ABM) in NetLogo. For this, predictor variables are 

simulated over the model landscape and the regression model is applied in each cell. The 

simulation is done by randomly assigning values to cells from smoothed distributions of 

the predictors from field data grouped by land use system. Additionally, a species spillo-

ver effect at land use borders is implemented for the predictor variables ant and beetle 

species richness. The model output is validated by comparison to an independent valida-

tion dataset. The validation yields no significant differences between model output means 

and validation data means except for jungle rubber agroforestry systems. 

The present study shows that avian α-diversity can be modelled by habitat and biodiver-

sity of other taxa with relatively high goodness-of-fit, compared to other similar studies. 

The model constructed may be used to investigate specific land use scenarios in order to 

explore their effect on bird diversity. 



Kurzfassung 

ii 

 

Kurzfassung 

Die weltweite Ökosystemzerstörung und der Biodiversitätsverlust durch die Expansion 

landwirtschaftlicher Produktionssysteme stellt ein Problem für viele Länder im tropi-

schen Asien dar. Indonesien sieht sich mit den Folgen groß angelegter Landnutzungs-

Transformation von Tiefland-Regenwald zu Ölpalm- (Elaeis guineensis) und Kautschuk-

Plantagen (Hevea brasiliensis) konfrontiert. Die Identifizierung von Synergie- und Trade-

Off-Effekten der ökologischen und sozioökonomischen Ökosystemfunktionen ist wesent-

lich für die Sicherstellung eines angemessenen Biodiversitätsschutzes. Die Modellierung 

der Vogel-α-Diversität, als ein Aspekt der Biodiversität, steht im Fokus der vorliegenden 

Arbeit. Da Vögel eine Vielzahl an Ökosystemdienstleistungen (z.B. Schädlingskontrolle, 

Samenverbreitung, Bestäubung) bereitstellen, stellen sie wichtige Einheiten im Wald und 

in landwirtschaftlichen Ökosystemen dar. 

Generalisierte lineare Modelle werden angewendet, um statistische Beziehungen zwi-

schen Vogel-Artenvielfalt und Habitat, sowie Artenvielfalt anderer Taxa abzuleiten. Ein 

Datensatz aus Jambi, Indonesien, mit mehr als zwanzig potenziellen Prädiktoren aus Um-

welt-, Habitat- und Biodiversitäts-Variablen wird mithilfe der Regressionsanalyse und 

einer schrittweisen Variablenselektion untersucht. Das bestangepasste Modell, das die 

Gesamt-Vogel-Artenvielfalt beschreibt, hat eine erklärte Devianz von 57,2 % und einen 

relativen root-mean-square-error von 26,08 %. Das konstruierte Modell schätzt die An-

zahl der Vogelarten in Abhängigkeit von der Artenvielfalt von Käfern, Ameisen, der Kro-

nenoffenheit und Landnutzungs-Diversität der Umgebung. 

Nach der Regressionsanalyse wird das selektierte Modell in ein bereits existierendes 

Landnutzungsmodell (EFForTS-ABM) in NetLogo implementiert. Dazu werden die un-

abhängigen Variablen über die Modelllandschaft simuliert und danach in jeder Zelle das 

Regressionsmodell angewandt. Die Prädiktoren werden durch geglättete Verteilungen der 

unabhängigen Variablen aus den Felddaten, gruppiert nach Landnutzungssystem, simu-

liert. Außerdem wird ein Spillover-Effekt für die Prädiktoren Käfer-Artenvielfalt und 

Ameisen-Artenvielfalt an Landnutzungsgrenzen implementiert. Die Validierung des Mo-

dell-Outputs wird durch den Vergleich mit einem unabhängigen Validierungsdatensatz 

durchgeführt. Es können bis auf Werte aus Kautschuk-Wald-Mischsystemen keine statis-

tisch signifikanten Unterschiede zwischen Modell-Output-Mittelwerten und Validie-

rungsdatensatz-Mittelwerten festgestellt werden. 
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Die vorliegende Arbeit zeigt, dass die Vogel-α-Diversität durch Habitat und Artenvielfalt 

anderer Taxa mit relativ hoher Anpassungsgüte, verglichen zu anderen ähnlichen Studien, 

modelliert werden kann. Das erstellte Modell kann dazu genutzt werden Landnutzungs-

szenarien zu untersuchen, um deren Effekt auf die Vogel-Diversität festzustellen.
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1 Introduction 

1.1 Background and motivation 

Expansion of agricultural crop systems as a result of increasing human population paired 

with a growing per person consumption has led to a worldwide decline in biodiversity 

and a degradation of ecosystems (DIRZO AND RAVEN 2003; GIBBS et al. 2010). In tropical 

Asia, a major hotspot of biodiversity and endemism (MYERS et al. 2000) coincides with 

a rapidly growing population and associated land use conversion of large areas (SODHI et 

al. 2010; JONES 2013). The process of land conversion from rainforest into agricultural 

cash crops, like oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) has acceler-

ated in the past decades in Indonesia and poses a substantial challenge for biodiversity 

conservation (MARGONO et al. 2014).  

Biodiversity and linked ecosystem functions are at risk due to the progressing land use 

transformation (SALA et al. 2000). Knowledge about effects of land use conversion and 

impacts of potential future scenarios is crucial to mitigate negative consequences for bi-

odiversity, ecosystem functions and human livelihoods. Therefore, different aspects of 

biodiversity need to be evaluated under ongoing land use change. This study aims at mod-

elling avian species diversity, namely the bird species richness, as one facet of biological 

diversity. 

Models, representing simplified abstractions of reality, provide valuable tools to investi-

gate biological systems and understand their underlying processes or simulate specific 

scenarios. By application of regression analysis bird species richness is modelled by in-

dependent predicting environmental, habitat and biodiversity variables. After implemen-

tation in NetLogo (WILENSKY 1999) the constructed regression model is used to estimate 

bird species richness under simulated land use conversion in an artificial landscape. Crit-

ical evaluation of the constructed regression model and validation of the outcome of the 

prediction are crucial to gain inference on the quality of the model. 

Birds provide a variety of ecosystem functions including pest control, seed dispersal and 

pollination, that entail great benefits for humans (KARP et al. 2013; MAAS et al. 2016). 

Some of these ecosystem functions have direct effects on yields in agricultural crop sys-

tems, such as the control of arthropod abundancy (MAAS et al. 2013). Apart from the 

direct benefits of ecosystem functions that can be accessed by humans, it is important to 

investigate the diversity of species itself in order to safeguard that species are not lost 
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during the habitat degradation described above. Although the diversity of species is not a 

good that is directly marketable, societies still recognize the importance of preserving 

biodiversity (e.g. Convention on Biological Diversity, (UNITED NATIONS 1992)) attrib-

uting value to biological diversity itself. 

A regression model of bird species richness enables the spatially explicit estimation of 

bird species richness in artificial landscapes as well as real landscapes. The outcome of 

the model indicates hot spots of bird α-diversity as well as areas of low bird species di-

versity. The model also allows for the investigation of effects of different land use com-

position and configuration to identify scenarios that benefit bird species diversity. 

The present study is part of the Collaborative Research Center 990 (CRC 990): Ecologi-

cal and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Sys-

tems (Sumatra, Indonesia) (EFForTS), which is an extensive international and interdisci-

plinary research project investigating implications of large scale land use transformation 

in the province of Jambi in Indonesia and whether ecological and socioeconomic synergy 

effects may be accomplished. 

1.2 Research objectives 

The overarching goal of this thesis is to establish a statistical regression model that pre-

dicts avian species richness in the study area based on a set of predictor variables. Addi-

tionally, the constructed regression model is implemented, and model quality as well as 

model behavior are assessed. 

Regarding the presented thematic background and motivation, research questions which 

shall be answered in the course of this study may be derived:  

i. Which environmental, habitat and biodiversity variables determine bird species 

richness in the land use transformation systems of Indonesia? 

Discovering the underlying ecological principles regulating the number of species 

at a given spatial point is not the aim of this investigation but identifying relation-

ships between species richness and independent variables. The detection and de-

scription of these relationships is guided by theoretical considerations and empir-

ical findings from the literature and base upon the statistical analysis of the data. 

ii. How can environmental, habitat and biodiversity predictor variables be combined 

into a statistical regression model to predict bird species richness? 
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Identification of a suitable model type and methodology for the prediction of bird 

species richness as well as the adequate selection of predictor variables and their 

combination in the model are substantial parts of the analysis. 

iii. Can bird species richness be predicted by environmental, habitat and biodiversity 

variables in a sufficiently precise manner? 

Determining the quality of a model and assessing the power of the model to predict 

the target variable is important to provide information for potential users. The 

level of precision that is sufficiently precise may be derived from other studies 

investigating bird species richness by similar methods. 

iv. What is the link between land use and bird species richness? 

The investigation of a direct connection between avian species richness and land 

use system (e.g. secondary forest, oil palm plantation, etc.) is of special interest 

since the rapid transformation of land use is the main research subject of the EF-

ForTS project and an important driver of habitat alteration in the study area. If 

possible and reasonable the land use is implemented as a predictor variable in the 

constructed regression model. 

The search for answers to these questions guides the analysis in the subsequent chapters. 

Encountering responses to the stated research questions is the ultimate objective of this 

study.
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2 Theoretical background 

2.1 Drivers and effects of land use transformation 

The conversion of forest into agricultural crop systems which has substantial ecological 

and socioeconomic consequences is a phenomenon that can be found in large areas of 

tropical Asia (ZHAO et al. 2006). Due to the land use transformation anthropogenic CO² 

emissions have increased (HOUGHTON 2003), air and water quality have deteriorated 

(AKIMOTO 2003), the regional climate is altered (PIELKE 2005) and biodiversity loss has 

increased (PIMM et al. 1995). Indonesia faces the same effects of land use conversion as 

many other tropical Asian countries since large areas of tropical forest have been trans-

formed into agricultural cropping systems (MARGONO et al. 2014). 

Drivers for the conversion of tropical lowland rainforest to agricultural cropping systems 

in Indonesia include policy changes and socioeconomic factors (GATTO et al. 2015). Pol-

icy as implemented by the Indonesian government aiming at the transmigration from 

highly populated islands to more sparsely populated areas of the country with a coupled 

incentive for oil palm cultivation and other economic activities has led to an increase of 

cash crop production area since the 1980s (LARSON 1996). 

The primary land use systems that may be found in the research region Jambi are tropical 

lowland rainforest (forest), jungle rubber agroforestry systems (jungle rubber), rubber 

monoculture plantations (rubber) and small as well as large scale oil palm monoculture 

plantations (oil palm) (DRESCHER et al. 2016). These land use systems present different 

habitat structures for the species occupying them. 

Effects of land use conversion from forest to agricultural plantations, like oil palm, in-

clude severe ecosystem function alterations because of a decrease in multitrophic biodi-

versity that often leads to a reduction in functional diversity and a decline of the resilience 

of communities (BARNES et al. 2014; DRESCHER et al. 2016; DISLICH et al. 2017). How-

ever, the cultivation of cash crops increases the amount of produced sellable goods per 

area (DISLICH et al. 2017), which in turn secures livelihoods of small scale farmers. 
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2.2 Biological diversity 

2.2.1 Measurement of biological diversity 

Biological diversity or biodiversity as the variation of life forms ranges from genetic di-

versity to the diversity of ecosystems (MAGURRAN 2011). In the present study, species in 

an assemblage of a given taxon, birds, are at the focus. Species diversity comprises mul-

tiple facets that may be investigated. Since a species consists of individuals, the variation 

of the number of individuals between species can be considered as well, which reveals 

assemblage structures of evenly distributed or dominating species. The evenness or dom-

inance of species in an assemblage may be expressed as biodiversity indices, like the 

Shannon-Weaver index (SHANNON AND WEAVER 1949) or the Simpson index (SIMPSON 

1949). The number of species in an assemblage may be considered as the simplest meas-

ure of species diversity, which does not account for evenly distributed or dominating spe-

cies and can be derived from occurrence and abundance data (MAGURRAN 2011). 

Sampling of individuals for estimates of species diversity is a demanding task since low 

evenness, which is frequently found in assemblages, means that some species are present 

with very few individuals that are difficult to sample, while other species with high abun-

dancy are sampled often. This results in a condition where more time and effort put into 

sampling increases the number of species found. Hence, the species richness estimate is 

highly dependent on sampling intensity. In addition, the detectability of individuals varies 

between species considering different diurnal and seasonal activity rhythms, representing 

another challenge for sampling (MAGURRAN 2011). 

The absolute number of species in an assemblage may be estimated from the sample by 

different non-parametric techniques like the Chao-estimator (CHAO 1984), the Jackknife 

statistics (BURNHAM AND OVERTON 1978) or the bootstrap method (SMITH AND VAN 

BELLE 1984). Furthermore, the number of species may be estimated by extrapolating spe-

cies accumulation curves that consist of the accumulated number of species which show 

a constantly increasing trend with growing sample size (MAGURRAN 2011). These species 

richness estimation techniques can only be applied if multiple independent observations 

from a community were gathered. 

Accordingly, the measurement or estimation of species diversity at a given location from 

one observation at a sample plot is a challenging task. If the objective is not estimating 

the total number of species at a location but comparing communities between locations, 
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a constant sampling intensity over sampling sites or rarefaction techniques facilitate the 

comparability and a fully inventoried community is not required (MAGURRAN 2011). 

2.2.2 Avian diversity 

Most bird’s primary mode of locomotion is flight. Therefore, this taxon of vertebrates is 

highly mobile. A quick way of travelling and the affiliated great mobility of individuals 

pose problems for the detection and sampling of species for a given spatial location at a 

small scale. 

Following the example of DARRAS (2016), sampling techniques for bird individuals con-

sist of visual and aural point count surveys. A given site is sampled for a predetermined 

time (e.g. 20 minutes) and each bird individual detected by the person surveying is rec-

orded. The sampling may be repeated (e.g. four times) at a location to enhance the com-

pleteness of the sample. Audio recordings can be analyzed for complementation of the 

visually detected individuals. Daytime of sampling has to be considered because of the 

diurnal activity differences bird species exhibit. 

Avian community diversity is determined by climate and by habitat, while climate plays 

a larger role on macrogeographical scales and habitat structure is more important on a 

local scale (TELLERÍA et al. 1992). Climatic parameters may control the “theoretical pool 

of species” (IBID.) but habitat structure determines which of the species can actually be 

found in a given area (IBID.). Indicators for habitat diversity, especially linked to diversity 

of vegetation seem to play a vital role in the capacity of a habitat to host a larger number 

of bird species (MACARTHUR AND MACARTHUR 1961; TELLERÍA et al. 1992). A positive 

correlation between habitat diversity and species diversity can be explained by a larger 

number of ecological niches in a diverse habitat that can be occupied by more species 

(ROSENZWEIG 2002). 

The modelling of bird species richness, as an indicator for avian species diversity and 

associated functional diversity, demands for a distinct definition of what species richness 

at a given location means. If a given species is present in an area, whether it can be de-

tected or not, it may be included as a species in the biodiversity pool of that location since 

it is contributing to ecological functions in that area as a part of the biocenosis. This means 

that irrelevant of the fact if the species is residential and breeding in that area or passing 

by in a migration event, it is included in the community. Hence, the avian species pool is 

different from what can be found in the field because of detectability and implications of 

sampling stated above. Therefore, the species richness assumed in the present study has 
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to be considered a proxy for the actual species richness which in turn is a measure incom-

pletely describing avian biodiversity. 

2.3 Regression modelling in ecology 

Statistical regression modelling in ecology is used to determine and mathematically de-

scribe interactions between ecological entities. Regression models in ecology are either 

explanatory, predictive or a combination of both. Explanatory models investigate the un-

derlying ecological processes that produce the observed patterns, whereas predictive 

models seek to provide a statistical relationship between dependent and independent var-

iables in order to estimate the dependent variable from observations of the independent 

variable (GUISAN et al. 2002). 

The modelling of bird species diversity can be achieved by different techniques. Total 

species richness can be estimated by summing several species richness predictions from 

species distribution models at a given geographical area (LEHMANN, LEATHWICK et al. 

2002; RION 2010). Alternatively, species richness can also be directly estimated with re-

gression models including total species richness as dependent variable (RION 2010). The 

present study focuses on the approach of directly modelling species richness as a function 

of correlated environmental, habitat and biodiversity predictors. 

In modern species distribution modelling general linear models (GLMs) and general ad-

ditive models (GAMs) are widely applied because they do not assume distributions that 

the data cannot meet and they are able to fit to the data more flexibly than other regression 

techniques (GUISAN et al. 2002). Due to their inherent empirical nature, regression models 

incorporate information about realized niche in contrast to fundamental niche, including 

biotic interactions and stochastic effects. This hampers the comparability between loca-

tions, even for identical species, since the biotic interactions and stochastic effects are 

unequal between sites which is ignored in the regression model (GUISAN AND ZIMMER-

MANN 2000). 

Several studies exist that use regression analysis techniques for bird species diversity 

modelling. KOH (2008) models bird species richness of oil palm plantations in Malaysia 

with generalized linear mixed effects models (GLMMs), which can be seen as extensions 

of GLMs, and includes predictor variables describing habitat and sampling effort. LUOTO 

et al. (2004) model bird species richness with GLMs as a function of remotely sensed 

predictor variables describing the vegetation. Although GAMs are able to describe non-
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linear relationships between target and predictor variables, the interpretation of the results 

is more difficult than for linear models, which is important in cases where the model is 

used as an explanatory tool rather than used for predictive estimations. 

Statistical regression models pose some inherent problems that hamper model quality in 

terms of how well the model depicts real interactions or even effects of independent var-

iables on dependent variables. Omitted-variable bias is one of the issues that occurs when 

one or more relevant predictor variables are left out of the regression model, resulting in 

a bias of the coefficient estimates of the predictors included in the regression model 

(FAHRMEIR et al. 2013). Connected to the omitted-variable bias is the problem of con-

founding factors in regression analysis that occurs if a variable exists that influences both 

predictor and target variable, hence it is called a confounding variable because the effect 

may be attributed to that variable and not the included predictor leading to incorrect in-

ference (VANDERWEELE AND SHPITSER 2013). 
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3 Methodology 

3.1 Data collection and preparation 

3.1.1 Data collection 

The research area of the EFForTS-project extends over the province of Jambi on Sumatra, 

Indonesia. Jambi’s landscape stretches from a mountainous area to wide lowlands. The 

local climate in the lowlands is tropical humid, consisting of two rainy seasons in March 

and December with a dry season from July to August (DRESCHER et al. 2016). 

The area has an extended history of rainforest usage by traditional agroforestry practices 

and logging as well as usage of non-timber forest products (ANDAYA 1993; KATHIRITH-

AMBY-WELLS 1993). Since commercial logging concessions were first issued in the 1970s 

(SUYANTO et al. 2000) governmental policies with a linked population migration aim at 

promoting economic growth in the area (ELMHIRST 2011; GATTO et al. 2015) which in 

turn increases pressure on forest resources. Intensively managed agricultural plantations 

of cash crop trees such as rubber and oil palm have replaced former rainforest areas 

(DRESCHER et al. 2016). Expanding agricultural activity has led to a land use change from 

rainforest to agricultural land that resulted in a rainforest cover of 30 %, an agricultural 

land cover of 55 % and a cover of 10 % degraded lands mostly pending for conversion 

into agricultural land in 2013 (IBID.) 

The data analyzed in the present thesis was collected on sample plots, named core plots 

(see Fig. 1) that were established in the region to facilitate the purpose of the project of 

investigating effects of land use change in an interdisciplinary way. The research area 

consists of two spatially separated subareas, Harapan (HR) and Bukit Duabelas (BD). 

Observations made by different subparts of the project were carried out on these core 

plots and thus are linked to each other via the location. A total of 32 sample plots were 

established with eight plots located in each of the land use systems forest, jungle rubber, 

rubber and oil palm. The sample sites were chosen following an experimental scheme as 

replications within each land use type. 
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Fig. 1: Map of the research area depicting the sample sites (core plots). (illustration from DRESCHER et al. 2016) 

Field data from core plots surveyed in 2013 is gathered in the present study, which include 

environmental variables, variables that characterize the habitat and species diversity 

(richness) of different taxa. In addition, remote sensing products were analyzed to gather 

more potentially predicting variables describing the habitat. 

3.1.2 Extraction of predictors from remote sensing data 

Remote sensing variables, like the normalized difference vegetation index (NDVI), have 

been shown to correlate with avian species richness and abundance (LUOTO et al. 2004; 

NIETO et al. 2015). Therefore, the NDVI and other remote sensing statistics, namely land 

use information from satellite data classification, is included into the regression analysis. 

Because of the high mobility of birds, the surrounding of the sample plots is considered 

to have an effect on the number of bird species that can be found on the sample plot. 

Consequently, the remote sensing variables are not only investigated on the sample plot 

itself, but also in the surrounding on increasingly large concentric areas. 
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A land use map from 2013 (MELATI 2017) is analyzed to gather information on the sur-

rounding of the core plots that may influence the species richness found on the corre-

sponding plot. The Shannon-Weaver index (SHANNON AND WEAVER 1949) (see below) 

for land use is calculated for multiple increasingly large concentric circles around the plot 

location to investigate land use diversity. Additionally, land use system proportions 

around the plot center are derived from the land use map. 

Shannon-Weaver index: 𝐻′ = −∑ 𝑝𝑖
𝐶
𝑖=1 ∗ ln⁡(𝑝𝑖) , with 𝑝𝑖 =

𝑛𝑖

𝑁
 

and 

𝐶 = number of land use classes, 

𝑝𝑖 = relative proportion of land use class 𝑖, 

𝑛𝑖 = number of pixels/cells in land use class 𝑖, 

𝑁 = total number of pixels/cells. 

Pearson’s correlation coefficient (see below) is then calculated for avian species richness 

to inspect at which distance the relation is strongest between surrounding land use and 

the target variable to support a decision which buffer distance is used to derive potential 

predictors for the regression analysis. The correlation coefficient is used to determine 

relationships between random variables and describes the linear correlation ranging from 

- 1 (strong negative correlation) over 0 (no correlation) to + 1 (strong positive correlation) 

(CHATTERJEE AND HADI 2006): 

Pearson’s correlation coefficient: 𝑟 =
∑ (𝑥𝑖
𝑛
𝑖=1 −𝑥̅)(𝑦𝑖−𝑦̅)

√∑ (𝑥𝑖
𝑛
𝑖=1 −𝑥̅)²√∑ (𝑦𝑖

𝑛
𝑖=1 −𝑦̅)²

  

with 

𝑛 = sample size, 

𝑥𝑖, 𝑦𝑖 = individual observations of variable 𝑥 and 𝑦 indexed by 𝑖, 

𝑛𝑖 = number of pixels/cells in land use class 𝑖, 

𝑥̅ = 
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  = sample mean of variable 𝑥, 

𝑦̅ = 
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1  = sample mean of variable 𝑦. 

Satellite data (satellite constellation from RapidEye/Blackbridge) from 2013 with a spa-

tial resolution of 5 m is used to investigate the vegetation in the surrounding of the sample 

plots. The remotely sensed imagery is used to calculate the NDVI per pixel in the image, 

which is then used to check for relationships between surrounding NDVI and bird species 
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richness on the sample plot. The variability of NDVI values (pixel standard deviation) 

and mean pixel NDVI are investigated in increasingly large concentric circles around the 

plot with the same technique as for land use (see above). Then the correlation to avian 

species richness is checked for the identification of correlation peaks. 

3.1.3 Data preparation and bird count data analysis 

The analyzed dataset consists of a variety of preprocessed variables that were collected 

by different working groups using a wide range of observation techniques and processed 

to be available for the analysis in other research studies within the CRC 990. Initially, 

variables are removed, that are not expected to affect bird species richness according to 

the literature. Accordingly, soil characteristics, like nutrient availability for individual el-

ements, or biotic soil activities, like microbial or fungal activity data are removed from 

the dataset. Then the variables are converted into a unified dataset with core plot as a 

unique identifier to merge observations by location. For this purpose, biodiversity data 

available as individual species abundance data are converted into species presence-ab-

sence data and finally translated into species richness per plot, which is performed for 

multiple taxa. 

Descriptive statistics and figures are produced to investigate the data at hand and explore 

potential relationships in the data. Scatterplots help to detect potentially useful relations 

between target and predicting variables. For information about multicollinearity in the 

predictors a correlation table graph is used. The correlation is measured by Pearson’s r. 

A Kruskal-Wallis-test for comparison of independent samples of non-normally distrib-

uted random variables (KRUSKAL AND WALLIS 1952) is applied to check for statistically 

significant differences between bird species richness in different land use systems and in 

the two different research landscapes (HR and BD). If significant differences in the set of 

groups are found by the Kruskal-Wallis-test, the determination of which groups show 

statistically significant differences between each other is done by a post-hoc-test (Ne-

menyi-test) (NEMENYI 1963). 

3.2 Model construction 

3.2.1 Construction of regression models for avian species richness 

Statistical models in the context of ecology are used to gain inference about underlying 

processes and ecological principles as well as to predict dependent variables from 
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observations of correlated independent variables. They are used as a “basis for interpre-

tation” to explore “fit” as well as to investigate the “strength” between the variables, that 

is statistical significance of the relationship (GUISAN et al. 2002). In addition to the gen-

eral subject of the investigation of underlying ecological causalities, mathematical (sta-

tistical) models are used to simulate and predict respective response variables where they 

are not or cannot be measured (IBID.). 

The principle of parsimony guides the search for a model since the simplest explanation 

for a problem is usually the best (Occam’s Razor). In the case of statistical models, the 

simplest model means the simplest model type and fitting methodology with the least 

amount of predictor variables (e.g. a simple linear model fitted with the ordinary least 

squares method), since these models are easier to construct, analyze, validate and convey 

to other people. In fact, this principle keeps the models as interpretable as possible, since 

excessively complex models are harder and sometimes impossible to interpret. Neverthe-

less, some ecological questions cannot be investigated with simple linear regression be-

cause the data does not fit assumptions needed for the respective models. Then more 

complex modelling techniques are applied which may compromise the concept of easily 

interpretable models but ensures that the data can be analyzed in the best way possible 

under the given circumstances (GUISAN et al. 2002). 

In the course of the present study the constructed statistical model is used as a prediction 

tool and means to investigate underlying patterns. The relationship between predictor var-

iables and species diversity of birds as depicted in the data is used to predict species di-

versity using the environmental, habitat or biodiversity variables as explaining variables 

for modelling bird species diversity in areas where the bird species richness was not meas-

ured. 

GUISAN et al. (2002) summarize the use of statistical regression models in ecology and 

species distribution modelling and indicate the benefits and drawbacks of specific mod-

elling techniques. Linear regression models of the form 

𝑌 = 𝛼 + 𝑋𝑇𝛽 + 𝜀𝑖 

with 

𝑌 = response variable, 

𝛼 = intercept, 

𝑋 = vector of predictor variables, 

𝛽 = vector of regression coefficients, 
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𝜀 = errors/residuals, 

are limited through their assumptions that must be met to properly apply the methodol-

ogy in an appropriate context. These assumptions are: 

1. identically and independently distributed errors 𝜀𝑖 over all observations as well 

as a homoscedastic response variable 𝑌, 

2. normal distribution in the errors 𝜀𝑖, 

3. and a linear relationship between predictor and response variable. 

If these assumptions are not met, the data is usually transformed via various techniques 

that either alter values of the response variable or the predictor variable. To overcome 

these limiting assumptions other modelling techniques can be applied that eliminate the 

need for the data to fit into these premises (GUISAN et al. 2002). 

Regression methods used for modelling species richness as a function of environmental 

variables include GLMs (GUISAN et al. 2002; LEHMANN, OVERTON et al. 2002; HILDE-

BRANDT 2015). GLMs provide a possibility to overcome the restrictive assumption of 

normally distributed target variables of linear regression models. Since species richness 

is a discrete variable that is in the case of sampling an outcome of counting individuals 

and species, a Gaussian normal distribution cannot be assumed. A Poisson distribution 

must be assumed and incorporated in the regression methodology. Hence, GLMs account 

for the deviance from normal distribution (FAHRMEIR et al. 2013). 

Considering a log-link function in the GLM because of the Poisson distributed target var-

iable, the regression model formula becomes: 

𝑌 = 𝑒𝛼+𝑋
𝑇𝛽+𝜀𝑖 

with 

𝑌 = response variable, 

𝛼 = intercept, 

𝑋 = vector of predictor variables, 

𝛽 = vector of regression coefficients, 

𝜀 = errors/residuals. 

The regression analysis is performed for different sets of response variables. These in-

clude total bird species richness, bird species richness separated for research area (HR 

and BD) and bird species richness of different diet groups of birds. Potential predictor 

variables that are included in the regression analysis are shown in Tab. 1. 
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Tab. 1: Overview of potential predictor variables. (own illustration) 

predictor variable short 
variable 

type 
description 

air temperature temp continuous mean below-canopy air temperature (°C) 

mean humidity hum continuous mean below-canopy air humidity (%) 

elevation elev continuous elevation above sea level (m) 

canopy openness canop continuous 
percentage of ground area not covered by 

tree crowns (%) 

litterfall lit continuous leaf litterfall (Mg/ha*yr) 

biomass carbon biom continuous total tree biomass carbon (Mg/ha) 

plant species rich-

ness 
plant discrete 

number of understorey plant species ob-

served 

ant species richness ant discrete number of ant species observed 

oribatida species 

richness 
orib discrete number of oribatida species observed 

protist species rich-

ness 
prot discrete number of protist species observed 

invertebrate species 

richness 
inv discrete 

number of invertebrate species observed 

in leaf and litter 

spider species rich-

ness 
spid discrete 

number of spider species observed in leaf 

and litter 

chilopoda species 

richness 
chil discrete number of chilopoda species observed 

beetle species rich-

ness 
beetle discrete 

number of beetle species observed in leaf 

and litter 

butterfly species 

richness 
butter discrete number of butterfly species observed 

land use diversity ludiv continuous 

land use diversity in plot surrounding of 

a radius of 2300 m calculated with Shan-

non-Weaverr index (see 3.1.2) 

NDVI ndvi continuous 

mean normalized difference vegetation 

index (NDVI) in plot surrounding of a ra-

dius of 2300 m (see 3.1.2) 

NDVI variability ndvivar continuous 

standard deviation of the NDVI in plot 

surrounding of a radius of 2300 m (see 

3.1.2) 

land use intensity lui continuous 
intensity of management practices 

(SAHNER 2016) 

stand structural com-

plexity 
ssc continuous 

measure for overall structural vegetation 

complexity (EHBRECHT et al. 2017) 

effective number of 

layers 
enl continuous 

measure of vertical structure (EHBRECHT 

et al. 2016) 
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Following this methodology, multiple models are constructed in the statistical computing 

software R (R DEVELOPMENT CORE TEAM 2018) that are then subject to selection based 

on model diagnostic criteria. Initially, a full model is constructed including all available 

data from the two landscapes HR and BD with the target variable total bird species rich-

ness. Additionally, two separate models for HR and BD are constructed with n=15 and 

n=12 respectively to look at differences between the landscapes. Adjustment of the target 

variable allows for further integration of additional dietary information (adopted from 

DARRAS (2016)), that may improve the model. Therefore, a diet group is assigned to most 

of the bird species that can be used to model the bird species richness on the level of a 

diet group. The four separate diet groups are insectivorous birds, omnivorous birds and 

alternative-diet birds of either frugivorous, granivorous, nectarivorous or carnivorous diet 

as well as one group of bird species with unknown diet type. The diet groups are selected 

in the presented way to assure equally sized groups of species and no diet groups of very 

few species. The diet-separated bird species models are aggregated so that a model for 

the total species richness is constructed. Diet-separated bird species richness models are 

constructed for the whole research area with 27 observations. 

3.2.2 Selection of appropriate statistical models 

Model fit needs to be assessed to select appropriate regression models and discard models 

that are not well suited to predict bird species richness. Therefore, the goodness-of-fit of 

the model is checked. One measure for assessing the goodness-of-fit of the model is the 

Akaike information criterion (AIC) (AKAIKE 1974) that is used to rank models according 

to their fit assuming a lower AIC value indicates a better model fit. 

A stepwise variable selection procedure (RION 2010) is applied to pick predictor variables 

that are best suited for the prediction of the target variable. AIC is used as a measure to 

compare between models constructed with the same dataset, but different predictor vari-

ables, favoring the model with the lower AIC. Accordingly, the first model investigated 

is the full model with all potential predictor variables included. In cases where the number 

of observations is lower than the number of potential predictors, the stepwise procedure 

is repeated with multiple starting models consisting of different sets of predictor varia-

bles. The stepwise variable selection then starts to eliminate predictors until the lowest 

possible AIC is reached. Re-inclusion of a predictor after exclusion is possible if the pro-

duced model would have a lower AIC (FAHRMEIR et al. 2013). 
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The variance inflation factor (VIF) (BRAUNER AND SHACHAM 1998) is calculated for 

models with multiple independent variables to account for potential multicollinearity in 

the predictors. This approach is applied for the elimination of collinearity in predictors 

that can compromise model quality. If the VIF exceeds the threshold value of 10 

(FAHRMEIR et al. 2013) the predictor variable that shows the highest VIF is discarded 

from the set of predictors.  

For further selection of a model for the implementation from the presented set of models 

for total bird species richness, research site separated bird species richness and diet type 

separated bird species richness the adjusted R², deviance explained, root-mean-square-

error (RMSE) between the observed and the modelled bird species richness as well as the 

number of predictors are considered. 

3.3 Model implementation and validation 

3.3.1 Integration of predictors into land use change model (EFForTS-ABM) 

The EFForTS-ABM (DISLICH et al. 2018) is an agent-based model that describes the ef-

fects of tropical land use change on ecological and socio-economic functions. The model 

is parameterized for the study region in Jambi and includes ecological and economic sub-

models implemented in an artificially generated mosaic landscape of land use systems 

that is controlled by households. The model landscape consists of 100 x 100 quadratic 

cells (also called patches) representing each 50 x 50 m. The predictor variables integrated 

in the selected regression model for bird species richness estimation are implemented in 

the EFForTS-ABM since they are prerequisite to apply the model in order to predict bird 

species richness. 

Independent variables are simulated by random sampling from a predefined probability 

density distribution computed from the field observations for each of the land use sys-

tems. For the predictor probability density distributions, the observed sample histogram 

is smoothed with kernels to generate an averaged distribution of the predictor. Kernel 

density estimation is performed in order to estimate the probability density distribution 

of all predictor variables by application of a Gaussian kernel with band width estimated 

after SILVERMAN (1986). The probability density distribution estimated with the kernels 

is then discretized to 512 values from which the weighted random sampling is done. For 

each cell in the model a weighted random selection from the predictor probability density 

distribution then defines the specific value. 
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Landscape metrics of land use composition in the surrounding of a cell are computed in 

the same way as done for the extraction of the predictor. Therefore, each cell is considered 

as the center of a 2300 m circular neighborhood that is used to compute the land use 

metrics (see 3.1.2). 

Furthermore, spillover effects at the borders of land use systems may be included, de-

pending on the predictors implemented. The spillover may happen for species richness of 

other taxa, assuming that more species can be found at the edges to land use systems that 

host a larger number of species than the local system. This may be backed up by findings 

from NURDIANSYAH (2016) in oil palm plantations. 

After predictor simulation, the constructed regression model is applied to each of the cells 

in the model landscape to estimate the cell bird species richness from the set of predictor 

values. Mean overall cell bird species richness and land use grouped mean cell bird spe-

cies richness are computed. Additionally, a graph displaying the distributions of cell bird 

species richness grouped for land use system is generated for the inspection of variability 

in cell bird species richness. 

3.3.2 Model validation 

Model output validation is done to gain inference on how well the implemented model 

represents the observations in the field (that were also used to construct the model) and 

to compare the output to an independently collected dataset of bird counts, collected in 

2015 in the research area, but on other sample plots. For this purpose, a virtual ecologist 

approach (ZURELL et al. 2010) is applied that simulates sampling from the landscape-

output of the model. The sampling that is identical to field sampling in the independent 

dataset is repeated 100 times and averaged statistics are compared to the validation dataset 

and model input dataset. 

For output comparison to the model validation dataset the sampling approach of 28 sam-

ple plots per land use type is implemented by a repeated random selection of 28 cells of 

the model landscape per land use type and computation of the averaged means with asso-

ciated confidence interval of certainty level α ≃ 0.95 as well as averaged standard devia-

tions to be compared to the field sample. The confidence interval is constructed using 

twice the standard error to either side of the averaged mean that can be produced by cal-

culating the standard deviation of multiple sample means from the same population. 
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Multiple land use scenarios with different land use configurations are simulated and bird 

species richness is estimated over the artificial landscape to gain inference on model be-

havior in the ABM under different scenarios. 
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4 Results 

4.1 Analysis of remotely sensed predictors 

Potential remotely sensed predictor variables computed by analysis of satellite imagery 

and a classified land use map are investigated for their correlation to the observed bird 

species richness on the plot. Because of restrictions of the map area, the largest buffer 

size for the surrounding land use analysis is 3900 m and because of restrictions of the 

satellite data, the largest buffer size for the vegetation analysis by NDVI is 3500 m. 

 

Fig. 2: Correlation of plot bird species richness to NDVI metrics collected in increasingly large circular buffers around 

sample plots. (own illustration) 

The correlation of mean NDVI and NDVI diversity (cell standard deviation) to bird spe-

cies richness exhibit opposing trends. A positive correlation of bird species richness with 

NDVI diversity corresponds to a negative correlation with mean NDVI at small buffer 

radii. Between 500 m and 1000 m buffer radii, the correlation of NDVI diversity and 

mean NDVI to bird species richness change sign and indicate an inverse trend for larger 

buffer sizes.  

The increasingly large circular buffers around the sample plots show peaks of correlation 

for mean NDVI and NDVI diversity at a small distance to the plot center and at around 
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2300 m radius to the plot (see Fig. 2). Because of the peaks at 2300 m the computed 

values for mean cell NDVI and NDVI cell standard diversity are included into the poten-

tial set of predictor variables that is later used in the regression analysis. 

 

Fig. 3: Correlation of plot bird species richness to land use system proportions and land use diversity collected in 

increasingly large circular buffers around sample plots. (own illustration) 

Land use proportions exhibit varying degrees and tendencies of correlation to plot bird 

species richness. Independent of the buffer radius, forest, jungle rubber and oil palm show 

constant correlations to bird species richness, where forest correlates strongly positive (+ 

0.4) and jungle rubber and oil palm correlate moderately negative (- 0.25). The low cor-

relation of rubber varies over increasing buffer size to a small degree, where first a posi-

tive correlation may be seen that becomes negative at a buffer size of around 1500 m. The 

correlation of land use diversity to plot bird species richness varies over increasing buffer 

size. In small surroundings to the sample plot a low positive correlation may be found 

that decreases until a buffer radius of 2300 m, where a strong negative correlation (- 0.55) 

may be found. After that, the correlation slowly increases with growing buffer radius. 

The strongest absolute correlation may be found for plot bird species richness and land 

use diversity when considering a circular area of radius 2300 m around the plot (see Fig. 

3). Therefore, the derived land use diversity in a buffer of 2300 m around the sample plot 

is included in the set of potential predictors for the regression analysis. 
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4.2 Descriptive data analysis and correlation analysis 

Bird species richness and variability between observations vary between land use systems 

(see Fig. 4). The highest observed median bird species richness can be found in forest 

with 18 (mean: 18.86) species per plot. Jungle rubber and rubber host a median bird spe-

cies richness per plot of 15 (mean: 13.16) and 11.5 (mean: 13.88) respectively, while oil 

palm plots host the lowest median number of bird species per plot of 9 (mean: 9.14). 

Variability between observations is highest in rubber (standard deviation: 5.74) and forest 

(standard deviation: 5.14), intermediate for jungle rubber (standard deviation: 4.02) and 

lowest for oil palm (standard deviation: 1.77). The Kruskal-Wallis-test indicates statisti-

cal differences between land use types that are uncovered via the post-hoc-test indicating 

significant differences (p = 0.002) between forest and oil palm land use systems in terms 

of bird species richness. 

  

Fig. 4: Boxplots of bird species richness grouped by land use system. (own illustration) 

The observations of overall bird species richness per plot and variability of observations 

between the two landscapes BD and HR differs to a small extent. The research landscape 

BD presents a higher average bird species richness per plot of median 15 (mean: 14.85), 

while the median bird species richness in HR is 11 (mean: 12.87). The variability of ob-

servations is similar between BD and HR with standard deviations of 5.41 and 5.63 re-

spectively. The Kruskal-Wallis-test indicates no significant difference (p = 0.21) between 

the two landscapes in terms of overall bird species richness.  



Results 

23 

 

Pearson’s correlation coefficient reveals the strength of the linear relationship between 

the target variable total bird species richness and the potential predictor variables as well 

as the correlation between the predictor variables (see Fig. 5). 

 

 

Fig. 5: Correlation matrix indicating Pearson’s correlation coefficient between all variables in the dataset. (own illus-

tration) 

Bird species richness shows strong positive correlation with beetle species richness, bio-

mass carbon and plant species richness while strong negative correlation can be found for 

land use diversity and land use intensity. Less strong positive correlations may be found 

for elevation, humidity, ant species richness, oribatida species richness, invertebrate spe-

cies richness, butterfly species richness, stand structural complexity and effective number 

of layers. Weak negative correlations are found between bird species richness and tem-

perature as well as canopy openness. No correlation may be found between bird species 

richness and litterfall, protist species richness, spider species richness, chilopoda species 

richness and mean NDVI as well as NDVI diversity. A large amount of multicollinearity 

can be found between some of the predictors, for example temperature and effective num-

ber of layers exhibit strong linear correlations with many of the potential predictor varia-

bles. 
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Fig. 6: Scatterplot for bird species richness and beetle species richness. (own illustration) 

Bird species richness and beetle species richness show a strong positive correlation (Pear-

son’s r = 0.65) indicating an increasing number of bird species with increasing number 

of beetle species on a plot (see Fig. 6). Forest sample plots show both a high richness of 

bird species and high richness of beetle species, while oil palm plots show lower numbers 

of bird and beetle species. Although the overall trend is positive, looking at the observa-

tions in land use types independently a larger beetle richness correlates negatively with 

bird species richness in rubber plantations if the largest observation is considered as an 

outlier. 

Fig. 7 shows the relationship between bird species richness and land use diversity in a 

surrounding of 2300 m. Bird species richness negatively correlates with land use diversity 

(Pearson’s r = - 0.53) indicating that a low land use diversity in the surrounding relates 

to a high bird species richness. All sample plots in the HR research area located in forest 

show very low surrounding land use diversity and medium to high bird species richness, 

while forest plots in BD show medium bird species richness, but intermediate to high 

surrounding land use diversity. Oil palm sample sites of both research areas show low 

bird species richness, but high land use diversity in their surroundings. Jungle rubber and 

rubber sample plots scatter between forest and oil palm with an intermediate to low num-

ber of bird species with intermediate to high land use diversity in their surroundings. 
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Fig. 7: Scatterplot for bird species richness and land use diversity. (own illustration) 

4.3 Model construction and selection 

After excluding missing values, a dataset with 21 potential predictors each consisting of 

27 observations is produced that is then analyzed for regression relationships to the target 

variable avian species richness. 

Tab. 2: Model diagnostics overview, with insect = insectivores; omni = omnivores; alt = alternative -diet species; 

unkn = unknown diet species. (own illustration) 

 model ID 

 1 2 3 4a 4b 4c 4d 4 

RMSE 3.5410 2.0253 4.1093 1.9839 1.2150 0.7307 1.6953 3.4634 

RMSE % 26.08 15.74 28.25 39.68 30.09 65.51 49.53 25.51 

adj. R² 0.513 0.838 0.319 0.217 0.307 0.434 0.550 - 

deviance  

explained (%) 
57.2 86.8 39.8 29.6 40.2 36.8 54.2 - 

no. of  

predictors 
4 2 2 2 3 2 2 7 

response  total total total insect omni alt unkn total 

data all HR BD all all all all all 

sample size (n) 27 15 11 27 27 27 27 27 
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The outcome of the described methodology are 8 models in total of which 3 models have 

the target variable total bird species richness (see Tab. 2). The adjusted R² of the models 

range from 0.217 to 0.838 and the relative RMSE ranges from 15.74 % to 65.51 % with 

a number of predictors included in the models from 2 to 7. 

The best fit model, following adjusted R², deviance explained and RMSE is regression 

model 2 that describes the relationship between total bird species richness and ant species 

richness as well as effective number of layers for the research landscape HR. In contrast 

to the model describing bird species richness in BD which has a far worse fit. 

The diet separated bird species richness models have variable fits for different diet groups 

that range from an adjusted R² of 0.217 for insectivores to 0.55 for unknown diet bird 

species. The relative RMSE indicates that the model estimating the number of species of 

omnivores shows the lowest error between the field observations and the modelled spe-

cies richness, while bird species richness of alternative diets is modelled with the highest 

relative average difference between field observation and model output. 

Model 1 and 4 both model the total bird species richness including all data, not separated 

for research landscapes. While model 1 estimates the total bird species richness directly 

by the predictor variables, model 4 consists of the sum of all diet-separated models. Both 

models perform similar in terms of fit, while model 4 that incorporates information on 

the diet of a species, that is not considered in model 1, shows a slightly better RMSE. 

However, this may be attributed to the larger number of predictor variables included in 

the regression model of 7, versus 4 in model 1. 

The best fit model for total bird species richness with all data available not separated for 

diet groups (model 1), has an adj. R² of 0.513 and a relative RMSE of 26.08 % with 4 

predictors. 

The most important predictor variables are, in descending order of inclusions in models, 

land use diversity, beetle species richness, ant species richness and stand structural com-

plexity (see Tab. 3). Canopy openness, effective number of layers, invertebrate species 

richness, elevation, plant species richness and chilopoda species richness were selected 

in one model as predictor. The rest of the potential predictors (Tab. 1) is not included in 

any of the constructed regression models. 

Some coefficient estimates for predictors included in the constructed regression models 

do not exhibit statistically significant differences from 0, hence their p-value is higher 

than a given threshold. This is true for example in the case of canopy openness in model 
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1. Nevertheless, the non-significant predictors are kept in the model because of the po-

tential omitted-variable bias, that could occur if the predictor would be excluded. 

Tab. 3: Model coefficient estimates with significance codes indicating thresholds for p-values:  0 ‘***’ 0.001 ‘**’ 

0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. (own illustration) 

variable model ID 

 1 2 3 4a 4b 4c 4d 

(intercept) 2.078*** 1.252*** 2.679*** 1.280*** 1.206* 0.919 0.697* 

ludiv - 0.476** - - 0.388 - 0.373 - 0.599* - - 

beetle 0.0271* - 0.0331* - - - 0.093*** 

ant 0.010 . 0.018* - - - - - 

ssc - - - - - 0.109 - 0.429* - 

canop 2.201 - - - - - - 

enl - 0.052* - - - - - 

inv - - - 0.008* - - - 

elev - - - - 0.018* - - 

plant - - - - - 0.010** - 

chil - - - - - - - 0.162 

 

The model selected for further implementation from the set of models is model 1 due to 

the model fit statistics, a low number of included predictor variables and the target varia-

ble of overall bird species richness (see Tab. 2): 

𝑏𝑖𝑟𝑑𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 = 𝑒2.781⁡+⁡⁡0.0271∗𝑏𝑒𝑒𝑡𝑙𝑒⁡+⁡0.0104∗𝑎𝑛𝑡⁡+⁡2.2019∗𝑐𝑎𝑛𝑜𝑝⁡−⁡0.4762∗𝑙𝑢𝑑𝑖𝑣 

with 

𝑏𝑖𝑟𝑑𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 = total number of bird species, 

𝑏𝑒𝑒𝑡𝑙𝑒 = beetle species richness, 

𝑎𝑛𝑡 = ant species richness, 

𝑙𝑢𝑑𝑖𝑣 = neighborhood landcover diversity (2300 m around plot), 

𝑐𝑎𝑛𝑜𝑝 = canopy openness (%). 

A land use-grouped scatterplot visualizing the relationship between observed bird species 

richness and modelled bird species richness according to the regression model selected is 

suitable to gain inference about the model performance in different land use systems (see 

Fig. 8). The optimal model that has the best fit possible would produce observation points 

on the dashed 45° line, points above the dashed line indicate model underestimation, 

points below indicate model overestimation. 
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Fig. 8: Model diagnostic for model 1 with field-observed bird species richness (y) plotted against modelled bird spe-

cies richness (x). (own illustration) 

The average error of the model (RMSE) to the according field observation is 3.541 which 

represents a relative error of ± 26.08 % normalized to the overall mean bird species rich-

ness. The model overestimates bird species richness in the majority of instances. Larger 

errors occur for all land use systems and the errors are distributed equally over the whole 

range of bird species richness modelled. 

4.4 Model implementation 

The constructed statistical regression model is incorporated in the already existing EF-

ForTS-ABM in NetLogo. NetLogo is chosen as a programming platform since it facili-

tates the implementation of spatially explicit agent-based systems. The inclusion of the 

bird richness model widens the scope of the ABM, including then another ecological 

facet, besides a carbon model. The predictor variables beetle species richness, ant species 

richness, canopy openness and land use diversity are simulated over the model landscape 

to generate observations of the independent variables in each cell that feed into the bird 

richness model in a subsequent step. 

Beetle and ant species richness as well as canopy openness are simulated in each cell by 

random weighted sampling from a probability distribution constructed from the smoothed 

field data on the core plots. 
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Spillover effect of ants was found in the area, indicating that at interfaces between land 

use systems an increased amount of species may be found (NURDIANSYAH 2016). That is 

why a spillover effect for beetle and ant species is added to the model that increases the 

number of species found close to forest patches. All land use cells that are not forest, but 

border forest on at least one side are affected by the spillover effect. The strength of the 

spillover effect can be adjusted from 0 to + 50 % of the ant species richness and 0 to + 10 

% of the beetle species richness. The spillover effect can be switched off entirely. 

 

Fig. 9: NetLogo landscape model output with land use (A) and corresponding cell bird species richness (B) for two 

different land use patterns (1 and 2). (own illustration) 

The overall mean cell bird species richness for model output 1 is 13.81 (model output 2: 

15.67). Forest shows the highest mean cell bird species richness with 15.66 (model output 
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2: 16.99), jungle rubber shows the second highest mean cell bird species richness with 

14.43. Rubber land use cells host an average of 12.82 (model output 2: 12.69), bird spe-

cies and oil palm cells have the lowest mean cell bird species richness of 11.34 (model 

output 2: 11.27). Forest and jungle rubber show equally high variability (standard devia-

tion) of cell bird species richness followed by rubber with intermediate variability and oil 

palm with the lowest variability of cell bird species richness. 

Bird species richness differences in the modelled landscape output may be seen in the 

different land use systems, especially between forest and oil palm. Lower average bird 

species richness can be found in oil palm and rubber cells, while forest hosts a larger 

average number of bird species per cell. Additionally, higher cell bird species richness 

may be found in remote forest areas (see corners of 2B of Fig. 9) that are affected by the 

low land use diversity in the surrounding of the areas. Stochastic noise can be seen in the 

model output indicating the variability inside the land use systems (e.g. differences in bird 

species richness between forest cells). 

4.5 Model validation 

The comparison of the sampled model output to a validation dataset reveals the model 

performance. The comparison of sampled model output to model input indicates how well 

the model fits the data used for construction, which gives inference about how well the 

model implementation methodology is suited. Land use configuration in the artificial 

landscape influences the bird species richness estimation due to the fact that land use 

diversity in a certain cell neighborhood affects the cell bird species richness. Therefore, 

two different land use configuration scenarios are investigated and their output is com-

pared to the validation dataset and to the model input. 

Initially, the independent validation dataset needs to be compared to the model input da-

taset to gain information about differences and similarities to be able to correctly interpret 

why there are differences between the model output and the independent validation da-

taset. The comparison between independent dataset and model input dataset indicates sta-

tistically significant differences between the mean number of bird species only for oil 

palm, because the constructed confidence intervals do not overlap. The differences in 

mean bird species richness in all other land use systems can be explained by a low sam-

pling effort or no real difference in the communities represented by the samples. The 

variability between the observations is higher in the validation dataset for forest and oil 

palm and lower in the validation dataset for rubber and jungle rubber. 
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Tab. 4: Comparison of descriptive statistics for model validation grouped by land use type (* = shrub-bushland in 

validation data). (own illustration) 

 model output 

1 (n=28) 

model output 

2 (n=28) 

validation 

data (n=28) 

model input 

(n=8) 

F
o

re
st

 mean 15.66 16.99 17.39 18.86 

confidence interval 14.54 – 16.78 15.65 – 18.33 15.31 – 19.47 14.98 – 22.74 

standard deviation 3.05 3.44 5.50 5.15 

O
il

 p
al

m
 mean 11.34 11.27 12.18 9.14 

confidence interval 10.72 – 11.96 10.71 – 11.83 10.92 – 13.44 7.80 – 10.48 

standard deviation 1.55 1.57 3.33 1.77 

R
u

b
b

er
 mean 12.82 12.69 12.79 13.29 

confidence interval 11.86 – 13.78 11.75 – 13.63 11.15 – 14.61 8.81 – 17.77 

standard deviation 2.34 2.23 4.80 5.90 

Ju
n
g
le

 r
u
b

-

b
er

*
 

mean 14.43 - 17.25 12.80 

confidence interval 13.15 – 15.71 - 15.75 – 18.75 8.88 – 16.72 

standard deviation 3.39 - 3.98 4.38 

 

The mean of the sampled model output 1 (see Tab. 4) corresponding to landscape 1 of 

Fig. 9 compared to the validation dataset indicates small differences for oil palm and 

rubber land use systems. Mean cell bird species richness for forest and jungle rubber are 

underestimated in the model compared to the validation dataset by 1.73 and 2.82 species. 

The variability (standard deviation) of bird species richness is underestimated by the 

model in all land use systems presenting the highest difference of 2.46 in rubber and the 

lowest difference in jungle rubber of 0.59. Considering the standard errors of the estimates 

in the model validation dataset, construction of confidence intervals of certainty level of 

α ≃ 0.95 around model input mean and model validation mean indicate no significant 

differences between model input and model validation data for forest, oil palm and rub-

ber. Only the confidence intervals of jungle rubber do not overlap indicating significant 

differences that could also be accounted to the fact that the validation dataset for jungle 

rubber was sampled in a land use type called “shrub-bushland” that may differ to the 

jungle rubber observations collected and used as model input. 

Comparison of the sampled model output 1 to the model input dataset indicates an average 

bird species richness overestimation of the model for oil palm and jungle rubber and an 

underestimation for forest and rubber. The variability of bird species richness (standard 

deviation) is underestimated in all cases, with a larger underestimation in rubber and for-

est, a smaller underestimation in jungle rubber and close to zero difference in oil palm. 



Results 

32 

 

Considering the confidence intervals of certainty level of α ≃ 0.95 around model input 

mean and model output mean indicate no significant differences between model input and 

model output for forest, rubber and jungle rubber. Only the confidence intervals of oil 

palm do not overlap indicating significant differences. 

The sampled model output 2 (see Tab. 4) corresponding to landscape 2 of Fig. 9 shows 

similar relationships to the validation dataset and to the model input dataset as model 

output 1. Differences are that no jungle rubber land use cells exist and that the average 

forest cell bird species richness is increased but still not statistically significantly different 

to the validation or model input dataset. 
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5 Discussion 

5.1 Results against the background of the research objective 

Statistical modelling of bird species diversity in the highly complex ecosystems of the 

tropics under continuing land use and linked habitat change by regression analysis as 

performed in the present study and integrated in the EFForTS-ABM supports the search 

for synergy and trade-off effects between ecological and socioeconomic functions in the 

land use transformation systems of Indonesia. 

The results show that regression modelling of bird species richness by habitat and biodi-

versity of other taxa is possible even though sample size is low. Additionally, the model 

output shows no significant differences to an independent validation dataset for land use 

systems forest, rubber and oil palm. The research objective of the present investigation is 

to construct a statistical regression model, implement the model in NetLogo, validate the 

model output and assess model behavior. For the evaluation of this objective, four re-

search questions were formulated that shall be answered: 

i. Which environmental, habitat and biodiversity variables determine bird species 

richness in the land use transformation systems of Indonesia? 

Beetle species richness, plant species richness, biomass carbon, land use intensity 

and land use diversity in the surrounding of 2300 m show the strongest correla-

tions with bird species richness and can be considered to have a relationship to 

bird species richness. However, a causal effect cannot undoubtedly be associated 

to these relations. The habitat describing proxies plant species richness, biomass 

carbon, land use diversity and land use intensity may affect which niches are avail-

able at a given site, while beetle species richness may be an indicator for diversity 

of forage for birds. Environmental variables, like air humidity or temperature only 

show weak correlation to bird species richness, indicating that variables describ-

ing the small scale structure of the habitat may be more important factors deter-

mining bird species α-diversity than environmental variables describing the cli-

mate, which is supported by the statements of TELLERÍA et al. (1992). 

Considering the regression analysis, most important predictor variables for bird 

species richness remain habitat and biodiversity variables like land use diversity, 

beetle species richness, ant species richness and stand structural diversity. With 

respect to different sub areas of the research region and different target variables 
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- diet groups of bird species - the importance of habitat structure describing vari-

ables and forage diversity proxies persists. 

ii. How can environmental, habitat and biodiversity predictor variables be combined 

into a statistical regression model to predict bird species richness? 

For the prediction of bird species richness a GLM of Poisson distribution with a 

log-link may be used following partly the methodologies of KOH (2008) and 

LUOTO et al. (2004). The best fit model that is most suitable to predict bird species 

richness in the considered environment uses habitat describing variables (canopy 

openness and surrounding land use diversity) as well as biodiversity measures of 

other taxa (beetle and ant species richness) as independent variables. These pre-

dictor variables are combined linearly without interacting effects. 

Including additional information into the regression analysis, like species diet in-

formation, for the separation of total bird species richness into multiple individu-

ally modelled subparts of the overall species richness improves the model fit only 

marginally while increasing the number of predictors. Hence, the direct modelling 

of total bird species richness remains the best option. 

Modelling of bird species richness by GAMs may improve fit and predictive 

power of the model because the data can be fit more flexibly. Since the main goal 

of the constructed model is to predict bird species richness, rather than explaining 

the underlying effects of the distribution of bird species richness, GAMs as “data 

defined […] models” (GUISAN et al. 2002) may also be a viable option. 

iii. Can bird species richness be predicted by environmental, habitat and biodiversity 

variables in a sufficiently precise manner? 

Bird species richness can be predicted by habitat and biodiversity variables with 

a deviance explained of 57.2 % in the research area. Comparison of the model 

output to an independent validation dataset yielded only small, mostly statistically 

insignificant differences. 

KOH (2008) established bird species richness models for oil palm plantations in 

Malaysia that explain 5.7 % and 14.4 % of the variation in bird species richness 

at a local level and landscape level respectively. LUOTO et al. (2004) constructed 

a bird species richness model using remote sensing predictors that accounts for 

60.8 % of the variation in bird species richness in southwestern Finland. Accord-

ingly, the model constructed in the present study exhibits a relatively high 
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goodness-of-fit compared to other studies modelling bird species richness by re-

gression analysis. 

iv. What is the link between land use and bird species richness? 

The link between land use and bird species richness remains uncertain. Statisti-

cally significant differences between the land use types regarding bird species 

richness were only found between forest and oil palm, while rubber and jungle 

rubber did not show significant differences between each other and to forest and 

oil palm. Hence, the sample only indicates that bird species richness is diminished 

in oil palm plantations compared to forest. 

PRABOWO et al. (2016) analyzed the same dataset of 32 observations of bird spe-

cies richness and found additional statistically significant differences for forest 

and rubber plantation in HR. Considering this finding, evidence exists that total 

bird species richness is reduced in cash crop plantations of rubber and oil palm 

compared to tropical lowland rainforest. 

Furthermore, the remote sensing analysis and subsequent correlation and regres-

sion analysis show that the land use diversity in the surrounding is linked to bird 

species richness. The strong negative correlation of land use diversity in a sur-

rounding of 2300 m with bird species richness suggests a negative effect. This 

strong correlation however may be masked by the isolated forest plots in the sam-

ple that show high bird species richness and low land use diversity in their sur-

rounding because the sample locations are placed in remote national parks con-

sisting of forest only. A higher land use diversity in the surrounding would 

implicitly represent an increased proportion of monoculture or agroforestry land, 

which is assumed to negatively affect the bird species richness. This can be backed 

up when looking at the correlation between different land use types and bird spe-

cies richness on the plot (see Fig. 3) indicating a positive correlation for forest and 

negative correlation for oil palm and jungle rubber. Although the negative corre-

lation of land use diversity in the surrounding is difficult to explain, the inclusion 

of the variable as an independent variable is improving the goodness-of-fit of the 

model drastically. 

The implemented regression model produces expected outputs regarding the field data, 

indicating highest per cell bird species richness in forest and lowest bird species richness 

in oil palm. These findings are also backed up by the validation dataset. Model behavior 
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in different landscapes, representing varying land use composition and configuration also 

produce expected model outputs. 

A strong link between land use and bird species richness exists for the land use diversity 

considering a circular surrounding of radius 2300 m. As mentioned before, this relation-

ship may be an artefact of the isolated forest sampling plots, how the plots are located in 

the area and the uncertainties of the analyzed land use map. Why a surrounding of 2300 

m has the largest correlation to bird species richness is difficult to explain. This specific 

distance could be linked to the travel distance of the birds. The distance could also be an 

artefact of the land use map and sample site selection. 

5.2 Results against the background of other relevant studies 

The outcome of the regression model can be assessed against the background of other 

recent studies investigating species diversity by regression analysis to derive differences 

and similarities. 

KOH (2008) found that in Malaysia’s oil palm plantations “the most important predictors 

of species richness […] were […] percentage cover of young secondary forests surround-

ing an estate for birds”. This evidence can also be found in Jambi since on a small scale 

as well as on a large scale forest proportion has a strong positive linear correlation with 

bird species richness on the plot. 

The same observations were made for rubber plantations. ZHANG et al. (2017) show in a 

study conducted in China that the extent of natural forest patches at landscape level is 

linked to bird species richness in rubber plantations. This finding corresponds to the high 

correlation of bird species richness in the analyzed data of the present study with forest 

proportion in the larger scale surrounding of the plot, indicating that the correlation be-

tween bird species richness and land use diversity is indeed caused by high forest propor-

tions associated with high bird species richness and low surrounding land use diversity. 

Regarding the goodness-of-fit, the constructed model can also be compared to other stud-

ies of different taxa. OVERTON et al. (2009) modelled snail species richness in New Zea-

land, based on 2330 community surveys and a range of environmental and vegetation 

variables. The species richness model was developed using a GAM with 14 predictor 

variables, explaining 27 % of variation in snail richness. Even though the sample size is 

larger, the degree of variation explained indicates that the goodness-of-fit of the regres-

sion model constructed in the present study is high compared to other taxa, like snails. 
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In a study on the species richness of forest passerines on the Iberian Peninsula by 

TELLERÍA et al. (1992), only tree density between several climatic and habitat variables 

investigated, was correlated with avian species richness. A comparable result may be 

found in the present study, since habitat describing variables, like plant diversity, canopy 

openness or tree biomass were also correlated to bird species richness. 

In the present study, NDVI statistics have no strong correlation to bird species richness 

and were not included in the bird species richness model. MCFARLAND et al. (2012) con-

ducted a study on the regression model based prediction of bird species richness by re-

motely sensed NDVI statistics in Arizona, USA, and come to the conclusion that the var-

iability explained even by the best constructed regression model is very low. They 

conclude that NDVI statistics are not able to predict bird species richness in certain envi-

ronments, which can be backed up by the findings in this study. 

5.3 Methodological limitations 

Considering the applied methodology, some limitations exist need to be kept in mind. For 

instance, stepwise variable selection procedures are considered to be high variance oper-

ations because small perturbations of the response data can sometimes lead to vastly dif-

ferent subsets of the variables (GUISAN AND ZIMMERMANN 2000). Therefore, the pre-

sented approach is only viable if the goal is to construct predicting regression models 

rather than explaining models, because the inference can be vastly different although the 

analyzed data differs only marginally. 

Pearson’s correlation coefficient and GLMs do not account for non-linear correlation 

between dependent and independent variables. Potential strong non-linear correlations 

that may improve goodness-of-fit of the regression model if implemented in a GAM are 

missed in the presented methodology. Consequently, GAMs, which provide the possibil-

ity to automatically estimate non-linear relationships between random variables and fit a 

generalized regression model may improve model fit and the power to estimate bird spe-

cies richness. 

The implemented parametrization of the spillover effect, i.e. the extent of spillover, into 

other land use systems cannot be backed up by specific empirical findings, only the pres-

ence of a spillover effect is based on empirical observations after NURDIANSYAH (2016). 

Consequently, the spillover effect may be parametrized incorrectly and can be turned off 

or adjusted in its extent. 
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Furthermore, it is important to develop a theoretical or conceptual model of the studied 

system that can explain the results seen in the statistical model, or better, to have a con-

ceptual model before the statistical modelling starts that can be evaluated with the statis-

tical model (CALE et al. 1983). This approach is most important if the model is used to 

explain relationships and effects rather than predicting the dependent variable from an 

independent variable. The “data-driven” approach that is applied in the present study is 

not able to reliably identify effects of independent variables on bird species richness and 

should therefore not be used for that task. 

5.4 Model and data limitations 

Regarding the data and the constructed model, limitations exist that need to be kept in 

mind when using the model and inferring from the model and model output. 

The model at hand is not suited to model the overall bird species richness that is present 

at a given location because of the mentioned restrictions of sampling and the correlation 

of sampling effort with bird individuals and species observed. Consequently, the model 

should only be used for the comparison between sites and considered to be constructed 

for areas of 2500 m² only with a given sampling effort. 

Another constraint of the model is that it deals with anonymous species. The species are 

not modelled individually and therefore it is not included in the model which species is 

present at a given location, only how many different species. This approach has the down-

side that neither β- nor γ-diversity can be assessed. Also, functional diversity associated 

to specific bird species cannot be assessed due to the anonymous species modelling tech-

nique. 

The experimental sampling design with sample sites intended to be replications in the 

different land use systems is not optimal for the use of the gathered data in regression 

analysis. An experimental design is used if the effect of a categorized variable, or at least 

discrete levels of a treatment, on a target variable is assessed. In the present case, the 

effect of land use system on a variety of target variables is investigated, which requires 

multiple replications in the different land use systems. Therefore, core plots are selected 

so that the conditions, i.e. the land use system, varies very little between the replications. 

For a regression analysis, as done in the present study, capturing as much variability of 

the target as well as the predictor variable is crucial to be able to construct valid regression 
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relationships. Consequently, the sampling design would have been different if the data 

was intended to be used in regression analysis only. 

The analyzed dataset may be one restriction that needs to be kept in mind when using the 

model and interpreting results. This applies to all input data which include field observed 

data on the 32 core plots as well as remotely sensed data from the land use map. Since 

the data was collected by different people with a variety of methods, the assessment of 

data quality is also difficult. Additional data restrictions are also present for the validation 

dataset since the detection range, the distance at which an individual that is in the dataset 

was detected, could not always be recorded. Therefore, the size of the sample plot on 

which birds were observed in the sample dataset is not precisely defined and this may 

have effects on the comparability between model output and validation data. Neverthe-

less, validating the model output at all enables a rough estimation of the model perfor-

mance, even though the validation data does not perfectly fit model input data.  

Additionally, the analyzed land use map produced by MELATI (2017) poses another po-

tential limitation to model quality. Although the overall accuracy is 81.8 %, indicating 

that the presented share of pixels in the map are classified correctly, potential misclassi-

fications around the plots may lead to biased correlation estimates between surrounding 

land use and bird species richness. 

5.5 Conclusions and outlook 

The raw number of bird species found at a location does not provide accurate and com-

prehensive information about the diversity of the given taxon. Individual abundance, 

evenness or variability of species composition between sites (β-diversity) need to be con-

sidered also to gain full information about the present biodiversity. 

When investigating ecosystem functions, functional diversity as an indicator can be con-

sidered since two different species may perform the same ecosystem function, while an-

other species is the only species responsible for a variety of ecosystem functions (BARNES 

et al. 2014). Therefore, decreased bird species richness must not always result in dimin-

ished ecosystem functioning since there may be multiple species occupying the same 

functional role in a habitat. Nevertheless, BARNES et al. (2014) discovered that reductions 

in ecosystem functions exceed the loss of species diversity, which may be explained stat-

ing that a single species provides multiple ecosystem function. 
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The model constructed in the present study may be improved by some additions to the 

implementation in NetLogo. This includes the data-based parametrization of spillover ef-

fects and the elaboration of improved techniques of predictor simulation over the land-

scape. It may be assumed that the predictor variables show a trend over the lifecycle of a 

plantation that differs in oil palm, rubber and jungle rubber. This relation may be used to 

construct deterministic relationships in form of regression models between beetle and ant 

species richness, as well as canopy cover with plantation age. 

A literature review shows that some predictors correlate with plantation age. Canopy 

cover positively correlates with oil palm plantation age (WANG AND FOSTER 2016). This 

is also backed up by data collected in Malaysia (KOH 2008) that may be used to derive a 

simple exponential regression model to determine the relationship between oil palm plan-

tation age and canopy cover. Using this deterministic regression model, the oil palm can-

opy cover can be estimated using plantation age as a predictor. In addition, WANG 

AND FOSTER (2016) observe that in contrast to compositional diversity, the species rich-

ness of ground-foraging ants does not vary with increasing oil palm plantation age. This 

relationship can also be backed up by the field data used in the present study indicating 

no potential use of a deterministic model to estimate ant species richness as a function of 

plantation age in the simulation of that predictor. 

 

The model constructed in the present study may be used to identify synergy and trade-off 

effects for avian α-diversity and other ecological and socioeconomic ecosystem functions 

to secure human livelihoods as well as biodiversity. Keeping the stated restrictions and 

limitations in mind, the model implementation may be used to pinpoint areas of high bird 

species richness indicating areas of conservation priority and investigating different fu-

ture land use scenarios. Ultimately, the presented findings contribute to the discussion on 

avian biodiversity in a changing world. 
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7 Appendix 

7.1 Running the model implementation in NetLogo 

The bird species richness model implementation is realized in NetLogo 5.3.1. and based 

upon the EFForTS-ABM that is available as supplementary material from DISLICH et al. 

(2018). Additional information on the EFForTS-ABM and how the economic and eco-

logical sub-models function can also be read in DISLICH et al. (2018). 

The EFForTS-ABM must be extended for running the bird species richness model. There-

fore, the model code nls-file must be included, code must be added to the EFForTS-ABM 

main code, predictor distribution csv-files must be added and the user interface has to be 

expanded. The following instructions guide through the process of implementing the 

model based on the readily available EFForTS-ABM in NetLogo 5.3.1 and indicate how 

the model can be used. 

Inclusion of bird species richness submodel 

The model code, available as birdRichness_submodel.nls, is copied from the supplemen-

tary material of the present study to the directory /scr of the EFForTS-ABM directory. 

__includes ["scr/birdRichness_submodel.nls"] has to be included in the main code to 

import the model code. 

Inclusion of predictor distributions 

The smoothed empirical predictor distributions from the field data are available as val-

ues_predictor_landuse.csv and weights_predictor_landuse.csv where predictor is one of 

antRichness, beetleRichness or canopyOpenness and landuse is one of forest, oilpalm, 

junglerubber or rubber. These 24 files are copied from the supplementary material of the 

present study to the directory /input/bird/predictor_distributions of the EFForTS-ABM 

directory. The inclusion into the model is done in the main code (see below). 

New code to be added in the EFForTS-ABM main code 

An additional extension needs to be included by extensions [csv]. 

Global variables are added that store mean cell bird species richness and empirical 

smoothed distributions of predictor variables from the data: 

globals [ 
 
  forest_bird_richness 
  oilpalm_bird_richness 
  rubber_bird_richness 
  junglerubber_bird_richness 
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  overall_bird_richness 
 
  values_antRichness_forest 
  weights_antRichness_forest 
  values_beetleRichness_forest 
  weights_beetleRichness_forest 
  values_canopyOpenness_forest 
  weights_canopyOpenness_forest 
 
  values_antRichness_oilpalm 
  weights_antRichness_oilpalm 
  values_beetleRichness_oilpalm 
  weights_beetleRichness_oilpalm 
  values_canopyOpenness_oilpalm 
  weights_canopyOpenness_oilpalm 
 
  values_antRichness_junglerubber 
  weights_antRichness_junglerubber 
  values_beetleRichness_junglerubber 
  weights_beetleRichness_junglerubber 
  values_canopyOpenness_junglerubber 
  weights_canopyOpenness_junglerubber 
 
  values_antRichness_rubber 
  weights_antRichness_rubber 
  values_beetleRichness_rubber    
  weights_beetleRichness_rubber 
  values_canopyOpenness_rubber 
  weights_canopyOpenness_rubber 
 
] 
 

Additionally, a patch variable is added, that stores the bird species richness in a given 

cell: 

patches-own [ 
  p_bird_richness 
] 
 

Furthermore, the modelling procedure starter and inclusion of the predictor distributions 

is added by: 

to model-biodiversity 
 
  set values_antRichness_forest csv:from-file "/input/bird/predictor_distribu-

tions/values_antRichness_forest.csv" 
  set values_antRichness_forest item 0 values_antRichness_forest 
  set weights_antRichness_forest csv:from-file "/input/bird/predictor_distribu-

tions/weights_antRichness_forest.csv" 
  set weights_antRichness_forest item 0 weights_antRichness_forest 
  set values_beetleRichness_forest csv:from-file "/input/bird/predictor_distri-

butions/values_beetleRichness_forest.csv" 
  set values_beetleRichness_forest item 0 values_beetleRichness_forest 
  set weights_beetleRichness_forest csv:from-file "/input/bird/predictor_dis-

tributions/weights_beetleRichness_forest.csv" 
  set weights_beetleRichness_forest item 0 weights_beetleRichness_forest 
  set values_canopyOpenness_forest csv:from-file "/input/bird/predictor_distri-

butions/values_canopyOpenness_forest.csv" 
  set values_canopyOpenness_forest item 0 values_canopyOpenness_forest 
  set weights_canopyOpenness_forest csv:from-file "/input/bird/predictor_dis-

tributions/weights_canopyOpenness_forest.csv" 
  set weights_canopyOpenness_forest item 0 weights_canopyOpenness_forest 
 
  set values_antRichness_oilpalm csv:from-file "/input/bird/predictor_distribu-

tions/values_antRichness_oilpalm.csv" 
  set values_antRichness_oilpalm item 0 values_antRichness_oilpalm 
  set weights_antRichness_oilpalm csv:from-file "/input/bird/predictor_distri-

butions/weights_antRichness_oilpalm.csv" 
  set weights_antRichness_oilpalm item 0 weights_antRichness_oilpalm 
  set values_beetleRichness_oilpalm csv:from-file "/input/bird/predictor_dis-

tributions/values_beetleRichness_oilpalm.csv" 
  set values_beetleRichness_oilpalm item 0 values_beetleRichness_oilpalm 
  set weights_beetleRichness_oilpalm csv:from-file "/input/bird/predictor_dis-

tributions/weights_beetleRichness_oilpalm.csv" 
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  set weights_beetleRichness_oilpalm item 0 weights_beetleRichness_oilpalm 
  set values_canopyOpenness_oilpalm csv:from-file "/input/bird/predictor_dis-

tributions/values_canopyOpenness_oilpalm.csv" 
  set values_canopyOpenness_oilpalm item 0 values_canopyOpenness_oilpalm 
  set weights_canopyOpenness_oilpalm csv:from-file "/input/bird/predictor_dis-

tributions/weights_canopyOpenness_oilpalm.csv" 
  set weights_canopyOpenness_oilpalm item 0 weights_canopyOpenness_oilpalm 
 
  set values_antRichness_junglerubber csv:from-file "/input/bird/predictor_dis-

tributions/values_antRichness_junglerubber.csv" 
  set values_antRichness_junglerubber item 0 values_antRichness_junglerubber 
  set weights_antRichness_junglerubber csv:from-file "/input/bird/predic-

tor_distributions/weights_antRichness_junglerubber.csv" 
  set weights_antRichness_junglerubber item 0 weights_antRichness_junglerubber 
  set values_beetleRichness_junglerubber csv:from-file "/input/bird/predic-

tor_distributions/values_beetleRichness_junglerubber.csv" 
  set values_beetleRichness_junglerubber item 0 values_beetleRichness_jun-

glerubber 
  set weights_beetleRichness_junglerubber csv:from-file "/input/bird/predic-

tor_distributions/weights_beetleRichness_junglerubber.csv" 
  set weights_beetleRichness_junglerubber item 0 weights_beetleRichness_jun-

glerubber 
  set values_canopyOpenness_junglerubber csv:from-file "/input/bird/predic-

tor_distributions/values_canopyOpenness_junglerubber.csv" 
  set values_canopyOpenness_junglerubber item 0 values_canopyOpenness_jun-

glerubber 
  set weights_canopyOpenness_junglerubber csv:from-file "/input/bird/predic-

tor_distributions/weights_canopyOpenness_junglerubber.csv" 
  set weights_canopyOpenness_junglerubber item 0 weights_canopyOpenness_jun-

glerubber 
 
  set values_antRichness_rubber csv:from-file "/input/bird/predictor_distribu-

tions/values_antRichness_rubber.csv" 
  set values_antRichness_rubber item 0 values_antRichness_rubber 
  set weights_antRichness_rubber csv:from-file "/input/bird/predictor_distribu-

tions/weights_antRichness_rubber.csv" 
  set weights_antRichness_rubber item 0 weights_antRichness_rubber 
  set values_beetleRichness_rubber csv:from-file "/input/bird/predictor_distri-

butions/values_beetleRichness_rubber.csv" 
  set values_beetleRichness_rubber item 0 values_beetleRichness_rubber 
  set weights_beetleRichness_rubber csv:from-file "/input/bird/predictor_dis-

tributions/weights_beetleRichness_rubber.csv" 
  set weights_beetleRichness_rubber item 0 weights_beetleRichness_rubber 
  set values_canopyOpenness_rubber csv:from-file "/input/bird/predictor_distri-

butions/values_canopyOpenness_rubber.csv" 
  set values_canopyOpenness_rubber item 0 values_canopyOpenness_rubber 
  set weights_canopyOpenness_rubber csv:from-file "/input/bird/predictor_dis-

tributions/weights_canopyOpenness_rubber.csv" 
  set weights_canopyOpenness_rubber item 0 weights_canopyOpenness_rubber 
 
  calculate_patch_bird_richness 
  show_overall_patch_bird_richness_statistics 
 
end 
 

Expansion of the user interface 

For starting the model, a button has to be added with the command model-biodiversity. 

For visualizing the cell bird species richness, a button has to be added with the command 

visualize-bird-richness. 

For validation of the model, a button has to be added with the command validate-model-

output. 

For the spillover effect, a slider must be added for the global variable spillover_effect, 

that has a minimum of 0 and a maximum of 1. 
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For model output display, monitors displaying the mean cell bird species richness must 

be added for forest, oil palm, jungle rubber, rubber and overall bird species richness with 

the according reporters forest_bird_richness, oilpalm_bird_richness, junglerub-

ber_bird_richness, rubber_bird_richness and overall_bird_richness. 

Additionally, a plot needs to be added for cell bird species richness distribution display. 

The name may be set to bird species richness per patch, x axis label may be set to patch 

species richness with minimum of 0 and maximum of 35, the y axis label may be set to 

no. of patches. Auto scale? is to be checked. Four pen update commands need to be in-

cluded for forest, jungle rubber, rubber and oil palm respectively: do-histogramForest, 

do-histogramJunglerubber, do-histogramRubber and do-histogramOilpalm. 

Using the model 

Before using the bird species richness model, the EFForTS-ABM needs to be setup. 

Therefore, a variety of settings can be adjusted in the EFForTS-ABM Parameters tab. 

Afterwards the EFForTS-ABM can be initialized with the button setup in the model con-

trol section. Then the model can be started with Go - loop or Go - once in the model 

control section. The bird species richness model can then be applied at any given point in 

time and after any amount of ticks of the model since the bird species richness model is 

a static model. For application of the bird species richness model the button biodiversity-

model is used after the strength of the spillover_effect is defined by the slider, ranging 

from 0 (no spillover effect) to 1 (highest implemented spillover effect). The model is 

applied to each of the cells of the landscape. Afterwards, the distribution of bird species 

richness can be visualized in different shades of red by visualize-bird-richness and statis-

tics of the model output can be generated and displayed in the command center to be 

compared to validation data by validate-model-output. Mean cell bird species richness is 

displayed by the monitors separated for land use types. The distributions of cell bird spe-

cies richness separated for land use types are displayed in the plot. 

The model can be used to investigate land use change under different scenarios by chang-

ing the EFForTS-ABM Parameters in the respective tab. Scenarios to investigate could 

include for example different land use compositions and configurations customizable via 

which-map. 
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