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1 Introduction

Semiclassical analysis involves a small parameter h > 0 and statements are in the limit as h → 0. Notice that
we now move from an operator-theoretic level in terms of abstract spectral theory of selfadjoint operators to
the level of concretely realized linear, bounded operators acting on S ′(Rd ) (and leaving S (Rd ) invariant),
where then the domain of the operator under study can be specified as appropriate. An additional point is
a symbolic calculus which provides control of the operators under investigation up to neglectable terms. It
is the combination of both approaches that yields the best results (known to date).

In the first two lectures, we will lay the groundwork for later applications. These applications concern the
spectral theory for perturbed periodic media and will be dealt with in the remaining two lectures.

2 Semiclassical operators

Semiclassical operators P (h) are families of operators depending on h ∈ (0,h0] for a suitable h0 > 0. The
example to keep in mind is the Schrödinger operator P (h) =−h2∆+V (x) realized as a selfadjoint operator
in L2(Rd ), where the potential V satisfies (at least) V ∈ C∞(Rd ), infV > −∞, and V (x) = O(〈x〉N ) for some
N > 0. The principal symbol of this operator family as a semiclassical operator is |ξ|2 +V (x) which is the
classical energy. If, in addition, |∂αx V (x)| ≤Cα (C+V (x)) for allα ∈Nd

0 , where C+infV > 0, then C+|ξ|2+V (x)
can be taken for an admissible weight function.

The semiclassical operators P (h) = pW(x,hDx ;h) considered below generalize differential operators as well
as their parametrices (i.e., almost inverses, where ‘almost’ has to be made precise) in the elliptic case.

Admissible weight functions M ∈C∞(R2d ), where

– 0 < M(x,ξ) ≤C 〈x,ξ〉N for some N > 0,

– |∂αx ∂βξ M(x,ξ)| ≤CαβM(x,ξ) for all α, β ∈Nd
0 .

Amplitude functions a = a(x,ξ;h) ∈ S(M) if a(·, · ;h) ∈ C∞(R2d ) for each h ∈ (0,h0], |∂αx ∂βξ a(x,ξ;h)| ≤
CαβM(x,ξ) for all α, β ∈Nd

0 uniformly in h ∈ (0,h0].

Regular amplitude functions a ∈ Sreg(M) if there exists a sequence {a j } j∈N0 ⊂ S(M) of h-independent
amplitudes such that a(x,ξ;h) ∼∑

j≥0 h j a j (x,ξ) in the sense that, for all J ∈N0,

a(x,ξ;h)− ∑
0≤ j<J

h j a j (x,ξ) ∈ h J S(M).
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a0 – principal symbol, a1 – subprincipal symbol.

Weyl quantization For a ∈ S(M),

aW(x,hD ;h) =F−1
h a

( x + y

2
,ξ;h

)
Fh ,

where Fhu(ξ) = ∫
Rd e−i(x−y)ξ/hu(x)d x, F−1

h v(x) = (2πh)−d
∫
Rd e i(x−y)ξ/h v(ξ)dξ.

Note that
aW : S (Rd ) →S (Rd ), aW : S ′(Rd ) →S ′(Rd )

continuously.

Composition a ∈ S(M), b ∈ S(M ′) implies a ]b ∈ S(M M ′), where

aW(x,hD ;h)◦bW(x,hD ;h) = (a ]b)W(x,hD ;h)

and

(a ]b)(x,ξ;h) = e i h(Dx Dη−D y Dξ) (a(x,ξ;h)b(y,η;h)
)∣∣∣y=x,
η=ξ

∼ ∑
α,β∈Nd

0

i |α|−|β|h|α|+|β|

2|α|+|β|α!β!

(
∂αx ∂

β

ξ
a
)
(x,ξ;h)

(
∂
β
x∂

α
ξ b

)
(x,ξ;h) in S(M M ′).

For a ∈ Sreg(M), b ∈ Sreg(M ′),

a ]b −a0b0 −h
(
a0b1 +a1b0 + 1

2i
{a0,b0}

)
∈ h2 S(M M ′).

Function spaces M W(x,hD) is invertible for h > 0 sufficiently small (see below). This allows us to define
H (M ;h) = {

u ∈S ′(Rd ) | M(x,hDx )u ∈ L2(Rd )
}
. The Schwartz space S (Rd ) is dense in H (M ;h).

Continuity ‖aW(x,hDx ;h)‖L2→L2 = O(1) uniformly in h ∈ (0,h0] if a ∈ S(1). More generally, one has that
‖aW(x,hDx ;h)‖H (M M ′;h)→H (M ;h) =O(1) uniformly in h ∈ (0,h0] if a ∈ S(M).

Gårding inequality 〈aW(x,hDx ;h)u,u〉 ≥−C h ‖u‖2 uniformly in h ∈ (0,h0] if a ∈ S(1), a ≥ 0.

Ellipticity and parametrices a ∈ Sreg(M) is elliptic if |a0(x,ξ)| ≥ C M(x,ξ)−1. In this case, there exists a
b ∈ Sreg(1/M) such that a ]b = 1+ r , b ]a = 1+ s, where r, s ∈⋂

N∈N0
hN S(1). bW is called a parametrix

of aW. In the elliptic case, aW(x,hD ;h) is invertible for h > 0 sufficiently small.

3 Functional calculus and spectral theory

Essential selfadjointness Let P = pW(x,hDx ;h), where p ∈ Sreg(M). Suppose that p is real-valued, p0 ≥
0, and M = 1 + p0. Then P (h) as an unbounded operator in L2(Rd ) is essentially selfadjoint with
domain S (Rd ) and selfadjoint with domain H (M ;h) for h > 0 sufficiently small. In the sequel, we
shall understand by P (h) its selfadjoint realization. Let {E(B ;h)}B∈B(R) denote its spectral measure.

Counting function Letα<β and suppose that liminf|x|+|ξ|→∞ dist
(
p0(x,ξ), [α,β]

)> 0. Then the spectrum
of P in a neighborhood of [α,β] is discrete and

(2πh)d ]
{
eigenvalues of P (h) in [α,β]

}= (2πh)d trE([α,β];h)

= vol
{
(x,ξ) | p0(x,ξ) ∈ [α,β]

}+O(h) as h → 0.

Helffer-Sjöstrand formula Let f ∈C∞
comp(R) and f̃ be an almost analytic extension1. Then

f (P ) = 1

π

∫
C
∂z̄ f̃ (z) (P − z)−1 d xd y,

where z = x + i y .

1That is, f̃ ∈C∞
comp(C), ∂z̄ f̃ (z) =O(|ℑz|N ) for any N > 0, and f̃

∣∣
R = f .
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f (P ) as semiclassical operator f (P (h)) = qW(x,hD ;h), where q ∈ Sreg(〈x,ξ〉−N ) for any N > 0 and

q0 = f (p0), q1 = p1 f ′(p0), q j =
2 j−1∑
l=1

∆ j l f (l )(p0), ∀ j ≥ 2,

where ∆ j l is a certain (universal) polynomial of ∂αx ∂
β

ξ
pm for |α|+ |β|+m ≤ j .

By integration,

(2πh)d tr f (P (h)) =
∫
Rd

f (p0(x,ξ))d xdξ+h
∫
Rd

p1(x,ξ) f ′(p0(x,ξ))d xdξ+O(h2) as h → 0.

4 Perturbed periodic media

4.1 The model

The operator

P A,ϕ =
d∑

j=1
(D y j + A j (hy))2 +V (y)+ϕ(hy), y ∈Rd ,

where h > 0 is small, describes the motion of an electron in a periodic crystal with slowly varying exterior
electric and magnetic fields. For the potentials V , A, ϕ, we shall assume that

– V ∈C∞(Rd ;R) is periodic with respect to a lattice Γ⊂Rd ,

– ∇A ∈C∞
b (Rd ;Rd×d ) (this allows a linear growth of A as it is the case, e.g., for a constant magnetic field),

– ϕ ∈C∞
b (Rd ;R), lim|x|→∞ϕ(x) = 0.

Let λ1(ξ) ≤ λ2(ξ) ≤ λ3(ξ) ≤ . . . for ξ ∈ Rd be the Floquet eigenvalues of the operator −∆+V (y). Taking the
effective Hamiltonian in solid-state physics is to replace, for h > 0 small, the operator P A,ϕ by the collection
of semiclassical operators

λl (hDx +D y + A(x))+ϕ(x), ∀l ∈N.

Here, we shall see a justification for this replacement when computing the number of eigenvalues of P A,ϕ in
a spectral gap of −∆+V (y) in the limit h → 0.

We closely follow the references [1, Chap. 13], [2].

4.2 Semiclassical reduction

In P A,ϕ = pW(hy, y,D y + A(x)), where p(x, y,η) = |η|2 +V (y)+ϕ(x), h > 0 does not happen to be a semiclas-
sical parameter. Along with this operator, therefore, we shall also consider the operator P = pW(x, y,hDx +
D y + A(x)) acting in L2(R2d

x,y ).

In a first part, in place of p(x, y,η) = |η|2 +V (y)+ϕ(x), we will consider more general symbols p(x, y,η) =∑
|α|≤m aα(x, y)ηα satisfying the following assumptions:

– (real-valuedness) p ∈C∞(R3d ) is real-valued,

– (periodicity) p(x, y +γ,η) = p(x, y,η) for all γ ∈ Γ,

– (strong ellipticity)
∑

|α|=m aα(x, y)ηα ≥C |η|m for some C > 0 (in particular, m has to be even).

The operator P = pW(x, y,hDx +D y +A(x)) acting in L2(R2d ) is selfadjoint with domain
{
u ∈ L2(R2d ) | (hDx +

D y + A(x))αu ∈ L2(R2d ) ∀α ∈N2d
0 , |α| ≤ m

}
.
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Using Floquet-Bloch transformation (with respect to y), the complexity of the problem can be reduced.
Namely, the unitary map

Φ= e i 〈θ,x/h−y〉U : L2(R2d
x,y ) → {

v ∈ L2
loc(R3d ) | v(x, y +γ,θ) = v(x, y,θ) ∀γ ∈ Γ,

v(x, y,θ+γ∗) = e i 〈γ∗,x/h−y〉v(x, y,θ) ∀γ∗ ∈ Γ∗, (2π)−d
Ñ

Rd
x ×Wy×Bθ

|v(x, y,θ)|2 d xd ydθ <∞}
has the property that (recall that |W | = 1, |B | = (2π)d )

ΦPΦ∗ =
∫ ⊕

B
P

dθ

(2π)d
,

where the fiber operators are independent of θ ∈ B and act as P = pW(x, y,hDx +D y + A(x)) in K 0 = {
v ∈

L2
loc(R2d ) | v(x, y +γ) = v(x, y) ∀γ ∈ Γ,

Î
Rd

x ×Wy
|v(x, y)|2 d xd y < ∞}

with domain K m = {
v ∈ K 0 | (hDx +

D y + A(x))αv ∈K 0 ∀α ∈N2d
0 , |α| ≤ m

}
.

In particular, the spectrum of P acting in L2(R2d ) agrees with the spectrum of P acting in K 0 (as subsets
of R).

4.3 The Grushin problem

Now, the operator P acting in K 0 will be regarded a semiclassical operator (with respect to the x variables)
taking values in the operators on the torus Rd /Γ (with respect to the y variables).

We fix a compact interval I ⊂ R. Then there are an N ∈ N, a complex neighborhood V ⊆ C of I , and func-
tions2 ψ j (x, y,ξ) ∈C∞(R3d )∩C∞(R2d

x,ξ;K m
ξ

) for 1 ≤ j ≤ N , where K 0 = {
u ∈ L2

loc(Rd ) | u(y +γ) = u(y) ∀γ ∈ Γ}
,

K m
ξ

= {
u ∈ K 0 | (D y +ξ)αu ∈ K 0 ∀α ∈Nd

0 , |α| ≤ m
}
, with the properties

– ψ j (x, y,ξ+γ∗) = e−i 〈γ∗,y〉ψ j (x, y,ξ) for all γ∗ ∈ Γ∗,

– ‖∂αx ∂βξψ j (x, y,ξ)‖K m
ξ
≤Cαβ for all α, β ∈Nd

0 ,

such that, for (x,ξ,λ) ∈R2d ×V , the operator-valued symbol

p(x,ξ,λ) =
(

pW(x, y,D y +ξ)−λ R−(x,ξ)
R+(x,ξ) 0

)
:

K m
ξ

⊕
CN

→
K 0

⊕
CN

,

where R+(x,ξ)u = {〈u,ψ j (x, ·,ξ)〉K 0

}N
j=1, R−(x,ξ)α= ∑N

j=1α jψ j (x, ·,ξ), is pointwise invertible. Moreover, its
pointwise inverse

E0(x,ξ,λ) =
(

E0(x,ξ,λ) E0,+(x,ξ,λ)
E0,−(x,ξ,λ) E0,−+(x,ξ,λ)

)
:

K 0

⊕
CN

→
K m
ξ

⊕
CN

is uniformly bounded in (x,ξ,λ) together with all its derivatives.

4.4 The effective Hamiltonian

Quantizing the symbol E0(x,ξ,λ) (where ξ becomes hDx + A(x)) and applying the symbol calculus yields,
for λ ∈V and h > 0 sufficiently small, an inverse

E W(x,hDx + A(x),λ;h) =
(
E W(x,hDx + A(x),λ;h) E W+ (x,hDx + A(x),λ;h)
E W− (x,hDx + A(x),λ;h) E W−+(x,hDx + A(x),λ;h)

)
:

K 0

⊕
L2(Rd ;CN )

→
K m

⊕
L2(Rd ;CN )

2The functions ψ j (x, y,ξ) are something like the Bloch functions, except that we want them independent of λ ∈V .
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of

pW(x,hDx + A(x),λ) =
(

P −λ RW− (x,hDx + A(x))
RW+ (x,hDx + A(x)) 0

)
:

K m

⊕
L2(Rd ;CN )

→
K 0

⊕
L2(Rd ;CN )

.

Furthermore, E (x,ξ,λ;h) ∼∑
j≥0 h j E j (x,ξ,λ) possesses a full asymptotic expansion. The entry of E W(x,hDx+

A(x),λ) in the lower-right corner, E W
−+(x,hDx + A(x),λ;h), is called the effective Hamiltonian.

4.5 The operator P0

It is readily seen that the operator P0 = pW(hy, y,D y+A(hy)) acting in L2(Rd ) with domain
{

v ∈ L2(Rd ) | (D y+
A(hy))αv ∈ L2(Rd ) ∀α ∈Nd

0 , |α| ≤ m
}

is unitarily equivalent to the operator P acting in L0 = {∑
γ∈Γ v(x)δ(x −

hy +hγ) | v ∈ hd/2L2(Rd )
}

with domain Lm = {
u ∈ L0 | (hDx +D y + A(x))αu ∈ L0 ∀α ∈ Nd

0 , |α| ≤ m
}

(upon
making use of the altered Floquet-Bloch transformationΦ a second time).

Let V 0 = {∑
γ∈Γ vγδ(x −hγ) | {vγ} ∈ l 2(Γ)

}
. Checking continuity3 of all the operators involved between the

corresponding spaces, one gets from the previous results that, for λ ∈V and h > 0 sufficiently small,

pW(x,hDx + A(x),λ) =
(

P −λ RW− (x,hDx + A(x))
RW+ (x,hDx + A(x)) 0

)
:

Lm

⊕
(V 0)N

→
L0

⊕
(V 0)N

with inverse

E W(x,hDx + A(x),λ;h) =
(
E W(x,hDx + A(x),λ;h) E W+ (x,hDx + A(x),λ;h)
E W− (x,hDx + A(x),λ;h) E W−+(x,hDx + A(x),λ;h)

)
:

L0

⊕
(V 0)N

→
Lm

⊕
(V 0)N

.

One of the main features is that, for λ ∈V and h > 0 sufficiently small,

λ ∈σ(P0) iff 0 ∈σ(E W(x,hDx + A(x),λ;h)),

where in the right-hand side E W(x,hDx + A(x),λ;h) acts as bounded operator in (V 0)N .

4.6 The Schrödinger operator

Eventually, we take p(x, y,η) = |η|2 +V (y)+ϕ(x) (see above). Recall that λ1(ξ) ≤λ2(ξ) ≤λ3(ξ) ≤ . . . for ξ ∈Rd

are the Floquet eigenvalues of −∆+V (y). Then, for λ ∈V ,

detE0,−+(x,ξ;λ) = 0 iff λ=λl (ξ)+ϕ(x) for some l ≥ 1.

4.7 Eigenvalues in a spectral gap

Suppose that I ⊂ R is a compact interval such that σ(−∆+V (y))∩ I =;. Then the spectrum of P A,ϕ(h) can
be shown to be discrete in I . Moreover, for any f ∈C∞

comp(I ), one has

tr f (P A,ϕ) ∼ (2πh)−d
∑
j≥0

a j h j as h → 0,

3For instance, b ∈ S(1) with b(x,ξ+γ∗;h) = b(x,ξ;h) for all γ∗ ∈ Γ∗ implies bW(x,hDx +A(x)) ∈L (V 0) uniformly in h ∈ (0,h0]. We
shall also need the fact that bW(x,hDx + A(x)) is of trace class and trbW(x,hDx + A(x) = (2πh)−d Î

Rd×B b(x,ξ) d xdξ+O(h∞)
as h → 0 provided that b has compact support in x.
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where the coefficients a j ∈C are (in principle) computable. Especially,

a0 =
Ï
Rd

x ×Bξ

∑
l≥1

f (λl (ξ)+ϕ(x))d xdξ.

(Note that the sum under the integral is finite as λl (ξ) → ∞ as l → ∞ uniformly in ξ ∈ B and ϕ(x) → 0 as
|x|→∞. By the same reason, integration with respect to x is effectively only over a finite region.)

Proof. Choose a function4 ϕ̃ ∈C∞
b (Rd ) such that

(
σ(−∆+V (y))+ ϕ̃(R)

)∩ I =; and ϕ̃(x) =ϕ(x) for large |x|.
Then E−+− Ẽ−+ is of trace class, where Ẽ−+ is E−+, but constructed for ϕ̃ in place of ϕ.

Using the identities

(P −λ)−1 = E −E+E−1
−+E−,

E−1
−+ = Ẽ−1

−+−E−1
−+

(
E−+− Ẽ−+

)
Ẽ−1
−+,

which hold for λ ∈V \R (and as identities for meromorphic operator functions also for λ ∈V ), and the fact
that E and Ẽ−1−+ are holomorphic in V (the latter for V a sufficiently small neighborhood of I ), the Helffer-
Sjöstrand formula gives

f (P A,ϕ) = 1

π

∫
C
∂λ̄ f (λ)E+E−1

−+
(
E−+− Ẽ−+

)
Ẽ−1
−+E− L(dλ)

=− 1

π

∫
C
∂λ̄ f (λ)E+

(
E−1
−+− Ẽ−1

−+
)
E− L(dλ)

where f̃ is an almost analytic extension of f (supported in V ) and L(dλ) is the Lebesgue measure in C.

Further using the identity ∂λE−+ = E−E+ (which follows as the operators RW+ and RW− are independent of λ),
one obtains

tr f (P A,ϕ) =− 1

π
tr

∫
C
∂λ̄ f (λ)

(
E−1
−+− Ẽ−1

−+
)
E−E+ L(dλ) =− 1

π
tr

∫
C
∂λ̄ f (λ)E−1

−+∂λE−+ L(dλ),

But r W(x,hDx+A(x);h) =− 1

π

∫
C
∂λ̄ f (λ)E−1

−+∂λE−+ L(dλ) for some r (x,ξ;h) ∈ S(1;L (CN )) which isΓ∗-periodic

in ξ and has a full asymptotic expansion r (x,ξ;h) =∑
j≥0 h j r j (x,ξ) as h → 0, where

r0(x,ξ) =− 1

π

∫
C
∂λ̄ f (λ)E−1

0,−+∂λE0,−+ L(dλ)

It follows that tr f (P A,ϕ) ∼ (2πh)−d ∑
j≥0 a j h j as h → 0 for certain coefficients a j ∈C. Further,5

a0 =
Ï
Rd×B

(
− 1

π

∫
C
∂λ̄ f (λ)

∂λdetE0,−+(x,ξ,λ)

detE0,−+(x,ξ,λ)
L(dλ)

)
d xdξ=

Ï
Rd×B

∑
l≥1

f (λl (ξ+ϕ(x)))d xdξ,

which completes the proof.

4In particular, tr f (P A,ϕ̃) =O(h∞) as h → 0 according to the above formula.
5Use the following two facts:

– (Liouville’s formula) For analytic matrix functions, tr
(

A(λ)−1∂λA(λ)
)= ∂λdet A(λ)

det A(λ)
.

– For a function g analytic in a neighborhood of supp f̃ , − 1

π

∫
C
∂λ̄ f̃ (λ)

∂λg (λ)

g (λ)
L(dλ) =∑

l
f̃ (λl ), where the λl are the zeros of g in

supp f̃ .
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