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Often in breeding research we have Genotypes and two Treatment 

levels, such as  

● conventional vs. organic 

● fertilized vs. non-fertilized 

● sprayed vs. non-sprayed 

● vernalized vs. non-vernalized 

● per se vs GCA 

● diploid vs tetraploid 

● last season vs current season 

● pure stand vs. mixture 

● and so on. 

In such cases we may run ANOVA and find out whether σ²(G) and  

σ²(T) and  σ²(GxT) are significant sources of variation. Usually we 

can even test even σ²(GxT) for significance - if we have                                                                               

a further layer such as replications R or environments E.  

As diagram, we may visualize the data by plotting the genotypes (their means across replications or environments) at 

one treatment level against their results at the other treatment level, as shown here for ‘conventional’ vs. ‘organic’ 

(Becker, 2011). With a marked σ²(GxT) variance, we would expect a correlation between the two treatments of r << 1. 

For simplicity, I neglect here that σ²(GxT) may include shares of GxTxR, GxTxE and other higher interactions and 

error components. 
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Here I ask: somewhere in the quantity “1-r” we must find the σ²(GxT). Where, how, inasmuch?  
This is my question.  
I am not aware that this is algebraically available in the literature; at least I did not see it so far, although this may just be my mistake. I am currently studying 
Yamada, 1962 (Jap. Jour. Genet. 37, 498-509) to see inasmuch ‘my’ algebra was already presented there. Feedback is welcome! 

σ² = variance; ω = covariance; here, for ease, I divide by N, not by (N-1); that does not matter, I verified this point.  

 𝜎𝑮.𝒊
2 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑓 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 

𝜎𝐺𝑖𝑥𝑇1
2 = 𝑉𝑎𝑟. 𝑜𝑓  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠 𝑥 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1  𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 

𝜔𝑮.𝒊∙𝐺𝑥𝑇1 = 𝐶𝑜𝑣. (𝑮.𝒊)  𝑥 (𝐺 ∙ 𝑇1)  𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑠  … this would be the covariance between 

                                       the figures 8, 4, (-12) and the figures 
                2, 5, (-7) below here. 

Illustration: Results of three genotypes (G) under two treatments (T), with zero main effect of treatments (just for ease of 
analysis; if we included a difference between the treatments’ means, this would not make a difference for our purpose here) 

 
Treatments 

  
Genotypes 1 2 G Means Main effects (G.i) 

i=1 110 106 108 8 

i=2 109 99 104 4 

i=3 81 95 88 -12 

T Means 100 100 Grand mean µ=100 

σ² 180.67 20.67 74.67 74.67 

     

 
Interactions between G and T  

 

 
T1 T2 Sum 

 G1 2 -2 0 
 G2 5 -5 0 
 G3 -7 7 0 
 Means 0 0  
 σ² 26.00 26.00 

    



𝑟 = 𝜔 ⁄ (𝜎 ∙ 𝜎)  I follow this algebra and follow it as good as I can, step by step. 

Results of G1 and G2 and G3 in T1 is “G1T1” etc.; (these results are 110, 109, 81). 

Then, G1T1 = µ + G.1  + G1xT1-interaction; so, G1T1 = 100 + 8 + 2 = 110  

The covariance ω between the genotypes’ performance in T1 and T2 is hence the covariance between the … 

G1T1 = µ + G.1   + G1xT1-interaction 

.. with their counterparts …► 

G1T2 = µ + G.1   + G1xT2-interaction 

G2T1 = µ + G.2  + G2xT1-interaction G2T2 = µ + G.2  + G2xT2-interaction 

G3T1 = µ + G.3  + G3xT1-interaction G3T2 = µ + G.3  + G3xT2-interaction 

 

This is, in the example, the covariance between  

 

In the illustration table above, we see that the interactions G1xT1 and G1xT2-  

etc. are symmetrical: Hence, their variance in T1 is the same as in T2   

(in the example it is σ²=26.00) and their covariance is minus-their-variance,   

which is ω = -26.00 in the example.  

 

So, back to the correlation.  

The nominator, the covariance is, hence, ω (G.i + GixT1; G.i + GixT2)  

We apply this rule: cov(X+Y, V+W) = cov(X,V) + cov(X,W) + cov(Y,V) + cov(Y,W) 

So, ω (G.i + GixT1; G.i + GixT2) = ω (G.i ; G.i ) + ω (G.i ; GixT2)  + ω (GixT1; Gi) +  ω (GixT1; GixT2). 

110 

…► 
106 

109 99 

81 95 

2 -2 

5 -5 

-7 7 



The part in yellow is zero because of the symmetry of the interactions. In the example, the covariance between the 

genotypes main effects Gi and the interactions is either 40.00 or minus 40.00, depending on whether we take the 

interactions with T1 or with T2. 

The part in grey is  𝜎𝑮.𝒊
2 .  The part in blue is identical to “minus 𝜎𝐺𝑖𝑥𝑇1

2
“ as we saw above. Therefore, the numerator 

of our sought-for correlation r, ω (G.i + GixT1; G.i + GixT2), is  

ω = 𝜎𝑮.𝒊
2 −  𝜎𝐺𝑖𝑥𝑇1

2
 ;   this is 74.67 – 26 = 48.67 in our example data. 

  

As next step we need the denominator of this correlation. Hence, we need the variance of the genotypes’ results in T1, 

and the variance of the genotypes’ results in T2. 

We apply this rule: σ²(X+Y) = σ²(X) + σ²(W) + 2cov(Y,V)  

So, for the variance in treatment T1, we get   𝜎𝐺𝑖𝑇1
2 =  𝜎𝑮.𝒊  

2 +  𝜎𝐺𝑖𝑥𝑇1
2 + 2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1  

And for the variance in treatment T2, we get   𝜎𝐺𝑖𝑇2
2 =  𝜎𝑮.𝒊  

2 +  𝜎𝐺𝑖𝑥𝑇2
2 + 2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇2  

The variance in treatment T2 is as well:          𝜎𝐺𝑖𝑇2
2 =  𝜎𝑮.𝒊  

2 +  𝜎𝐺𝑖𝑥𝑇1
2 − 2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1  

This is because the covariance between genotypes’ main effects G.i and their interaction effects GixT1 is “minus” the 

covariance between G.i and GixT2; as seen above. 

For this part: 𝜎𝑮.𝒊  
2 +  𝜎𝐺𝑖𝑥𝑇1

2
 we write for a short while as an abbreviation 𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1

2
;  

in our example: 74.67+26.00 = 100.67  



This (“100.67”) is NOT the variance of the genotypes in T1 (or in T2), but it is the variance of the genotypes in T1 or in 

T2 after eliminating the covariances between G.i and GixT1 or between G.i and GixT2 from the variances! Hm… 

 

We re-write what we did above:  

Variance in treatment T1: 𝜎𝐺𝑖𝑇1
2 =  𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1

2 + 2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1     in our example: 100.67 + 2 ∙ 40=180.67 

Variance in treatment T2: 𝜎𝐺𝑖𝑇2
2 =  𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1

2 − 2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1     in our example:  100.67 - 2 ∙ 40 =  20.67 

 

So, the correlation can meanwhile be written as:  

𝑟 = 𝜔
𝜎 ∙ 𝜎⁄ =   

𝜎𝑮.𝒊
2 − 𝜎𝐺𝑖𝑥𝑇1

2

{ [𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1
2 +2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1]  [ 𝜎𝐺𝑖+𝐺𝑖𝑇1

2 −2 𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1]}0.5      

 

𝑟 = 𝜔
𝜎 ∙ 𝜎⁄ =   

𝜎𝑮.𝒊
2 −  𝜎𝐺𝑖𝑥𝑇1

2

[(𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1
2 )²  −  (2𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1)²]0.5

 

Nota bene: Two terms cancel out each other: these are the two products between the (𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1
2 ) and the 

covariances of the type G.i and GixT1. 

 



For the  (2𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1)², it is irrelevant whether we take the covariance with T1 (which is +40.00 in our example) 

or the one with T2 (-40.00 in our example), because we anyway take the square of it. 

𝑟 =   
𝜎𝑮.𝒊

2 − 𝜎𝐺𝑖𝑥𝑇1
2

[(𝜎𝐺𝑖+𝐺𝑖𝑥𝑇1
2 )²  −  (2𝜔𝑮.𝒊;𝐺𝑖𝑥𝑇1)²]0.5

 

𝒓 =
𝝈𝑮.𝒊

𝟐 − 𝝈𝑮𝒊𝒙𝑻𝟏
𝟐

[(𝝈𝑮.𝒊
𝟐 + 𝝈𝑮𝒊𝒙𝑻𝟏

𝟐 )² − (𝟐𝝎𝑮.𝒊;𝑮𝒊𝒙𝑻𝟏)
𝟐

]𝟎.𝟓
 

A question is: Will the main effects of genotypes show a covariance with the genotypes’ interactions with the one and 

the other treatment? Genotypes that show, on average across the two treatments, a high performance, may show 

mostly positive interactions with one treatment and negative interactions with the other treatments. It may indeed be 

that e.g. on-average higher yielding genotypes respond more marked on N-fertilization than on-average lower yielding 

genotypes. Or vice versa. It may be like that; but not necessarily so. Both cases lead to (2𝜔𝐺.𝑖;𝐺𝑖𝑥𝑇1)² being 

non-zero and positive. Yet, we anyway square to covariance. If non-zero, this covariance decreases the denominator 

and hence increases the correlation r. Both, negative and positive covariance between main effects and interactions 

increase the correlation between the two treatments.  

It may as well be that there is no or a small covariance between the average performance of the genotypes and their 

interaction with the one (or other) treatment.  

If this covariance between G.i and GixT1 was zero, then the composition of the correlation r is easier to write . 

 

Then:   𝑟 =  
𝜎𝑮.𝒊

2 −𝜎𝐺𝑥𝑇
2

𝜎𝑮.𝒊
2 +𝜎𝐺𝑥𝑇

2   



 

You see here the results of ANOVA with these data. 

What ANOVA does not give us is (𝟐𝝎𝑮.𝒊∙𝑮𝒙𝑻𝟏); ω = 40.  

The interaction variance 𝝈𝐺𝑖𝒙𝑻𝟏
𝟐  is the variance between 

the figures 2, 5, (-7), which is 𝝈𝐺𝑖𝒙𝑻𝟏
𝟐 =26 if calculated 

with df=N and which is 39 if calculated with df=N-1=2. 

From the ANOVA we get σ²=78, this is double of 39. 

For the ANOVA, the interaction variance is calculated 

from these six data: 2; 5; -7; -2; -5; 7; with (2-1)∙(3-1)=2 

df (knowing only 2 of these 6 figures, such as 2 and 5, we can 

deduce all others: the -7 (because the columns’ sum must be zero, 

and the second column is just the mirror picture of the first one 

anyway and hence does not add any df). The Sums of Squares 

of the first column (2, 5, -7) is 78, and dividing by df=2 

we get σ²=39 (for the left as well as for the right 

column). The ANOVA takes the sums of squares of 

both columns, which is 156 (from six figures), and still 

divides only by df=2 as explained above. Thus, the 

𝝈𝐺𝑖𝒙𝑻𝟏
𝟐  variance (in the left column) as well as the 𝝈𝐺𝑖𝒙𝑻𝟐

𝟐  

in the right column are each half as large as the 𝝈𝐺𝒙𝑻
𝟐   

                                                                                                  variance that is given by the ANOVA.  

The direct correlation coefficient between the figure 110; 109; 81 and the figures 106; 99; 95 is r=0.79644789. 

The composed correlation coefficient - if calculating the variances and covariances with (N-1) is  

r=(73.0)/(91.6569692)             = 0.79644789. 

The composed correlation coefficient if calculating the variances and covariances with (N) is 

r=(48.6666667)/(61.1046461) = 0.79644789.    So, dividing by ‘N’ and by ‘N-1’ come to the same result. 


