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Plane-like minimizers in periodic media - Exercise sheet∗

Let aij : Rn → R be, for any i, j = 1, . . . , n, be a Lipschitz function, periodic under integer
translations, i.e. aij(x+ v) = aij(x), for any v ∈ Zn. Assume moreover that the aij ’s form
a symmetric, bounded and uniformly elliptic matrix, that is

aij = aji and λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2, ∀ ξ ∈ Rn,

for some 0 < λ ≤ Λ < +∞. Let W : Rn × R→ R be a double well potential, i.e. a
non-negative function (x, u) 7→W (x, u) measurable and Zn-periodic in the x variable, C2

in the u variable, such that

W (x,±1) = Wu(x,±1) = 0, Wuu(x,±1) > 0, for any x ∈ Rn,
W (x, u) > 0, for any x ∈ Rn, u ∈ (−1, 1).

Given any ω ∈ Qn \ {0}, consider on Rn the equivalence relation ∼ defined by

x ∼ y if and only if y − x = k ∈ Zn, with ω · k = 0.

Set R̃n := Rn/ ∼. Furthermore, we consider the strip

SωM := {x ∈ Rn : ω · x ∈ [0,M ]},

and the related quotient S̃ωM := SωM/ ∼. In the following we will freely identify a quotient
with any of its corresponding fundamental domains of Rn. For any measurable Ω ⊂ Rn,
we introduce the energy functional

GΩ(u) :=

∫
Ω
aij(x)ui(x)uj(x) +W (x, u(x)) dx, for u ∈ H1

loc(Ω),

considering it set to +∞ whenever the integral does not converge.

Exercise 1. ba
Prove that cutting off the values above 1 and below −1 from a function u does not increase
its energy GΩ, that is

GΩ(min{u, 1}),GΩ(max{u,−1}) ≤ GΩ(u).

Due to this fact we will always implicitly assume the functions to have values in [−1, 1].
Introduce now the class of admissible functions on R̃n

X ωM := {u ∈ H1
loc(R̃n) : u(x) ≥ 9/10 if ω · x ≤ 0, and u(x) ≤ −9/10 if ω · x ≥M},

and let Mω
M denote the set of the absolute minimizers of GR̃n in X ωM , i.e.

Mω
M := {u ∈ X ωM : GR̃n(u) = min{GR̃n(v) : v ∈ X ωM}}.

Exercise 2. ba
Prove the following two assertions in order to obtain the existence of a global minimizer of
GR̃n in X ωM periodic with respect to ∼.

(i) Show that the functional GR̃n is not identically infinite on X ωM by giving the explicit
example of a function u0 ∈ X ωM with GR̃n(u0) < +∞;

(Hint: consider the piecewise linear function u0 : R̃n → R having constant values 1
for ω · x ≤ 0 and −1 for ω · x ≥M .)

∗The exercises listed here will be carried out as part of the tutoring activities on August, 28th.



(ii) Show then that Mω
M is not empty;

(Hint: use the standard direct method of calculus of variations. It could be useful to
introduce the set D̃R := {x ∈ R̃n : ω · x ∈ [−R,R] }, with R > M , to cope with some
difficulties due to the unboundedness of R̃n.)

It can be shown - using techniques à la De Giorgi or applying the regularity theory for
elliptic PDEs to the Euler-Lagrange equation of G - that there exists α ∈ (0, 1) such that,
given any compact K ⊂ R̃n,

‖u‖C0,α(K) ≤ C, for any u ∈Mω
M ,

for some constant C > 0, so that, in particular, Mω
M ⊂ C

0,α
loc (R̃n). Now we introduce the

periodic function
uωM (x) := inf

u∈Mω
M

u(x), for any x ∈ R̃n,

which will be referred to as the minimal minimizer of X ωM .

Exercise 3. ba
Prove that uωM ∈ C

0,α
loc (R̃n).

Exercise 4. ba
Given α, β ≥ 0, consider the strip

Sω−α,M−β := {x ∈ Rn : ω · x ∈ [−α,M − β]},

and the associated space of minimizers M−α,M−β. Prove the following statements.

(i) If u, v ∈ H1
loc(R̃n), then

GR̃n(min{u, v}) + GR̃n(max{u, v}) ≤ GR̃n(u) + GR̃n(v);

(ii) If u ∈Mω
M and v ∈M−α,M−β, then min{u, v} ∈ M−α,M−β and max{u, v} ∈ Mω

M .
In particular, (Mω

M ,min,max) is a lattice;

(iii) uωM ∈Mω
M .

(Hint: use Arzelà-Ascoli theorem.)

For k ∈ Rn, denote with Tk the translation of vector k, both for sets and functions:

TkE := {x+ k : x ∈ E}, Tkf := f(· − k).

Given a set E ⊂ Rn and a vector $ ∈ Rn, we say that E satisfies the Birkhoff property
with respect to $ (or are $-Birkhoff ) if

• For any k ∈ Zn such that $ · k ≤ 0, we have TkE ⊂ E;

• For any k ∈ Zn such that $ · k ≥ 0, we have TkE ⊃ E.

Exercise 5. ba
Check the following geometric properties.

(i) If {Eα}α∈A is a family of $-Birkhoff sets, then both ∩α∈AEα and ∪α∈AEα are
$-Birkhoff;

(ii) If E is Birkhoff with respect to $, then Ec is Birkhoff with respect to −$;
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(iii) There exists a constant ρ > 0 depending on n such that if a $-Birkhoff set E
contains a ball of radius ρ, then it contains also a strip of width 1 with sides
orthogonal to $ which itself contains the center of the ball.

Exercise 6. ba
Given θ ∈ R, show that the superlevel set {uωM > θ} is ω-Birkhoff.
(Hint: Use point (ii) of Exercise 4 with uωM and TkuωM .)

Fix now a fundamental domain for ∼ of the form F = QF × R, with QF a
(n− 1)-dimensional hyperrectangle in any hyperplane orthogonal to ω. Introduce the
doubled relation ∼D defined by setting

x ∼D y if and only if y − x = k ∈ (2Z)n, with ω · k = 0,

and choose D = QD × R to be a fundamental domain for ∼D with QF ⊂ QD. We also
introduce the space of admissible functions X ωD,M and that of minimizers Mω

D,M relative

to D = Rn/ ∼D. Clearly, X ωM ⊂ X ωD,M and GD(u) = 2n−1GR̃n(u), for any u ∈ X ωM .
In the following exercise we show that the minimal minimizer enjoys the so-called doubling
property or no-symmetry-breaking property, that is the minimal minimizer is still a
minimizer with respect to functions of doubled periodicity.

Exercise 7. Let uωD,M denotes the minimal minimizer of X ωD,M . Show that

{TkuωD,M = `} = {uωD,M = `}, for any ` ∈ R, k ∈ Zn with ω · k = 0,

deduce that uωD,M is periodic with respect to ∼ and thus that it defines an element in X ωM .
Use this to conclude that uωM and uωD,M coincide.
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