Allen-Cahn equation in periodic media

Exercises 2

Guglielmo Albanese, Matteo Cozzi
(Universita degli Studi di Milano)

Intensive Programme / Summer School „Periodic Structures in Applied Mathematics" Göttingen, August 18 - 31, 2013

Plane-like minimizers in periodic media - Exercise sheet*

Let $a_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be, for any $i, j=1, \ldots, n$, be a Lipschitz function, periodic under integer translations, i.e. $a_{i j}(x+v)=a_{i j}(x)$, for any $v \in \mathbb{Z}^{n}$. Assume moreover that the $a_{i j}$'s form a symmetric, bounded and uniformly elliptic matrix, that is

$$
a_{i j}=a_{j i} \quad \text { and } \quad \lambda|\xi|^{2} \leq a_{i j} \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}, \forall \xi \in \mathbb{R}^{n},
$$

for some $0<\lambda \leq \Lambda<+\infty$. Let $W: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ be a double well potential, i.e. a non-negative function $(x, u) \mapsto W(x, u)$ measurable and \mathbb{Z}^{n}-periodic in the x variable, C^{2} in the u variable, such that

$$
\begin{aligned}
W(x, \pm 1)=W_{u}(x, \pm 1)=0, & W_{u u}(x, \pm 1)>0,
\end{aligned} \begin{array}{ll}
\text { for any } x \in \mathbb{R}^{n}, \\
W(x, u)>0, & \text { for any } x \in \mathbb{R}^{n}, u \in(-1,1) .
\end{array}
$$

Given any $\omega \in \mathbb{Q}^{n} \backslash\{0\}$, consider on \mathbb{R}^{n} the equivalence relation \sim defined by

$$
x \sim y \quad \text { if and only if } \quad y-x=k \in \mathbb{Z}^{n}, \text { with } \omega \cdot k=0 .
$$

Set $\widetilde{\mathbb{R}^{n}}:=\mathbb{R}^{n} / \sim$. Furthermore, we consider the strip

$$
S_{M}^{\omega}:=\left\{x \in \mathbb{R}^{n}: \omega \cdot x \in[0, M]\right\},
$$

and the related quotient $\widetilde{S}_{M}^{\omega}:=S_{M}^{\omega} / \sim$. In the following we will freely identify a quotient with any of its corresponding fundamental domains of \mathbb{R}^{n}. For any measurable $\Omega \subset \mathbb{R}^{n}$, we introduce the energy functional

$$
\mathcal{G}_{\Omega}(u):=\int_{\Omega} a_{i j}(x) u_{i}(x) u_{j}(x)+W(x, u(x)) d x, \quad \text { for } u \in H_{\mathrm{loc}}^{1}(\Omega),
$$

considering it set to $+\infty$ whenever the integral does not converge.

Exercise 1.

Prove that cutting off the values above 1 and below -1 from a function u does not increase its energy \mathcal{G}_{Ω}, that is

$$
\mathcal{G}_{\Omega}(\min \{u, 1\}), \mathcal{G}_{\Omega}(\max \{u,-1\}) \leq \mathcal{G}_{\Omega}(u) .
$$

Due to this fact we will always implicitly assume the functions to have values in $[-1,1]$. Introduce now the class of admissible functions on $\widetilde{\mathbb{R}}^{n}$

$$
\mathcal{X}_{M}^{\omega}:=\left\{u \in H_{\mathrm{loc}}^{1}\left(\widetilde{\mathbb{R}}^{n}\right): u(x) \geq 9 / 10 \text { if } \omega \cdot x \leq 0, \text { and } u(x) \leq-9 / 10 \text { if } \omega \cdot x \geq M\right\},
$$ and let \mathcal{M}_{M}^{ω} denote the set of the absolute minimizers of $\mathcal{G}_{\mathbb{R}^{n}}$ in \mathcal{X}_{M}^{ω}, i.e.

$$
\mathcal{M}_{M}^{\omega}:=\left\{u \in \mathcal{X}_{M}^{\omega}: \mathcal{G}_{\mathbb{R}^{n}}(u)=\min \left\{\mathcal{G}_{\mathbb{\mathbb { R }}^{n}}(v): v \in \mathcal{X}_{M}^{\omega}\right\}\right\} .
$$

Exercise 2.

Prove the following two assertions in order to obtain the existence of a global minimizer of $\mathcal{G}_{\mathbb{\mathbb { R }}^{n}}$ in \mathcal{X}_{M}^{ω} periodic with respect to \sim.
(i) Show that the functional $\mathcal{G}_{\mathbb{R}^{n}}$ is not identically infinite on \mathcal{X}_{M}^{ω} by giving the explicit example of a function $u_{0} \in \mathcal{X}_{M}^{\omega}$ with $\mathcal{G}_{\mathbb{\mathbb { R }}^{n}}\left(u_{0}\right)<+\infty$;
(Hint: consider the piecewise linear function $u_{0}: \widetilde{\mathbb{R}}^{n} \rightarrow \mathbb{R}$ having constant values 1 for $\omega \cdot x \leq 0$ and -1 for $\omega \cdot x \geq M$.)

[^0](ii) Show then that \mathcal{M}_{M}^{ω} is not empty;
(Hint: use the standard direct method of calculus of variations. It could be useful to introduce the set $\widetilde{D}_{R}:=\left\{x \in \widetilde{\mathbb{R}}^{n}: \omega \cdot x \in[-R, R]\right\}$, with $R>M$, to cope with some difficulties due to the unboundedness of $\widetilde{\mathbb{R}}^{n}$.)

It can be shown - using techniques à la De Giorgi or applying the regularity theory for elliptic PDEs to the Euler-Lagrange equation of \mathcal{G} - that there exists $\alpha \in(0,1)$ such that, given any compact $K \subset \widetilde{\mathbb{R}}^{n}$,

$$
\|u\|_{C^{0, \alpha}(K)} \leq C, \quad \text { for any } u \in \mathcal{M}_{M}^{\omega}
$$

for some constant $C>0$, so that, in particular, $\mathcal{M}_{M}^{\omega} \subset C_{\mathrm{loc}}^{0, \alpha}\left(\widetilde{\mathbb{R}}^{n}\right)$. Now we introduce the periodic function

$$
u_{M}^{\omega}(x):=\inf _{u \in \mathcal{M}_{M}^{\omega}} u(x), \quad \text { for any } x \in \widetilde{\mathbb{R}}^{n}
$$

which will be referred to as the minimal minimizer of \mathcal{X}_{M}^{ω}.

Exercise 3.

Prove that $u_{M}^{\omega} \in C_{\text {loc }}^{0, \alpha}\left(\widetilde{\mathbb{R}}^{n}\right)$.

Exercise 4.

Given $\alpha, \beta \geq 0$, consider the strip

$$
S_{-\alpha, M-\beta}^{\omega}:=\left\{x \in \mathbb{R}^{n}: \omega \cdot x \in[-\alpha, M-\beta]\right\}
$$

and the associated space of minimizers $\mathcal{M}_{-\alpha, M-\beta}$. Prove the following statements.
(i) If $u, v \in H_{\mathrm{loc}}^{1}\left(\widetilde{\mathbb{R}}^{n}\right)$, then

$$
\mathcal{G}_{\widetilde{\mathbb{R}}^{n}}(\min \{u, v\})+\mathcal{G}_{\widetilde{\mathbb{R}}^{n}}(\max \{u, v\}) \leq \mathcal{G}_{\widetilde{\mathbb{R}}^{n}}(u)+\mathcal{G}_{\mathbb{R}^{n}}(v) ;
$$

(ii) If $u \in \mathcal{M}_{M}^{\omega}$ and $v \in \mathcal{M}_{-\alpha, M-\beta}$, then $\min \{u, v\} \in \mathcal{M}_{-\alpha, M-\beta}$ and $\max \{u, v\} \in \mathcal{M}_{M}^{\omega}$. In particular, $\left(\mathcal{M}_{M}^{\omega}, \min , \max \right)$ is a lattice;
(iii) $u_{M}^{\omega} \in \mathcal{M}_{M}^{\omega}$.
(Hint: use Arzelà-Ascoli theorem.)
For $k \in \mathbb{R}^{n}$, denote with \mathcal{T}_{k} the translation of vector k, both for sets and functions:

$$
\mathcal{T}_{k} E:=\{x+k: x \in E\}, \quad \mathcal{T}_{k} f:=f(\cdot-k)
$$

Given a set $E \subset \mathbb{R}^{n}$ and a vector $\varpi \in \mathbb{R}^{n}$, we say that E satisfies the Birkhoff property with respect to ϖ (or are ϖ-Birkhoff) if

- For any $k \in \mathbb{Z}^{n}$ such that $\varpi \cdot k \leq 0$, we have $\mathcal{T}_{k} E \subset E$;
- For any $k \in \mathbb{Z}^{n}$ such that $\varpi \cdot k \geq 0$, we have $\mathcal{T}_{k} E \supset E$.

Exercise 5.

Check the following geometric properties.
(i) If $\left\{E_{\alpha}\right\}_{\alpha \in A}$ is a family of ϖ-Birkhoff sets, then both $\cap_{\alpha \in A} E_{\alpha}$ and $\cup_{\alpha \in A} E_{\alpha}$ are ϖ-Birkhoff;
(ii) If E is Birkhoff with respect to ϖ, then E^{c} is Birkhoff with respect to - ϖ;
(iii) There exists a constant $\rho>0$ depending on n such that if a ϖ-Birkhoff set E contains a ball of radius ρ, then it contains also a strip of width 1 with sides orthogonal to ϖ which itself contains the center of the ball.

Exercise 6.

Given $\theta \in \mathbb{R}$, show that the superlevel set $\left\{u_{M}^{\omega}>\theta\right\}$ is ω-Birkhoff.
(Hint: Use point (ii) of Exercise 4 with u_{M}^{ω} and $\mathcal{T}_{k} u_{M}^{\omega}$.)
Fix now a fundamental domain for \sim of the form $F=Q_{F} \times \mathbb{R}$, with Q_{F} a
($n-1$)-dimensional hyperrectangle in any hyperplane orthogonal to ω. Introduce the doubled relation \sim_{D} defined by setting

$$
x \sim_{D} y \quad \text { if and only if } \quad y-x=k \in(2 \mathbb{Z})^{n}, \text { with } \omega \cdot k=0
$$

and choose $D=Q_{D} \times \mathbb{R}$ to be a fundamental domain for \sim_{D} with $Q_{F} \subset Q_{D}$. We also introduce the space of admissible functions $\mathcal{X}_{D, M}^{\omega}$ and that of minimizers $\mathcal{M}_{D, M}^{\omega}$ relative to $D=\mathbb{R}^{n} / \sim_{D}$. Clearly, $\mathcal{X}_{M}^{\omega} \subset \mathcal{X}_{D, M}^{\omega}$ and $\mathcal{G}_{D}(u)=2^{n-1} \mathcal{G}_{\mathbb{R}^{n}}(u)$, for any $u \in \mathcal{X}_{M}^{\omega}$.
In the following exercise we show that the minimal minimizer enjoys the so-called doubling property or no-symmetry-breaking property, that is the minimal minimizer is still a minimizer with respect to functions of doubled periodicity.

Exercise 7. Let $u_{D, M}^{\omega}$ denotes the minimal minimizer of $\mathcal{X}_{D, M}^{\omega}$. Show that

$$
\left\{\mathcal{T}_{k} u_{D, M}^{\omega}=\ell\right\}=\left\{u_{D, M}^{\omega}=\ell\right\}, \quad \text { for any } \ell \in \mathbb{R}, k \in \mathbb{Z}^{n} \text { with } \omega \cdot k=0
$$

deduce that $u_{D, M}^{\omega}$ is periodic with respect to \sim and thus that it defines an element in \mathcal{X}_{M}^{ω}. Use this to conclude that u_{M}^{ω} and $u_{D, M}^{\omega}$ coincide.

[^0]: *The exercises listed here will be carried out as part of the tutoring activities on August, 28th.

