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1 Overview
Our research programme focuses on modern Fourier analysis and spectral theory that come up in a
variety of contexts and run like a common thread through our research projects. As described earlier,
our approach to harmonic analysis and spectral theory is interdisciplinary with analytic, topological and
arithmetic features, but the underlying objects (such as Riemannian manifolds), ideas (such as Fourier
duality) and methods (such as spectral decomposition, microlocal analysis) are common to the entire
programme.

We start with a short synopsis of the research projects, along with their interrelations, and put them
into perspective. Along the way we will, in particular, demonstrate stable edges between the vertices
of the triangle analysis – analytic number theory – topology. Complete details will be given in the
forthcoming subsections.

Project areas 2.1 and 2.8 are purely analytic in nature and thus provide a classic focal point for
the RTG. The former uses microlocal methods to understand and construct the asymptotic series of
perturbative quantum field theory, while pseudodifferential methods for boundary value problems and
Fourier integral operators deal with QFT in the presence of boundaries. 2.1 is of an interdisciplinary
nature and —while firmly embedded in mathematics— provides the RTG with an important connection
to quantum physics which is relevant also for students working, for instance, in project areas 2.5, 2.7 or
2.8. The focus of 2.8 is the resolvent of elliptic (or hypoelliptic) differential operators which encodes
important information on their spectral and scattering theory. The underlying analytic methods are
fundamental to the entire RTG. In particular, the spectral theory of the Laplacian on nilpotent groups is
the analytic heart of the index theory on such spaces studied in 2.6 and for the representation theoretic
applications in 2.5. Spectral theory on symmetric spaces is the analytic heart for L2-invariants of these,
which are a topic of 2.6. The dynamical aspects in 2.8 have the potential of arithmetic applications, in
the theory of automorphic forms.

Fourier analysis in arithmetic situations comes up in project areas 2.2 and 2.3. The power of Fourier
analytic techniques in diophantine analysis is demonstrated in 2.2, featuring modern variants of the
Hardy–Littlewood circle method. More combinatorial aspects of Fourier analysis appear, for instance,
in sieve theory (see 2.3). The most well-known example is the large sieve, which is nothing but an
`2-operator norm. The project areas 2.2 and 2.3 are linked by the fact that Fourier analysis is enhanced
by number theory in the guise of lattice point problems, multiplicative structures (in particular prime
numbers) and diophantine considerations which come up in all of them. Put differently, Fourier and
harmonic analysis are tailored to encode arithmetic phenomena.

2.2 and 2.3 apply spectral theory in discrete situations. This is also the core of project area 2.4,
which employs the Cayley graph Laplacian to study Kazhdan’s property (T) for groups. Methodologically,
this is linked to optimization and transformation techniques in analytic number theory mentioned in
the previous paragraph, but it also builds a bridge to topological questions. This project is one of the
special features of our unique group of PIs, building a bridge between number theorist Harald Helfgott
and topologist Thomas Schick on the basis of spectral theory and supported by previous work of both
PIs. It also profits from the additional expertise of group theorist Laurent Bartholdi as associated
researcher. The link to topological questions is given by the fact that the Cayley graph Laplacian is
a special case of the combinatorial Laplacian of some cellular L2-chain complex which comes with
corresponding L2-invariants. In the context of symmetric spaces for semisimple and nilpotent Lie groups,
the investigation of these L2-invariants with tools from harmonic analysis and index theory for certain
invariant differential operators is at the core of Project 2.6.

Implicit in many of the projects just discussed – such as 2.4, 2.6 – is the question of the connection
between geometric properties of spaces acted on by groups and spectral properties of certain invariant
operators (such as the Laplacian). This theme comes up most directly and prominently in 2.7, where we
ask to what extent we can choose a metric to achieve a determined band-gap structure of the spectrum
of this operator. A key tool here is Fourier analysis in the form of Bloch–Floquet theory.

Project area 2.5 studies Fourier analysis in the more abstract form of representation theory; it
centres on variations of Nelson’s theorem, describing which representations of certain *-algebras of
operators on a manifold extend to the underlying C∗-closure, generalizing the problem of integrating Lie
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algebra representations to the underlying Lie group. Methodological connections to 2.6 and 2.8 such as
pseudodifferential calculi are put in more detailed context in the project description below.

This is a challenging programme that is based on a broad and advanced mathematical machinery. It
therefore benefits from an additional postdoctoral researcher who can contribute his or her own ideas
and specific competences to the RTG and serves as an early career (but more advanced) partner of the
doctoral researchers.

We now turn to the detailed and explicit description of the research programme. The following
subsections, ordered alphabetically with respect to the first PIs name, describe specific project areas and
list a selection of 26 possible thesis projects which provide ample material for two cohorts of 10 PhD
students each.

2 Details of the Research programme
2.1 Microlocal methods in quantum field theory (Bahns, Schrohe, Witt)
As of today, no interacting quantum field theory has been constructed in four space-time dimensions.
Exact models exist only in two dimensions, and otherwise one resorts to perturbation theory. This yields
an asymptotic series composed of terms involving convolutions and products of certain fundamental
solutions of the underlying “free theory” (a linear partial differential operator, typically normally hyperbolic,
such as the wave operator ∂2

t −∆x). The terms in this series as they stand are in general ill-defined, and
physicists have developed elaborate tools to “renormalise” them, that is, to assign finite values to them.

Most of these tools work only in flat Minkowski space and cannot be generalized to cosmological
space-times. This is because they often rely on a globally defined Fourier transform and the existence of
a distinguished “vacuum state”, both of which do not exist in the generic situation. Moreover, these
tools are almost exclusively developed for the case where the underlying partial differential operator is
elliptic. This elliptic theory then has to be mapped to the physically relevant hyperbolic situation by
a so-called Wick rotation. While the Osterwalder–Schrader positivity property justifies this in some
situations, in many cases the Wick rotation cannot be globally defined.

Based on Radzikowski’s work [92], Brunetti and Fredenhagen [21] formulated the renormalisation
problem in quantum field theory (QFT) in the context of microlocal analysis as a problem of extending
(certain) distributions. In this approach, we are given a submanifold Σ of a globally hyperbolic manifold
M and a distribution u ∈ D′(M \ Σ) that is conormal with respect to Σ, and we must extend it
to a distribution on M while controlling physically relevant parameters such as the scaling degree
(a generalised homogeneity degree). Together with the axiomatic approach of Hollands and Wald
to perturbation theory on curved space-times, this reformulation paved the way to studying QFT
systematically and rigorously in more interesting geometries than Minkowski space. The underlying
iterative construction of the perturbative series was further formalized and led to the framework of
perturbative algebraic quantum field theory.

One main tool in the microlocal approach is Hörmander’s wavefront set, which gives a finer
(“microlocal”) resolution of the singular support of a distribution. It is a subset of the cotangent bundle,
which captures not only the singularities of a distribution, but also the co-directions of high frequency
that cause them. It is calculated using a localized Fourier transform. The application of the wavefront
set in QFT has since been further developed, among others, in [26,60] or in Wrochna’s Göttingen thesis
(compare [DB4]), and it has been applied also to QFT models on the non-commutative Moyal space
(see [DB2,DB1]).

Another key ingredient of this approach is a certain class of states on a suitable algebra of functionals,
the so-called “Hadamard states” that were first characterized in [92] and replace the vacuum state of
flat space-time. Starting from such Hadamard states, quantum fields can be realized as unbounded
operators on a Hilbert space and correlation functions can be calculated. Distinguished parametrices
and Hadamard states for non-flat Lorentzian space-times were constructed, among others, by Dappiaggi
et al [27] and, more recently, by Gérard and Wrochna [40] and Vasy [115].
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In recent work, the extension problem was reformulated by Brouder, Dang [26], and others to take
into consideration larger and larger classes of distributions. We propose to pursue a different avenue
which is to consider the renormalisation problem of QFT in the framework of Lagrangian distributions,
that is, distributions which are conormal with respect to a Lagrangian submanifold Λ of the cotangent
bundle T ∗M . Locally, a Lagrangian distribution is given as an oscillatory integral (ubiquitous also in the
analytic theory of automorphic forms),

u(x) =
∫
a(x, ξ) eiφ(x,ξ) dξ

with a nondegenerate phase function φ whose manifold of stationary phase is contained in Λ. However,
the challenge of the global theory (for instance, symbolic calculus) is that it has to be set up in a
geometric, coordinate independent way. Lagrangian distributions provide the natural framework for the
renormalisation problem as the (distinguished) fundamental solutions of the partial differential operators
in question are one-sided paired Lagrangian distributions [35, 77]. For such distributions, a symbolic
calculus is available [55]. The symbolic calculus and the microlocal machinery should be combined to
study the problem of extending such distributions using the methods of [78].

A thesis project, supervised by Bahns and Witt, then consists in iterating this construction as
stipulated by the asymptotic series of perturbative QFT, while keeping track of the structure of the
distributions that arise in each step of the iteration, including the symbolic information we have on
them. In some sense, this resembles higher-order microlocalisation (see [63]). The details of our iterative
procedure involve the construction of specific classes of distributions on certain stratified spaces, and
the construction of a functorial extension map defined on such classes of distributions.

Another project, supervised by Bahns, Schrohe and Witt, will concern QFT in the presence of
boundaries. There is previous work such as [70] and [23], but a microlocal approach has not yet been
fully developed. The thesis project will consider especially the Neumann boundary conditions, where
the uniform Lopatinski condition is violated, and it will include the construction of Hadamard states.
Here, Schrohe’s expertise in pseudodifferential methods for boundary value problems and Fourier integral
operators [ES2], [ES6] plays an essential role. He has moreover adressed QFT questions earlier with
Junker [ES3] and constructed Hadamard states and adiabatic states on globally hyperbolic space-time
manifolds with a compact Cauchy surface in terms of the Sobolev wavefront set.

Regarding constructive aspects in QFT, a result by Bahns and Rejzner [DB3] shows that in the
framework of perturbative algebraic quantum field theory, the S-matrix of the Sine Gordon model on
2-dimensional Minkowski space (hyperbolic signature) is constructible as a unitary operator. More
recently, Bahns, Fredenhagen and Rejzner have shown that the Haag–Kastler net of von Neumann
algebras of local observables can be constructed explicitly [DB5] – and hence, the framework indeed
provides a completely new approach to constructive QFT. Until now, results on exact models had mostly
been restricted to the elliptic signature case, and a subsequent Wick rotation was needed. One suggested
thesis project in this framework, supervised by Bahns, is the construction of the conserved currents of
the model. Again, this construction will require renormalisation.

Preliminary titles of thesis projects:

• Renormalisation in terms of paired Lagrangian distributions.

• Microlocal methods for QFT in the presence of boundaries.

• Conserved currents in the Sine Gordon model on Minkowski space.

2.2 Arithmetic Fourier analysis (Brüdern)
Modern diophantine analysis derives its power from a complex mix of tools from harmonic analysis,
combinatorics, and aspects of Banach space theory, all of this in rather concrete form. The main question
in the area is whether a given family of varieties, affine or projective, but of large dimension, obeys
a local-to-global (Hasse) principle. One way to attack this is through Fourier analysis, via the circle
method of Hardy and Littlewood or variants thereof (see, for instance, [JB1]). The pivotal contribution

4



by Davenport and Birch [10,29] remained unimproved over half a century, except in the special case of
cubic forms [51,54]. Very recently, a flurry of ideas emerged, culminating with Meyrson’s dramatic work
on a large class of complete intersections in the projective world. It is clear that the new machinery
is far from running out of steam. Here is one problem, mainly of analytical character, that combines
analytic number theory and Fourier analysis:

Given a polynomial F ∈ Z[x1, . . . , xs] of degree d, and a solution x ∈ Zs of F (x) = 0, estimate the
smallest solution of F (x) = 0 in terms of d, s and the height of F .

This is surprisingly hard. Leaving aside the trivial case of linear polynomials, a complete solution is
only available for d = 2 (Dietmann [30]). For cubic forms, one also has a positive answer when s ≥ 17
[20]. One would expect that when F is a form of degree d and s > 2dd or so, then again one should
be able to establish a bound for the smallest zero of F that is polynomial in the height of F . There
is, however, a serious obstacle. For the circle method to succeed, one has to estimate the so-called
singular integral from below, in terms of the coefficients of F . While it is straightforward to show that
the singular integral is positive, quantitative estimates have not been found. One possible line of attack
is to explore a well-known interpretation of the singular integral as a weighted measure for the area of
the real surface F (t) = 0 with |tj | ≤ 1 for 1 ≤ j ≤ s. Through this link and an analysis of the geometry
of the surface F (t) = 0 we expect the following results to be within reach:

1. establish a polynomial estimate for the smallest integer solution of F (x1, . . . , xs) = 0 in terms of
the height, for forms of degree d in s > 2dd variables.

2. establish a similar result for cubic polynomials, not necessarily homogeneous, at least when s is as
large as about 17.

Another class of problems that is largely of analytic nature derives from joint work of Brüdern
and Wooley. The authors of [JB4, JB5] referred to their strategy as arithmetic harmonic analysis.
The idea behind this is best illustrated with a simple example. Until recently, a successful use of the
circle method depended, in one way or another, on duality principles and Parseval’s relation. In some
cases, however, one arrives at different moments of Fourier coefficients in a natural way. Suppose we
are given three polynomials Fj(x1, . . . , xs) with integer coefficients, and are interested in solutions
of F1(x) = F2(y) = F3(z), for simplicity with the coordinates in a large box, say |x| ≤ P , |y| ≤ P ,
|z| ≤ P . Then one considers the Fourier series

Sj(α) =
∑
|x|≤P

e2πiαFj(x) =
∑
n

cj(n)e2πiαn,

where cj(n) counts solutions of Fj(x) = n. Now we have two expressions for the number of solutions
of F1 = F2 = F3, namely, the sum ∑

n

c1(n)c2(n)c3(n)

and the dual expression ∫ 1

0

∫ 1

0
S1(α)S2(β − α)S3(−β) dα dβ.

For an upper bound, one may use Hölder’s inequality to get

∣∣∣∑
n

c1(n)c2(n)c3(n)
∣∣∣3 ≤ 3∏

j=1

∑
n

|cj(n)|3.

The advantage is that each of the factors on the right depends only on one of the polynomials Fj .
So this strategy disentangles the effects of the input polynomials. The disadvantage is that the cubic
moment has no immediate diophantine interpretation. This is different from the mean square: here∑

n

|cj(n)|2
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counts certain solutions of the equation Fj(x) = Fj(y). Parseval’s identity deals with the equation
F1(x) = F2(y) in this style.

Of course, even for cubic moments, one could try to work with general results on Fourier coefficients,
like the Hausdorff–Young inequalities. These seem to go in the wrong direction, however, or produce
trivial estimates only. Hence, for a successful implementation of such ideas, one has to train the Fourier
analysis to remember the arithmetic origin of the Fourier coefficients. This was done, for the first time,
in a very special case to establish the key lemma in [JB3] (see also [JB2]) and then in other contexts in
[JB4, JB5]. However, so far, we only have just a few examples where the method performs, and we are
far from a systematic theory. But even then, the ideas behind our analysis are far from being exhausted.
The following project is a starting point for a beginner in the area:

Begin with correlation estimates between an exponential sum “of arithmetic origin” and an exponential
sum over a polynomial. Equipped with these, systematically find examples where ideas related to [JB4]
lead to improvements over a more routine application of the circle method.

It is very interesting to combine arithmetic harmonic analysis with the emerging field of additive
combinatorics, also sometimes referred to as higher degree Fourier analysis. It may well be that the
first can be developed to become a tool for the latter, but at this stage such links can, at best, be
explored at an experimental level. While additive combinatorics has produced celebrated results like
the Green–Tao Theorem, the more spectacular applications to number theory are mostly limited to the
solutions of linear systems with variables from “structured sets,” like the primes, or integer sequences
that contain no three elements in arithmetic progressions. A brave student should try to take these
ideas further, and study some classes of higher degree equations that are favourable to the methods
underpinning the Green–Tao Theorem. A good background in Banach space techniques will be required
here, on top of a course on the circle method.

Possible thesis problems include

• Small solutions of diophantine equations.

• Diophantine correlation estimates.

• Roth estimates for higher degree equations.

2.3 Primality and parity (Helfgott)
One of the central issues in analytic number theory is the difficulty in distinguishing primes and almost-
primes. The parity problem asks to distinguish numbers with an even or odd number of prime factors.
This problem is important because it encapsulates what we cannot do, or find very hard to do, in our
study of the primes. Our techniques are much better at telling apart primes and numbers with many
prime factors, or numbers whose number of prime factors differs by considerably more than 1.

Strong recent results on primes have allowed us to gain some ground against the problem. The main
two examples are the work of Goldston, Pintz, Yildirim, Zhang and Maynard on gaps between primes
(see [73]), and the work of Matomäki, Radziwiłł and Tao [71] on sign changes of the Möbius function.
Work in progress by PI Helfgott and Radziwiłł combines spectral analysis with new techniques to go
beyond the results in [71].

The proof of the ternary Goldbach problem by PI Helfgott [HH4,HH3] shows that every odd number
greater than 5 can be expressed as the sum of three primes. Helfgott’s work on a second version of the
proof has led to several interesting problems that are suitable for doctoral students. These are problems
that lie clearly in analysis, and seem likely to require techniques from harmonic analysis.

The main idea is as follows. Consider one of the main and simplest uses of sieves, namely to single
out primes. An upper-bound sieve consists of coefficients λd carefully chosen so that

∑
n≤x

∑
d|n

µ(d)λd

2

(1)
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(with µ(n) the Möbius function) is as small as possible, that is, not much larger than π(x) ∼ x/ log x,
the number of primes up to x.

Given the common constraints λ1 = 1, λd = 0 for d > D for a parameter D, it is clear that the
expression (1) is at least π(x) − π(D), since the inner sum in (1) consists only of the term λ1 = 1
whenever n is a prime between D and x, and the square of the inner sum is, of course, always
non-negative, being a square.

If D ≤
√
x, it is not possible to make (1) smaller than about 2π(x), or rather x/ logD, or very

slightly less. This is one manifestation of the parity problem mentioned above. The optimal choice of
weights λd was found by Selberg; it depends both on the size of d and its divisibility properties.

Now, what if we impose the constraint that λd be the restriction to Z of a continuous, monotone
function on R+? (Such a constraint is natural; it is imposed to us, for instance, when λd arises from a
smoothing function used for other purposes, as it does in the study of the ternary Goldbach problem.)

The optimal choice is then not known, though a function studied by Barban and Vehov [4] is a likely
candidate. Barban and Vehov showed in 1968 that their function gives a result within a constant factor
of the theoretical optimum. Graham showed some ten years later that the constant was asymptotically
one. The convergence to the asymptotic could, as far as anybody was aware, be rather slow, due to a
relatively poor bound on the second-order term.

In the current version of [HH4], PI Helfgott manages to analyse the case – also studied by Barban–
Vehov and Graham – where D is larger than

√
x. This case is out of reach for most sieves – including

Selberg’s optimal quadratic sieve – but not for this one. It is shown that the second-order term is,
in fact, negative, and precise bounds for it are proven, with carefully determined explicit constants.
Helfgott’s doctoral student S. Zúñiga Alterman is currently investigating similar results for the case
D ≤

√
x. This has plenty of potential applications that will lead to interesting thesis projects.

It is an open question to what extent the choice in [4] is optimal. This problem would be a very
good fit for a doctoral student familiar with both Fourier analysis and optimization problems. A very
concrete optimization problem also has to be solved in project area 2.4.

Let us make clear why harmonic analysis is a necessary part of the repertoire of someone attacking
this problem (or indeed of any analytic number theorist). Fourier analysis is a very common technique in
number theory; indeed it forms the backbone of the circle method, used to treat the ternary Goldbach
problem since Hardy, Littlewood and Vinogradov. While the circle method would not be the approach
to follow for the optimization problem just discussed, Fourier analysis is likely to be useful in other
ways. For instance, applying the Poisson summation formula is a completely standard step in this sort
of problem. The issue is really when to apply it, and what to do thereafter. The point is to unblock a
problem by working in Fourier space, instead of solely in physical space.

The following are possible titles of thesis projects in this direction:

• Optimality among monotonic upper-bound sieves.

• On explicit minor-arc estimates in Goldbach’s problem.

2.4 Spectral analysis in geometric group theory (Helfgott, Schick)
Discrete groups are ubiquitous in mathematics as the classical vehicle encoding symmetry. As such,
they interact with essentially any other area of mathematics. Vice versa, this leads to a huge arsenal of
different tools for their study.

Spectral theory is surprisingly powerful. Here we mean the spectral theory of the Cayley graph
Laplacian (for simplicity, we assume that the group is finitely generated), which is equivalent to the
spectral theory of the symmetric random walk on the graph. If the Cayley graph is constructed using
the generating set S with |S| = d, the Laplacian is ∆ = 2d−

∑
s∈S(s+ s−1), acting on `2-functions

on the set Γ of vertices of the Cayley graph. Here group element γ ∈ Γ acts by left multiplication:
γ · (
∑
g∈Γ cgg) =

∑
g∈Γ cg(γg). Commonly used is the Markov operator M = 1−∆/(2d). Its spectrum

captures a lot of information, which is perhaps best encoded in its Green function (a generating power
series). For a tree it can be explicitly calculated and turns out to be a rational function. The spectral
radius of the random walk, defined as the spectral radius of M , is the radius of convergence of the Green
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function. So it is given by its pole structure. The technique of analysing singularities of generating
functions is also very common in analytic number theory, see 2.2.

The specific group theoretic spectral property we address is Kazhdan’s property (T). In our language,
property (T) for a group Γ is equivalent to the fact that there is a gap near 1 in the spectrum of M , this
time considered as an operator on the direct sum of all irreducible unitary representations of Γ (instead
of only the regular representation as before). Equivalently, there is a gap near 1 of the image of M in
the maximal group C∗-algebra of Γ. It is clear that this property holds if ∆2 − ε∆ =

∑n
j=1 a

∗
jaj ∈ R[Γ]

for some ε > 0. Surprisingly, Ozawa [83] shows that this algebraic criterion is also necessary for property
(T). This has incited recent work to find groups with property (T) (and good Kazhdan constants ε) with
this method, for instance, for SL3(Z) [80]. The first new group where property (T) could be established
with this method is Aut(F5) [56]. The main point is that to find the positive square representation can
be transformed into a problem of semidefinite optimization. This is a quadratic optimization problem,
and similar problems are relevant in project area 2.3.

The method has not yet been successful for Aut(F4). The result of [56] also reproves and sheds
new light on the fact that the finite symmetric groups can be equipped with generators making them a
uniform sequence of expanders, first established in [59], related to the work of Helfgott on bounded
generation in finite groups [HH1,HH2,HH5,HH6].

We are now interested in the case Out(F4). Note that the previous work is purely algebraic. We
propose to combine Ozawa’s method with geometry. In particular, observe that Out(Fn) has an explicit
model for its universal space for proper actions, outer space, a simplicial complex whose points are
metric trees. The action is not cocompact, but there is an explicit subcomplex, the spine, which is
universal and cocompact. This leads both to a general question, and to a specific application. The
general problem is to develop the concept of Property (T) and Ozawa’s criterion for groupoids. Some
conditions may be imposed on the groupoid: if it has a finite unit space, the extension should be
straightforward. The next case would be a compact unit space equipped with a quasi-invariant measure.
The application we have in mind is to a groupoid constructed from outer space, whose isotropy groups
are isomorphic to Out(Fn). The unit space of the groupoid is the set of combinatorial types of graphs
with fundamental group isomorphic to Fn; and a generating collection of morphisms in the groupoid are
given by expansion/contraction of an edge. This is useful because all relations may be taken of length 3
in the generators, in contrast in particular to Out(F4). This fits with an implicit requirement in any
application of Ozawa’s method: the sum-of-squares decomposition of ∆2 − ε∆ only “sees” relations of
short length in the support of ∆.

The symmetry groups of the combinatorial types of graphs appearing as unit spaces can also be
exploited to decompose ∆ into eigenspaces; this is a more involved Fourier decomposition, because
morphisms have source and destination graphs, leading to two group actions on the space of morphisms.

The Cayley graph Laplacian above is just a very special case of the combinatorial Laplacian of the
cellular L2-chain complex of a Γ-covering of a finite CW-complex, and the combinatorial versions of the
L2-invariants are spectral invariants of these operators. For example, by a result of Varopoulos the 0-th
Novikov–Shubin invariant α0 (which describes the growth of the spectrum of the graph Laplacian near
0) is +∞ except if the group is infinite and of polynomial growth, in which case α0 is the polynomial
growth rate.

Many of the driving structural questions about L2-invariants translate to rather subtle questions
about the spectrum of the Cayley graph Laplacian and of more general matrices over the integral
group ring of the group in question. A negative answer to these questions typically has two aspects:
first specific constructions of the groups (and the operator), then explicit spectral computations using
adapted tools.

For example, we know that in general L2-Betti numbers are not always rational, or even algebraic
[TS9,3, 41]. This answers negatively a famous question of Atiyah, which notwithstanding has a positive
answer for many classes of torsion-free groups (compare, for instance, [TS6,TS7]). The corresponding
question for the intriguing case of finite characteristic coefficients is adressed in [TS3]. All these results
are inspired by work of Dicks and Schick [TS2], where the spectrum of the graph Laplacian on the
lamplighter group is explicitly calculated, using mainly Fourier transform techniques for the base group
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to reduce to finite matrix calculations. Refining the constructions, Grabowski in [42] was even able to
obtain examples with Novikov–Shubin invariant equal to 0, disproving a conjecture of Lott and Lück.
In the converse direction, using ideas inspired by Voiculescu’s R-transform and the theory of formal
languages, Sauer proves in [95] that Novikov–Shubin invariants for free fundamental groups are always
positive, and even rational. Previously, Lott had proved the same for abelian fundamental groups using
Bloch–Floquet theory and perturbation theory for spectra.

The time is ripe to cover much more general cases. The main part of the project will be the
development of the appropriate techniques. Our starting point here is that the surface groups are
obtained as amalgamated products of two free groups, with amalgamation along an infinite cyclic
subgroup, and the structure of the random walk operator is well adapted to this amalgamated free
product decomposition. There is a version of Voiculescu’s R-transform in such situations. It is a kind of
free non-commutative Fourier transform, which has to be pushed to non-free situations, compare [110]
for basics and [37] for first applications to spectral radius of amalgamated free products. In more detail,
one looks at a group G, a subgroup H, and studies the compression to End(CH) of an operator on
G. The case of interest for us is G free and H a cyclic subgroup. A language has to be developed —
based on context-free languages, D-finite languages, and so on — to encode the calculation of this
compression, and to determine enough information about the spectrum of the initial combinatorial
Laplacian. We hope to be able to extend the results of Sauer about rationality from free groups to
surface groups (and beyond). Conversely, for general groups we now know that the positivity conjecture
for Novikov–Shubin invariants is wrong, but we have no examples where the invariant (which is hard to
compute explicitly) is known to be irrational. It should be possible to construct such examples based on
the constructions and calculations in [42].

The project will profit from the help and expertise of associated researcher Laurent Bartholdi, who
has significant expertise in spectral computations, using in particular also numerical methods.

We suggest for example the following thesis projects

• Property (T) for finitely generated groupoids and Ozawa’s criterion.

• Outer Space of F4, its groupoid, and Property (T).

• Voiculescu’s R-transform for surface groups as amalgamated products and rationality of Green
functions and Novikov–Shubin invariants for these groups.

• Irrationality of Novikov–Shubin invariants for lamplighter-like groups.

2.5 Representation theory for Lie algebroids (Jotz-Lean, Meyer, Zhu)
Let G be a simply connected Lie group and g its Lie algebra. A continuous unitary representation of G
on a Hilbert space H may be differentiated to a representation of g or, equivalently, of the universal
enveloping algebra U(g). This is a representation by unbounded operators defined on a common dense
domain, the subspace of analytic vectors (see [97, Chapter 10]). Define Nelson’s Laplacian ∆ by
∆ =

∑n
j=1X

2
j for a basis X1, . . . , Xn of g. Nelson’s Theorem says that a representation of U(g) comes

from a representation of G if and only if ∆ acts by an essentially self-adjoint operator. In this project,
we propose to generalize Nelson’s Theorem to ∗-algebras that appear in geometric quantisation.

As a first example, consider the ∗-algebra Diff(M) of differential operators on a manifold instead
of U(g). The description of differential operators through symbols identifies Diff(M) with a certain
vector space S(T ∗M) of functions on the cotangent space T ∗M and gives a noncommutative ∗-algebra
structure on S(T ∗M). A representation of Diff(M) maps functions in S(T ∗M) to operators on Hilbert
space, thus providing a “quantisation map”. Besides Diff(M), we also want a C∗-algebra of observables
that acts by bounded operators. The standard choice in case of T ∗M is the C∗-algebra K(L2M) of
compact operators on L2M . Any representation of K(L2M) is a direct sum of copies of the standard
representation of K(L2M) on L2M . Such a representation clearly differentiates to a densely defined
representation of Diff(M). More generally, a flat connection on a locally trivial Hilbert space bundle
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E �M defines an action of Diff(M) on smooth sections of E. The groupoid C∗-algebra C∗(Π1(M))
of the fundamental groupoid Π1(M) of M acts naturally on the L2-sections of such a bundle E and
therefore seems a better C∗-algebra of observables than K(L2M). The Lie groupoid Π1(M) is the
unique one with simply connected source fibres and with TM as its Lie algebroid.

Let ∆ ∈ Diff(M) be the Laplace operator for some Riemannian metric on M . Call a representation
of Diff(M) “integrable” if ∆ acts by an essentially self-adjoint operator. We conjecture that these
“integrable” representations of Diff(M) are equivalent to representations of C∗(Π1(M)). More precisely,
a notion of C∗-hull for a class of “integrable” representations of a ∗-algebra is defined in [RM2]. We
conjecture that C∗(Π1(M)) is a C∗-hull in this sense. The definition in [RM2] makes the C∗-hull unique
and functorial, and it allows to prove a rather general induction theorem for C∗-hulls of algebras graded
by a discrete group, which improves upon a result by Savchuk and Schmüdgen [96].

The algebras U(g) and Diff(M) above have a common generalisation. Namely, let G be a Lie
groupoid with simply connected source fibres and let A(G) be its Lie algebroid. Let DiffG(G) be the
algebra of left-invariant differential operators on G. This specializes to U(g) if G is a Lie group and to
the algebra Diff(M) if G = Π1(M). There is an element L ∈ DiffG(G) of order 2 that is elliptic along
the range fibres of G. We conjecture that C∗(G) is a C∗-hull for the class of representations of DiffG(G)
in which L acts by an essentially self-adjoint operator. The most promising tools to establish this are
the results of Woronowicz [118] about C∗-algebras generated by unbounded multipliers, combined with
the pseudodifferential calculus for groupoids in [113]. The proof of a variant of Nelson’s Theorem for
representations on Hilbert modules by Pierrot [87] and the work of PI Meyer on C∗-algebras related to
groupoids (see, for instance, [RM1,RM3]) are also relevant.

Which elements of DiffG(G) may play the role of the Laplacian? For Lie algebra representations,
this question has received much attention in mathematical physics. For instance, Nelson’s Theorem for
Lie algebra representations remains true if Nelson’s Laplacian is replaced by the sum of squares over a
set of Lie algebra generators of g (see [107]). Since hypoellipticity is crucial in the proof of Nelson’s
Theorem, it should be studied whether any fibrewise hypoelliptic element of DiffG(G) may be used to
define integrability. This is particularly interesting for graded nilpotent groups, where hypoellipticity
is equivalent to a representation-theoretic condition, the Rockland condition. The spectral theory of
operators on such groups is also discussed in project area 2.6, and pseudodifferential calculi for such
situations are important in project area 2.8.

The idea of quantisation is to build quantum mechanical observable algebras from a suitable structure
on the phase space of a classical mechanical system. The algebras Diff(M) and K(L2M) or C∗(Π1(M))
realize this goal if the phase space is T ∗M with the canonical symplectic structure, and DiffG(G) and
C∗(G) above do so in slightly more complicated cases. Kontsevich showed that a Poisson structure
suffices to build a formal deformation quantisation. But the convergence of his formal power series
cannot be controlled. More structure seems needed to get an observable algebra for ~ 6= 0. Weinstein
suggested to quantise a Poisson manifold using a suitable symplectic groupoid G with a polarisation,
that is, an involutive, multiplicative, Hermitian and Lagrangian distribution P ⊆ TCG. While this
approach covers many nice examples, several steps in the construction need technical extra assumptions
to overcome analytic problems (see [50]).

We propose to split the geometric quantisation scheme in [50] into two steps. The first step builds a
∗-algebra D like DiffG(G), and the second builds a C∗-hull for D like C∗(G). The construction of D
is more geometric, and some of the analytic difficulties in Weinstein’s geometric quantisation scheme
in [50] are shifted to the problem of integrating D to a C∗-algebra, for which [RM2] provides useful
tools.

The ∗-algebra DiffG(G) for a Lie groupoid G is the enveloping ∗-algebra of the Lie algebroid of G.
This definition still works for a Lie algebroid A that does not integrate to a Lie groupoid and so avoids
the integrability obstruction in [50]. In addition, geometric quantisation uses the polarisation to define a
kind of quotient of a Lie groupoid. For instance, if M is simply connected, the symplectic groupoid
associated to T ∗M is the pair groupoid T ∗M × T ∗M , and the standard polarisation reduces this to the
pair groupoid M ×M , which generates the C∗-algebra K(L2M). The quotient groupoid above only
exists if the leaf space of a certain foliation defined by the polarisation is a manifold (see also [JL1]).
Real polarisations correspond to infinitesimal ideal systems on the Lie algebroid level (see [JL2, 50]).
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Without regularity of the foliation, we may define D as the space of sections of the Lie algebroid that are
in the kernel of a canonical flat connection defined in [JL2]. A construction along these lines should be
tested for concrete non-integrable Poisson manifolds such as those in [CZ2,CZ3]. It is also interesting in
this connection to study low-dimensional examples of Lie algebroids more systematically. The easiest
case beyond Lie algebras are Lie algebroids with the circle as object space.

The Laplacian element in the universal enveloping algebra of a Lie algebroid and the resulting
“integrable” representations may be defined without mentioning an integrating Lie groupoid. So any
Lie algebroid defines a ∗-algebra and a class of “integrable” representations. What is a C∗-hull for
these representations? A first guess is to build it from the “Weinstein groupoid” found in [CZ1] as an
integrating object. For ∗-algebras defined by a Lie algebroid with an infinitesimal ideal system, it is less
clear what to do. It seems best to first study this question in examples.

The induction theorem in [RM2,96] works particularly well for a ∗-algebra with a Zn-grading and
commutative degree-0 part. This is equivalent to an action of the torus Tn with commutative fixed-point
algebra. In geometric examples with many symmetries, we expect a larger compact (quantum) group of
symmetries. The proof of the induction theorem for C∗-hulls in [RM2] should extend to the setting of a
∗-subalgebra A ⊆ B with a conditional expectation B → A. This would cover, in particular, the case
of compact quantum group actions. Such an induction theorem may also apply to the representation
theory of the Drinfeld–Jimbo quantum groups Uq(g) because the fixed point algebra for the conjugation
action of the quantum group on its enveloping algebra is the centre of Uq(g), hence commutative. The
low-dimensional cases suq(2) and suq(1, 1) are treated already in [96], using the conjugation action of
the maximal torus.

Possible titles of thesis projects in this direction are:

• Nelson’s Theorem for representations of Lie algebroids and Lie groupoids.

• Polarisations and reduced convolution algebras for infinitesimal ideal systems.

• Lie algebroids over low-dimensional manifolds.

• Induction theorems for C∗-hulls and applications.

2.6 L2-invariants and harmonic analysis (Meyer, Schick)
The L2-invariants of a space we plan to address in this project are the L2-Betti numbers (introduced by
Atiyah), the Novikov–Shubin invariants, and the L2-torsion, a secondary invariant defined only if the
L2-Betti numbers vanish. These invariants have been used in geometric topology for many decades. To
define and compute them, techniques from many other fields are used, notably operator algebras and
functional analysis, differential geometry, ring theory, and group theory. At the same time, they have
numerous applications back into these fields and to arithmetic geometry.

The L2-invariants of a manifold X are defined initially as invariants of the Laplace operator ∆̃ on
the Hilbert space of square-integrable differential forms on the universal cover X̃ of X. A combinatorial
variant of the definition using a CW-complex structure on X is used in project area 2.4. The group von
Neumann algebra of π1(X) has a finite trace. This allows to define a regularized dimension for modules
over it, which are usually infinite-dimensional as vector spaces. In particular, the kth L2-Betti number
of X is the regularized dimension of the kernel of the Laplace operator ∆̃ on differential k-forms. The
Novikov–Shubin invariant measures the growth rate of the spectrum of ∆̃ near 0, using the traces of the
spectral projectors χ[0,λ](∆̃) for λ↘ 0. The full spectrum of special such operators will be the focus of
part of project 2.7.

The most interesting cases where L2-invariants have been computed directly are (locally) symmetric
spaces, where tools from harmonic analysis are applied to the differential form Laplacian ∆̃. Approximation
results compare these invariants to invariants in particular of arithmetic quotients. This way, computations
of L2-invariants can have arithmetic applications, or can profit from arithmetic knowledge. Somewhat
surprisingly, the picture for the globally symmetric case is not yet complete and some intriguing questions
remain open. One focus of this project is to extend the list of direct computations to further cases.
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The Harish-Chandra Plancherel formula and the full knowledge of the Casimir operator is used
by Olbrich [82] to compute the L2-Betti numbers, Novikov–Shubin invariants and L2-torsion of all
compact locally symmetric spaces with a real, connected, semi-simple and linear underlying Lie group G,
completing previous work of Borel, Lott, Hess–Schick [TS5]. The invariants depend only on the dimension,
the volume, the Euler characteristic of the compact dual of the symmetric space, and the fundamental
rank. Our focus here is on the Novikov–Shubin invariants. Let n be the dimension of the symmetric
space G/K, where K is maximal compact in G. Let m := rkCG− rkCK be the fundamental rank. If
m > 0, then the Novikov–Shubin invariants are equal to m for degrees in [(n−m)/2, (n+m)/2− 1],
and the Laplacian is invertible (so that the Novikov–Shubin invariant is +∞) outside these degrees.

The result of Olbrich does not treat non-linear groups G. Such groups occur as infinite coverings
of linear groups with infinite fundamental group. The most interesting case is probably G = ˜SL(2,R),
which gives one of the 8 possible geometries of compact 3-manifolds in the Thurston classification.
Another important group is ˜SU(2, 2), the universal covering of the conformal group of 4-dimensional
Minkowski space-time in relativistic quantum mechanics. More generally, we will study the universal
cover of SU(p, q), generalizing both SU(2, 2) and SU(1, 1) = SL(2,R).

The computation of the Novikov–Shubin invariants in these cases is important because it extends
our very short list of spaces where these mysterious invariants are known. It is also a test case for a
question of Gromov, namely, whether Novikov–Shubin invariants are invariant under quasi-isometries.
This question is open mainly due to the lack of known values. Let Γ ⊆ G be a cocompact subgroup and
let Γ̃ ⊆ G̃ be its inverse image in G̃. This is an extension of Γ by a central infinite cyclic group. It turns
out that Γ̃ and Γ× Z are quasi-isometric if G has property (T). In this way, the computation of the
Novikov–Shubin invariants of Γ̃\G̃/K, which are equal to those of the group Γ̃, will be a test case for
Gromov’s question. We actually expect to find counterexamples. The values of the Novikov–Shubin
invariants for ˜SL(2,R) are stated in [69] (and compatible with a positive answer to Gromov’s question)
without any details of the computation.

A clear strategy to compute Novikov–Shubin invariants is explained already in [82]. The main
problem is the explicit computation of the Plancherel measure. The classical work of Harish-Chandra,
which is used in [82], only covers linear groups. There is a general Plancherel formula covering also
the non-linear case, compare [34,53]. The main work will be to make this explicit and usable for the
calculation of the Novikov–Shubin invariants. Good test cases are ˜SL(2,R) and ˜SU(2, 2), for which
the Plancherel measure is worked out explicitly in [52, 91]. Another ingredient for the calculations is
(g,K)-cohomology, which is already well established. A previous thesis in Göttingen in a similar direction
is that of Kammeyer [57], supervised by Schick and Meyer, in which Novikov–Shubin invariants and
L2-torsion have been computed for many non-uniform lattices in semi-simple Lie groups. This requires
a precise understanding of the interplay of harmonic analysis with the Borel–Serre compactification.
Young researchers in the groups of Bahns also use Plancherel measures in different contexts.

Another rich class of symmetric spaces where L2-invariants give interesting information about the
geometry are those nilpotent Lie groups which admit a cocompact lattice. This is, in a certain sense, at
the opposite end from the semi-simple case discussed above, and very different techniques are needed.
The Novikov–Shubin invariants of nilpotent Lie groups form “boundary contributions” for the study
of Novikov–Shubin invariants of symmetric spaces of general semi-simple Lie groups in light of the
boundary components of their Borel–Serre compactifications, compare Kammeyer’s thesis [58].

By a classical result of Varopoulos, the 0th Novikov–Shubin invariant is the polynomial growth rate
of the volume of balls or, equivalently, the rate of escape of the random walk on the group. Indeed, the
0th Novikov–Shubin invariant of a compact CW-complex is finite if and only if the fundamental group
is infinite virtually nilpotent. Note that, by classical results, the polynomial growth rate of a discrete
nilpotent group Γ is equal to an algebraic invariant given in terms of the nilpotency defining central
series.

We know much less about the higher Novikov–Shubin invariants of nilpotent Lie groups (or equivalently
their lattices). The best results about them have been obtained by Rumin. First, he computed explicitly
all Novikov–Shubin invariants of the Heisenberg groups in [93], with considerable generalizations in [94].
In particular, [94] shows that for a graded nilpotent Lie group each of the Novikov–Shubin invariants is
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bounded above by the growth rate, and equality holds for the Laplacian on 1-forms on Lie groups with a
quadratic presentation.

For the Heisenberg group, the Novikov–Shubin invariants are studied using harmonic analysis on the
group, with partial information by Lott [68], and somewhat more completely – but with gaps in the
proofs – in [103]. The more general results in [93, 94] still use some harmonic analysis. They depend on
the canonical homogeneous structure on a graded nilpotent Lie group and the resulting filtration of the
differential forms. The pseudodifferential calculus for homogeneous (graded) manifolds is also used to
deal with auxiliary hypoelliptic operators, as well as homological algebra for Hilbert complexes.

In this project, we will refine the methods of Rumin for graded nilpotent groups, using the more
refined calculi for those spaces available today, relying on the general theory developed, for instance,
in [39]. These aspects also play a crucial role in Section 2.8. A graded structure is crucial in [94]. In
general, of course, nilpotent Lie groups are only filtered. We will investigate how much the methods
may be generalized to this case. A particularly interesting question is how the invariants for a filtered
Lie algebra are related to those of the associated graded Lie algebra. To get finer information, we will
combine the homogeneous structure and harmonic analysis.

The project area at hand investigates very fine spectral invariants. The harmonic analysis that
enters this study may also be used to describe the K-homology class of an invariant, hypoelliptic
differential operator on a graded nilpotent Lie group Gm. These differential operators are studied via
their parametrices using adapted pseudodifferential calculi for filtered manifolds, apart from [39] one
can also use the approach proposed in [38] using suitable groupoids. In an ongoing doctoral thesis
project, these calculi are investigated by combining the groupoid approach with Rieffel’s construction of
generalised fixed point algebras. In the RTG, we want to push this further and use the techniques to
solve index problems on filtered manifolds. The PIs have considerable expertise with this K-theoretic
machinery and the groupoid approach to index theory (compare, for instance, [ES1,TS1,ES4,RM4]).
However, the general techniques alone cannot solve the problem because their end result still involves a
map that is only defined as the inverse of a certain isomorphism. Namely, the principal symbol belongs
to a certain non-commutative C∗-algebra. Its K-theory is isomorphic to that of the unit cosphere
bundle S∗M in the manifold M . But which K-theory class on S∗M corresponds to a given principal
symbol? The Rockland condition, which is the analogue of ellipticity in this context, asks for the
symbol to be invertible. The problem is to use the Rockland condition to describe the class through
finite-dimensional data extracted from the operator, in a way that still works for bundles of graded
nilpotent Lie groups. This is a key ingredient in the recent hypoelliptic index theorem by Baum and van
Erp [7].

The development of the above theory offers many attractive questions for several doctoral students.
Preliminary titles of thesis projects in this direction are:

• Plancherel measure and L2-invariants of non-linear semi-simple Lie groups.

• Novikov–Shubin invariants of nilpotent Lie groups via filtered calculi and harmonic analysis.

• Index theory for hypoelliptic invariant differential operators in graded nilpotent Lie group bundles.

2.7 Spectral engineering (Schick, Schrohe, Witt)
Originally motivated by solid state physics, in this project we are interested in spectral properties of
geometric differential operators invariant under a cocompact discrete group action. The original example
is the Laplacian on Euclidean space with a Zn-invariant potential. And the question is: can we (at least
in a certain spectral range) achieve a determined band-gap structure of the spectrum of this operator.

More generally, a very similar type of operators occurs when introducing and studying analytic
L2-invariants (in the sense of Atiyah) (see 2.4 and 2.6). The starting point is a a normal covering
M̄ →M of a compact Riemannian manifold M with an action of the deck-transformation group Γ. The
relevant operator now is the differential form Laplacian on M̄ or, more generally, the lift D̄ of an elliptic
differential operator D on M . Classical L2-invariants depend on the spectrum near zero. We would like
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to understand more about the full spectrum of D̄. In particular, to what extent can we arrange for a
lower bound on the number of gaps (within a spectral range)? For this spectral engineering problem, the
role of the potential of the classical problem is played by the metric (and, in addition, also the topology
of M): can we choose the metric so as to achieve a predetermined band-gap structure of the spectrum
of D̄? Or are there obstructions, forcing the spectrum, say, to be the full (half)-line?

This question has a considerable history. When the group Γ is Zn with n 6= 0, Post in [89] solves
the problem positively for the scalar Laplacian. Using Fourier analysis in the form of Bloch–Floquet
theory, for a given finite energy range Λ, he constructs (M, g) with Zn-covering M̄ and such that the
spectrum of the scalar Laplacian on M̄ has a prescribed number (and approximate location) of gaps in
the interval [0,Λ]. For a very specific type of manifold, this is refined by Khrabustovskyi, who completely
prescribes the band-structure of the spectrum in any finite energy range [61]. Again, this relies heavily
on Fourier analysis. The method of Post, however, is more flexible. The paper [90] shows, in particular,
that one may prescribe the manifold. Then a suitable conformal change of the metric achieves the
desired band-gap structure. Using a non-commutative version of Bloch–Floquet theory for a group Γ
which is a finite extensions of Zn, [66] generalizes the results of [89] to such Γ as symmetry group, and
further in [67] to residually finite symmetry groups. A final result is obtained in recent work by Schoen
and Tran [98] who construct, for an arbitrary covering M̄ →M of a compact manifold and an arbitrary
L, a metric on M such that the scalar Laplacian for the lifted metric on M̄ has at least L gaps in its
L2-essential spectrum. The main point is that there is no condition whatsoever on the covering group.

The scalar Laplacian is only the first in the list of important geometric differential operators. The
differential form Laplace–Beltrami operators and the spin Dirac operator of a spin structure offer the next
generation of examples. The spectrum of these basic geometric operators should depend strongly on the
metric. Only very little is known, however, about spectral engineering for these operators. Recently,
Egidi and Post produced metrics on compact manifolds with large gaps in the spectrum of the Hodge
Laplacian (a weak analogue for differential forms of a celebrated result of Colin de Verdière), but only
on quite special types of manifolds. Metrics with an arbitrary number of gaps in the spectrum of
differential form Laplacians and Dirac operators are constructed in [2], but only for Z-symmetry. The
construction requires certain topological conditions on a separating hypersurface. It should also be
noted here that index theory gives topological obstructions to the existence of gaps in the spectrum of
the Dirac operator. Schick has significantly contributed to the identification of such obstructions via
index theory (for example, in [TS4,TS8] ) with a particular emphasis on spectral methods and Fourier
decomposition. Therefore, the constructions for general operators need to be more sophisticated than
for the scalar Laplacian, where the previous work shows that no such obstructions exist.

We have considerable experience in index theory and spectral theory of non-compact manifolds and
general operators. Based on this, thesis projects, supervised by Schick, Schrohe, and Witt, will concern
the study of Dirac and differential form Laplacians with more general symmetry group Γ, to identify,
on the one hand, obstructions to band-gap structure and, on the other hand, construct examples with
many gaps in the spectrum when the obstructions vanish (spectral engineering). The precise results
of [61] rely on the full power of Bloch–Floquet theory. In a second line of projects, we will refine these
techniques in two directions: to more general symmetry groups Γ (for instance, virtually nilpotent
groups as studied in 2.6) on the one hand, to more general operators (differential form Laplacian,
Dirac operator) on the other hand, and construct metrics with prescribed band-gap structure of these
operators on Γ-coverings. In all cases, the construction part will involve a family of metrics which
degenerates in certain parts of the manifold and such that the spectrum of the operator in question
(differential form Laplacian, Dirac operator, . . . ) converges to the spectrum of a model operator which
can be computed explicitly. For abelian groups, Fourier analysis allows to carry out these delicate
computations on compact manifolds, which simplifies the situation and therefore will be the first case to
be studied. The presence of obstructions to the existence of gaps is somewhat hard to pin down and
will force us to start with special cases, like the n-torus, where we expect that specific constructions like
Khrabustovskyi’s will allow to control the spectrum of the differential form Laplacians.

Discretisation is a complementary approach to the analysis of spectral properties of Laplacians (and
more general operators). It is quite subtle to find discretisation techniques that give good approximation
results for large parts of the spectrum of the differential operator by the discrete analogues. Note
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that, typically, the discrete operators will be bounded, so that we cannot expect to approximate the
full spectrum at once. For the zero eigenvalues, the Hodge–de Rham Theorem provides a perfect
discretisation method: the combinatorial Laplacian of any triangulation has the same kernel as the
differential form Laplacian of the appropriate degree. This holds for compact manifolds, but equally
so for the symmetric Laplacians on coverings discussed so far, due to Dodziuk’s L2-Hodge–de Rham
Theorem [31].

However, Dodziuk and Patodi [32,33] obtained a much more refined spectral approximation result
for compact manifolds: given any compact Riemannian manifold and finer and finer triangulations which
are sufficiently regular, then for each k, the kth eigenvalue of the combinatorial Laplacian converges
to the kth eigenvalue of the Hodge Laplacian, and this with precise error bounds. In particular, the
convergence is uniform on any finite part of the spectrum. This spectral computation uses Rayleigh
quotient computations and the precise analysis of the de Rham map and its explicit homotopy inverse
constructed by Whitney.

Obviously, it does not make sense to aim for a similarly formulated spectral approximation result for
the operators on coverings, as they have continuous spectrum in general. A substitute is the spectral
density function and, for Zn-symmetry, the individual terms in the Bloch–Floquet decomposition. Still,
one has to formulate the spectral convergence statement carefully. The Rayleigh quotient considerations
of the compact case are appropriate for eigenvalue estimates, but again have to be replaced by a more
functional analytic treatment for operators with continuous spectrum. We are optimistic that these
difficulties can be overcome and propose this as a further thesis topic. One also has to develop the
appropriate discrete version of the twisting with a flat representation, which is another subject interesting
in its own right.

List of potential thesis topics:

• Fine spectral engineering for Zn-invariant differential form Laplacians using Bloch–Floquet theory,
in particular, on Rn.

• Spectral engineering for form Laplacians: constructions for arbitrary covering spaces.

• Spectral engineering for Dirac operators: index obstructions versus constructions for abelian and
non-abelian coverings.

• Riemannian structures and triangulations of manifolds for covering spaces.

2.8 Resolvent and dispersive estimates (Schrohe, Witt)
This project aims at studying the resolvent structure for certain singular geometries, and also to address
dispersive properties of operators in the corresponding pseudodifferential calculi using tools from Fourier
analysis. The emphasis is on the use of oscillatory integrals, spectral theory, and Fourier techniques, all
at the core of the proposed RTG.

An approach to understand the spectral and scattering theory of a geometrically interesting (positive)
elliptic, or hypoelliptic, differential operator A, like the Laplacian, or the sub-Laplacian, is to understand
the resolvent R(λ) = (A− λ)−1. In many situations, a first step is to regard this resolvent R(λ) as a
parameter-dependent family of pseudodifferential operators, which then opens up a whole arsenal of
microlocal techniques. A first goal is achieved once one has succeeded in constructing a parametrix to
R(λ) in a symbolic manner. For the case of manifolds with conical singularities, this analysis has been
carried out in [ES7], [102]; see also [ES5] for applications.

A parametrix construction is particularly intricate on non-compact manifolds, where the geometry
at infinity plays a decisive role. Notice that the spectrum of A then has an absolutely continuous part
σac(A), while there may also be discrete spectrum (below the essential spectrum or embedded into it).
Whereas number theory is mostly interested in the discrete spectrum, scattering theory concerns the
absolutely continuous part of the spectrum (according to Melrose [76], scattering theory provides a
parametrisation of the absolutely continuous spectrum).
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It has been proven natural to consider classes of Riemannian manifolds with an asymptotic control of
the metric at infinity. In this project, we will focus on the following three instances: (1) asymptotically
Euclidean manifolds, for which one has the SG (or scattering) calculus [75, 99], (2) asymptotically
hyperbolic manifolds, for which the zero calculus of Mazzeo and Melrose [14,43,74] has been developed,
and (3) homogeneous nilpotent Lie groups as discussed also in Sections 2.5 and 2.6, following recent
work [39, 88] by Fischer, Ruzhansky, and others. The first two calculi already exist in a semiclassical
form [114,116]. For instance, in the first case one would consider (−h2∆− 1)−1 instead of (−∆−λ)−1,
where h = 1/

√
λ > 0 plays the role of the semiclassical parameter. Note that (the symbol |ξ|2 − 1

of) the semiclassical operator −h2∆ − 1 is non-elliptic, but of real-principal type. This means that
microlocally the non-elliptic points are still “nice” in the sense that there are methods available to readily
obtain all the required information. Such situations have been handled by various authors through elliptic
estimates, results on the propagation of singularities, and complex scaling (see [108] for the latter).
Recently, Vasy [114, 121] has devised a method that provides a systematic framework for arguments
along these lines. One particular point here is that extending the operators under consideration beyond a
natural boundary makes it necessary to study the propagation of singularities near radial points. This has
been done so far using positive commutator estimates [47]. It may also be achievable with a parametrix
construction [IW3].

In this project, our approach will be a different one. Following a general outline as given, for instance,
in [100,101,105], we will keep the form (A− λ)−1 of the resolvent, but consider it in conical regions
Λ ⊂ C for the spectral parameter λ, where the operator A− λ is parameter-dependent elliptic. This will
allow us to reach similar conclusions as in the papers [114,121] mentioned above, but also to go further.
Our approach has the advantage of a greater flexibility in identifying symbolic components, which as a
consequence allows us to exercise some extra control on the problems under investigation.

In recent years, it has been realized in different places [28,36,49,119] that dynamical properties of
the characteristic flow play an important role if one wants to obtain the most refined resolvent estimates.
A famous example is quantum ergodicity [1, 81], which holds on a closed manifold if the characteristic
flow is ergodic and where, on average, eigenfunctions become equidistributed in phase space, in the
high-energy limit. We will pay special attention to such dynamical properties.

We will likewise investigate time-dependent operators like ∂2
t +A or i∂t +A, where A is as above.

Here the goal is to prove new dispersive estimates on the solutions of the corresponding evolution
equations (often called waves) or to improve existing ones (for instance, concerning the parameter range,
where these dispersive estimates are known to be valid). A key example are Strichartz estimates (see, for
instance, [5, 48]), which assert that certain space-time averages of the solutions behave better (in terms
of decay) than one would expect from just concentrating on the solutions at fixed times. Strichartz
estimates for certain degenerate hyperbolic operators were proven in [IW1, IW2]. In the examples above,
conservation of energy holds. This is why one sees no dispersive effects by solely employing L2-based
norms with respect to the spatial variables. The situation, however, starts to improve if one replaces the
L2 norm by the L∞ norm, where one already sees the pointwise decay of the solutions. This observation
will be the point of departure for a whole series of refinements.

Here our approach will take advantage of the Lagrangian structure [6, 109] of the (distributional)
kernels of the solving operators of the problems under study. This again involves symbolic aspects which
become apparent by mentioning the appearance of eikonal and transport equations. Also dynamical
aspects are present, e. g., as seen by the fact that in favorable cases the underlying Lagrange manifolds
are embedded (instead of immersed) and globally well-behaved. The final step is to utilize the symbolic
information gathered till then to derive the desired dispersive estimates. This step will heavily rely on
tools from harmonic analysis [111].

Topics for prospective thesis projects include:

• Parameter-dependent pseudodifferential calculi as extensions of the calculi without a parameter
and a symbolic parametrix construction.

• Resolvent estimates of the differential operators under study while making suitable dynamical
assumptions.
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• Dispersive estimates relying on the Lagrangian structure of the kernels of the operators under
consideration.

• Spectral-theoretic consequences of the resolvent and dispersive estimates, like wave-trace invariants
or the distribution of resonances.
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