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Abstract

Regression classes modeling more than the mean of the response
have found a lot of attention in the last years. Expectile regression is a
special and computationally convenient case of this family of models.
Expectiles offer a quantile-like characterisation of a complete distribu-
tion and include the mean as a special case. In the frequentist frame-
work the impact of a lot of covariates with very different structures
have been made possible. We propose Bayesian expectile regression
based on the asymmetric normal distribution. This renders possible
incorporating for example linear, nonlinear, spatial and random ef-
fects in one model as well as Bayesian regularization. Furthermore
a detailed inference on the estimated parameters can be conducted.
Proposal densities based on iteratively weighted least squares updates
for the resulting Markov chain Monte Carlo (MCMC) simulation al-
gorithm are proposed and the potential of the approach for extending
the flexibility of expectile regression towards Spike-and-Slab regular-
ization as well as complex semiparametric regression specifications is
discussed.

Expectile Regression, Bayesian Semiparametric Regression, Markov ran-
dom fields, P -splines, asymmetric normal distribution, Markov chain Monte
Carlo Simulation, Spike and Slab priors

1 Introduction

Recent interest in the development of flexible regression specifications has
had a specific focus on describing more complex features of the response
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distribution than only the mean. The standard instrument in this situation is
quantile regression (Koenker and Bassett, 1978) where conditional quantiles
are related to a regression predictor. A lot of work has been done to extend
the simple linear quantile regression model to more advanced approaches
like quantile smoothing splines (Koenker et al., 1994), quantile regression
for clustered data (Reich et al., 2010) or geoadditive models (Fenske et al.,
2011).

Computationally regression quantiles are obtained by minimising an asym-
metrically weighted absolute residuals criterion

n∑
i=1

wτ (yi, ηiτ )|yi − ηiτ | (1)

with asymmetric weights

wτ (yi, ηiτ ) =

{
1− τ yi ≤ ηiτ

τ yi > ηiτ ,

a response y and a quantile-specific predictor ητ . This loss function induces
additional complexity compared to standard least squares optimisation. As
a consequence, expectile regression (Newey and Powell, 1987) that relies on
asymmetrically weighted squared residuals

n∑
i=1

wτ (yi, ηiτ )(yi − ηiτ )2 (2)

has gained considerable interest since expectile regression estimates can be
obtained by simple iteratively weighted least squares fits. Extensions to more
complicated models have been explored in recent publications for the smooth-
ing of a nonlinear effect (Schnabel and Eilers, 2009), for geoadditive models
(Sobotka and Kneib, 2012) and for instrumental variables (Sobotka et al.,
2013). While basic asymptotic results are available for a least squares esti-
mate (see Sobotka et al., 2013), alternative estimation methods like boosting
as introduced to expectiles by Sobotka and Kneib (2012) rely on a bootstrap
for further inference. An autoregressive definition of expectiles was even in-
troduced for time series analysis (Taylor, 2008). In this paper, we introduce
a Bayesian formulation of expectile regression that relies on the asymmetric
normal distribution (AND) as auxiliary response distribution. The approach
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is very similar to the estimation of Bayesian quantile regression, where an
asymmetric Laplace distribution (ALD) is used instead of the AND. For de-
tailed information see Yue and Rue (2011), Kozumi and Kobayashi (2011)
or Reed and Yu (2009). In the case of the AND proposal densities based
on iteratively weighted least squares updates for the resulting Markov chain
Monte Carlo (MCMC) simulation algorithm are needed.

As an illustrative example, we present a data set dealing with malnutri-
tion in Tanzania. The dependent variable is the so called z-score of stunting
(a score measuring the height of the child in comparison to a reference pop-
ulation). The latter is the dependent variable and shall be explained by
continous covariates like maternal BMI at birth, age of the child and categor-
ical covariates (mother’s work, mother’s education and mother’s residence,
denoted by X). The impact of the continuous covariates used for the expla-
nation of the dependent variable z-score is not linear thus we use splines. As
Tanzania consists of 20 regions over which economic and political situation
differ we will also to incorporate the regions into the model. Therefore use a
geoadditive model of the type

stuntingi = f(BMIi) + f(agei) + fgeo(regioni) + xiβ + εi, (3)

where the f denotes the nonlinear effects, X contains categorical covari-
ates, which will be se and fgeo is the spatial effect of the different regions of
Tanzania. The necessity of using a model different to mean regression be-
comes obvious when taking a look at the data: the conditional distribution
of the z-score is neither homoscedastic nor symmetric.

The rest of the paper is structured as follows: in the second section we
describe the basic ideas of expectile regression and give an overview over
the concept of semiparametric regression and variable selection via Spike-
and-Slab priors. We then introduce the above mentioned asymmetric nor-
mal distribution and describe the Bayesian algorithm in more detail. The
third section contains simulations which study point estimation as well as
confidence intervals for the parameters in the first part. The second set of
simulations aims to evaluate the performance of the regularization by the
Spike-and-Slab priors. In Section 4 we will describe the above mentioned
data set on childhood malnutrition in Tanzania and explain the impact of
the different covariates. In the last section we conclude and give an outlook
on future plans.
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2 Bayesian Expectile Regression

2.1 Expectile Regression

Suppose that regression data (yi, zi), i = 1, . . . , n, on a continuous response
variable y and a covariate vector z are given and shall be analysed in a
regression model of the form

yi = ηiτ + εiτ ,

where ητ is a predictor formed by the covariates and ετ is an appropriate error
term. Unlike in mean regression where regression effects on the mean are of
interest, we focus on situations where specific outer parts of the response
distribution shall be studied. We will denote the extremeness of these outer
parts by the asymmetry parameter τ ∈ (0, 1) where τ = 0.5 corresponds to
the central part of the distribution while τ → 0 and τ → 1 yield the lower
and upper part of the distribution, respectively. The standard approach for
implementing such regression models is quantile regression where we assume
that the τ -quantile of the error distribution equals zero, i.e.

P (εiτ ≤ 0) = τ.

This implies that the predictor ηiτ corresponds to the τ -quantile of the re-
sponse yi and the regression model can be estimated by minimising the loss
function (1). As an alternative, we will instead focus on the criterion (2)
that yields expectile regression estimates. This criterion has the advantage
to be differentiable with respect to the regression predictor so that estimates
can be obtained by iteratively weighted least squares estimation. Basically,
expectiles are an alternative possibility to characterise the distribution of a
continuous random variable where τ indicates the “extremeness” of the part
of the distribution that shall be studied, see Newey and Powell (1987).

A usual objection against expectiles as compared to quantiles is their lack
of an immediate interpretation. While for quantiles the property that τ · 100
percent of the data lie below the regression line and (1 − τ)100 percent of
the data lie above the regression line is easy to understand, the extreme-
ness of expectiles is hard to transfer to such an easy statement. However,
interpretation of expectiles is still possible in the following ways:

• For i.i.d. data y1, . . . , yn, the resulting expectile estimate êτ will be a
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weighted average

êτ =
n∑
i=1

wiyi

where the weights wi depend on the estimated expectile. As a conse-
quence, regression expectiles can also be considered such a weighted
average conditioned on a specific covariate vector.

• Expectiles are tail expectations, i.e. the τ -expectile fulfills

τ =

∫ eτ
−∞ |y − eτ |f(y)dy∫∞
−∞ |y − eτ |f(y)dy

showing that eτ is characterised by a partial moment condition.

• Usually, one would not only estimate one single expectile but a whole
set of expectiles for various values of τ . The collection of all estimates
then gives an intuitive impression about the shape of the conditional
distribution of the response and in particular allows to detect features
such as heteroscedasticity, skewness or kurtosis. Moreover, conditional
quantiles can still be calculated from a set of expectiles if quantile
estimates are of ultimate interest, as shown by Efron (1991) and refined
in Schulze Waltrup et al. (2013).

• Expectiles are increasingly important when it comes to measuring risks.
Taylor (2008) uses expectiles to efficiently estimate the expected short-
fall (ES), a coherent and subadditive risk measure. Its estimation would
normally base on a small subset of the available sample. In contrast, the
estimate based on expectiles contains all observations. Recent results
by Ziegler (2013) also show that expectiles themselves are a coherent
and elicitable risk measure while quantiles are not coherent.

In summary, albeit having a different (and may be less intuitive) interpre-
tation than quantiles, expectiles are probably not more difficult to interpret
than a variance.

2.2 Asymmetric Normal Distribution

To make expectile regression accessible in a Bayesian formulation, we require
the specification of an auxiliary response distribution that yields a likelihood
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that is equivalent to the optimisation criterion (2). For Bayesian quantile
regression, this can be formalised based on the asymmetric Laplace distribu-
tion, see for example Yue and Rue (2011), Lum and Gelfand (2012) or Yu
and Moyeed (2001). For expectile regression, the analogous distribution is
an asymmetric normal distribution

yi ∼ AN(ηi, σ
2, τ)

with density

p(yi) =
2√
σ2π

(√
1

1− τ
+

√
1

τ

)−1
exp

(
− 1

σ2
ωτ (yi, ηiτ )(yi − ηiτ )2

)
.

expectation

E(yi) = ηi,τ +
σ

(
√
τ +
√

1− τ)

(
1− 2τ√
πτ(1− τ)

)
and variance

Var(yi) =
σ2

√
τ +
√

1− τ

[
1

2

(√
1− τ
τ

+

√
τ

1− τ

)
− 1
√
τ +
√

1− τ

(
(1− 2τ)2

πτ(1− τ)

)]
.

Maximising the likelihood arising from this distributional specification is then
equivalent to minimising (2), as the logarithmic kernel of the distribution is
the same (but negative) argument.

2.3 Semiparametric Regression

Instead of only considering linear regression specifications, we are interested
in applying expectile regression in the context of general semiparametric
regression models with predictor

ηi = β0 +

p∑
j=1

fj(zi),

where β0 is an intercept representing the overall level of the predictor, and
the functions fj(zi) reflect different types of regression effects depending on
subsets of the covariate vector zi. Note that we suppress the index τ for
notational simplicity. For the regression functions fj, we make the following
assumptions:
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• The functions fj are approximated in terms of basis function represen-
tations

fj(z) =
K∑
k=1

βjkBk(z)

where Bk(z) are the basis functions and βjk denote the corresponding
basis coefficients.

• The conditional prior for the vector of basis coefficients βj = (βj1, . . . , βjK)′

given hyperparameters θj is a multivariate normal distribution with
density

p(βj|θj) ∝ exp

(
−1

2
β′jKj(θj)βj

)
where the precision matrix Kj(θj) either represents different types of
structural assumptions about the function fj such as smoothness or
induces regularisation to a set of covariates. The vector θj can contain
potential hyperparameters which can for example control shrinkage or
the degree of smoothness, as will be presented later on. Note that the
prior may be partially improper if the precision matrix Kj(θj) is not
of full rank.

We complete the Bayesian specification by assuming inverse gamma prior
for the error variance:

σ2 ∼ IG(a0, b0). (4)

Given the model specification, this implies that the full conditionals of the
variance parameter is also inverse gamma with updated parameters. In con-
trast, the full conditionals for the regression coefficients βj are not available
in closed form since unfortunately a normal prior in combination with an
asymmetric normal observation models does not induce an asymmetric nor-
mal full conditional. We therefore construct proposal densities based on the
penalised iteratively weighted least squares updates that would have to be
performed to compute penalised expectile regression estimates in a frequen-
tist backfitting procedure, i.e.

β̂
[t+1]

j = (B>j W
[t]Bj + σ2Kj(θj))

−1B>j W
[t](y − η[t]

−j),

where Bj is the design matrix associated with the j-th model term, y is
the vector of responses, η−j = η −Bjβj is the complete predictor without
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the jth component and W = diag(w(y1, η1), . . . , w(yn, ηn)). More precisely,
we propose a new state for βj from the normal distribution N(µj,Σj) with
expectation and covariance matrix given by

µj = ΣjB
>
j W (y − η−j) and Σj = (B>j WBj + σ2Kj(θj))

−1.

This framework covers, among others, individual-specific random effects, in-
teraction surfaces based on either radial basis functions or tensor product
splines, and varying coefficient terms as special cases and therefore provides
a convenient generalisation of additive (mixed) models, see Fahrmeir et al.
(2004). In this paper we will focus on linear effects, regularised by a spike and
slab prior, penalised splines and Markov random fields, as those will be used
in the analysis of childhood malnutrition. For each of those effects we will
present an appropriate design matrix Bj, which renders possible to estimate
the predictor η as the sum over products Bjβj in the above setting. We will
furthermore explain the corresponding penalisation/regularisation matrices
and the resulting full conditionals.

2.3.1 Regularization of linear effects

We have chosen to present a spike and slab approach with the prior on the
variances (see ) as an option for regularisation. There are a lot of differ-
ent ways to approach this problem, and changing the setup to other spike
and slab approaches or the LASSO should be straight forward. In this case
however, the design matrix Bj = X simply is the data matrix. The regu-
larisation matrix Kj(θj) is a diagonal matrix with entries 1

τj
, where the τj

are sampled in the same way as for spike and slab regularisation in mean
regression. The τj themselves are assigned a mixture distribution as prior
that comprises a slab part, being flat and spike part shifting the parameter
towards zero: τ 2j |νj ∼ (1 − νj)IG(aτ2 , ν0bτ2) + νjIG(aτ2 , bτ2). This is real-
ized by the additional parameter ν0 in the inverse gamma distribution. If
this parameter is chosen to be sufficiently small the form of the correspond-
ing inverse gamma distribution has the required spike shape. The compo-
nent of the mixture distribution of which τj is sampled, is controlled by the
additional parameter νj which is assigned a Bernoulli prior νj ∼ B(1, θ)
with a Beta hyperprior θ ∼ Beta(aθ, bθ). The latter can be either cho-
sen to be non informative or can be used to obtain an especially low or
high number of parameters in the model. The resulting full conditionals for
those two distributions are due to conjugacy ν|· ∼ B(1, θ∗) with parameter
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θ∗ =
θIG(τ2j ,a,b)

θIG(τ2j ,a,b)+(1−θ)IG(τ2j ,a,ν0b)
and θ|· ∼ Beta(aθ +

∑k
j=1 νj, bθ + k−

∑k
j=1 νj).

The full conditional for the τj is again a mixture of two inverse gamma distri-
butions: τ 2j |· ∼ (1−νj)IG(aτ2+0.5, ν0bτ2+0.5β2

j )+νjIG(aτ2+0.5, bτ2+0.5β2
j ).

2.3.2 Continuous Effects

We model the continuous non linear variables by penalised splines, see Eilers
and Marx (1996) for details. The Bayesian formulation (see Brezger and
Lang, 2006) requires the design matrix Bj to contain the basis functions
for the B-splines and the precision matrix to operate as smoothing matrix.
Therefore Kj(θj) = 1

δ2j
D>kDk with Dk being the matrix of differences of

kth order and δ2j the smoothing parameter. The smoothing variance δ2j is
assigned an inverse gamma distribution:

δ2j ∼ IG(aj, bj), (5)

which, just as for the model variance, leads to an inverse gamma full condi-
tional.

2.3.3 Spatial Effects

For the spatial effects we incorporate Markov random fields in our model. The
design matrix Bj consists of the indicator function for the regions and the
precision matrix Kj(θj) = 1

δ2j
Kj, where Kj is the neighboring or adjacency

matrix and δ2j the smoothing parameter. The latter, just as for the continuous
effects, is assigned an inverse gamma prior and also results to have an inverse
gamma full conditional.

3 Simulations

Since we need a misspecified likelihood for our estimations, we aim to show
that the resulting estimated expectiles are nevertheless valuable. We there-
fore conduct simulation studies comparing Bayesian expectile estimates with
least squares and boosting estimates (Sobotka and Kneib, 2012) in order to
quantify the performance of the procedures. The estimates are rated accord-
ing to the true expectiles of the error distribution.

First, we evaluate the posterior mean as a point estimate and afterwards
we explore coverage rates and the widths of the credible intervals.
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3.1 Point Estimates

3.1.1 Design

To start the evaluation of the Bayesian expectiles and for comparison with
existing alternatives, we generate two covariates, X1 ∼ B(1, 0.5) and Z2 ∼
U(0, 3) in sample sizes of n = 100, 500. Next, the random errors ε are drawn

from an A) N(0, 0.5z22), B) Exp
(

1
z2

)
or C) t(2) distribution. Together they

comprise data for two simple semiparametric models in the following way:

(M1) y = 2x1 + 5 exp(−0.5z22) + ε

(M2) y = 2x1 + 5 sin(2z2) + ε.

Hence, we have a challenging homoscedastic scenario (C) with infinite vari-
ance and two heteroscedastic scenarios, one of them with skewed errors (B).
For each of the combinations of sample size, error distribution and model
formula we generate 100 replications. The data are then analysed for expec-
tiles with asymmetries τ ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98}. We
estimate the Bayesian expectiles with overall 35000 MCMC iterations, where
5000 are burn-in and we use a thinning of 30. This leaves us with a sample
of 1000 observations from the posterior. This method is compared with a
least asymmetrically weighted squares (LAWS) estimate and an estimate ob-
tained with the use of component-wise functional gradient boosting, both as
presented in Sobotka and Kneib (2012). The smoothing parameter in LAWS
estimation is optimised with an asymmetric cross-validation criterion, for
boosting the optimal stopping iteration from 1000 initial boosting iterations
is also determined via cross-validation. For all algorithms, the nonlinear ef-
fect is estimated using a cubic B-spline basis with 20 inner knots and second
order difference penalty. The methods are taken from the software package
expectreg (Sobotka et al., 2013) available for R (R Development Core Team,
2013).

3.1.2 Results

The quality of the results will be measured in terms of a root mean squared
error for the estimated function:

RMSE(fτ ) =

√
(f τ − f̂ τ )′(f τ − f̂ τ ).
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In Figure 1 we present the results of the three methods, for each expectile
in direct comparison. The results are shown for n = 500 and exemplary for
(M1). The complete results are available as online supplement. Our simula-
tions show that, in terms of RMSE, the methods are quite interchangeable.
The posterior means offer the same estimation quality as LAWS and boost-
ing, at least within τ ∈ [0.05, 0.95]. For more extreme expectiles, it seems
that the numerical errors in the MCMC start to become more substantial, i.e.
it becomes difficult to draw from the respective multivariate normal distribu-
tion with extreme weights. Otherwise, the choice for one of the estimates can
be made regarding the outer properties, practicability or just personal habit,
now that a Bayesian estimate is available. The choice might also depend on
interval estimates rather than point estimates. The former are analysed in
the next part of the simulations.
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Figure 1: RMSE for n = 100, the three different errors, separately for each
expectile. Boxplots created from 100 replications.

11



3.2 Interval Estimates

3.2.1 Design

Similar as in Waldmann et al. (2013) we compare 95% credible intervals with
frequentist confidence intervals based on an asymptotic normal distribution
(Sobotka et al., 2013). Confidence intervals from boosting would be obtained
with a computationally demanding nonparametric bootstrap and are there-
fore omitted. The comparison is made regarding coverage properties and
interval widths. For a simpler visualisation we focus on a single nonlinear
effect:

(M3)y = sin(2(4z − 2)) + 2 exp(−162(z − 0.5)2) + ε.

The covariate is drawn from a U(0, 1) distribution, the error from aN(0, (0.2+

|z − 0.5|)2) and an Exp
(

1
0.2+|z−0.5|

)
distribution. The nonlinear effect then

has its highest frequency as well as lowest variance at 0.5 while the variance
increases withz → 0 and z → 1. The frequentist asymptotics start to apply
from 500 observations and for extreme expectiles, 1000 observations are rec-
ommended. Hence, we generate data sets with n = 500, 1000 and in order to
properly measure the coverage rate, we generate 1000 replications. The rest
of the parameters remain as before.

3.2.2 Results

We measure the coverage of the confidence intervals at a given covariate value
zi as

Ĉover(CI(f̂j,τ (zi)) =
1

1000

1000∑
k=1

1{f̂j,τ (zi)∈CI(f̂
[k]
j,τ (zi))}

,

the maximum width of all confidence intervals at all fixed zi

max Ŵidth(CI(f̂j,τ (zi))) = max
k

(f̂
[k]
j,τ,U(zi)− f̂ [k]

j,τ,L(zi))

where fU and fL denote the upper and lower ends of the interval estimate.
The minimum width is determined in the same way. The evaluations are done
on a regular grid of length 100 within the covariate domain. In Figure 3 we
can see that the coverage of both interval estimates is rather poor at the
center of the covariate where the curvature of the generating function is
high. This might result from a bias that comes with the addition of the
penalty. Otherwise the plots show that the width of the frequentist intervals
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generally increases with increasing variance in the errors while the credibility
intervals remain at the same width over the whole covariate domain. The
effect is a better coverage at the center of the covariate and worse coverage
for strongly increasing variance regions. This result is especially visible in
Figure 2 where two estimates and intervals are shown for an exemplary data
set. Here we can see that the confidence intervals are much narrower in the
center than the credible intervals. Reasons for this behaviour can be found
in the misspecified likelihood which is just an auxiliary tool to fit the point
estimates and does not describe the data well. Hence, the estimated variance
of the fit is constant. The results for exponential errors and for a sample size
of 500 are available as online supplement.
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(b) frequentist example analysis

Figure 2: Examplary estimates and pointwise intervals for n = 1000, (M3)
and normal errors obtained from MCMC and LAWS estimation.

3.3 Regularisation

3.3.1 Design

We choose a simulation setup close to the one provided in the original LASSO
paper by Tibshirani (1994). The model setup is a simple linear regression
with

(M4)y = 3.3 + 1.5x1 + 0x2 + 0x3 + 2x4 + 0x5 + 0x6 + ε.
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Figure 3: Coverage rates on the left and interval widths on the right for
normal errors and n = 1000. Minimal interval width given in solid, maximum
width in dashed lines.

Thus we have only three covariates, that really have an effect, whereas the
rest is zero. The xk are drawn from a multivariate normal distribution with
mean 0, standard deviation 1 and pairwise correlation Cor(xk, xl) = 0.5|k−l|.
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Further we have ε ∼ N(0, 1). We generate datasets of three different sizes,
n = 20, n = 50 and n = 100 and perform 50 replications for each scenario.
In every replication the estimated regression coefficients are recorded and for
each covariate the acceptance probability for inclusion into the model.

3.3.2 Results

We report the results exemplary for n = 50 since we find no substantial
differences in the simulation results for different sample sizes. As can be
seen in Figure 4, the results are generally quite convincing. The left panel
shows the boxplots for the percentage of simulations in which the acceptance
probability for the corresponding parameter was over 0.5. The plots in the
right column display the estimation of the regression parameters βk them-
selves. Note the fact that in the left panel there is one more box than on the
right side, due to the fact that the intercept was not subject to regularisa-
tion. These plots show that in general the regularisation makes more false
positive errors as we have a quite high rate of correctly chosen real effects
whereas part of the βk = 0 get acceptance probabilities over 50% and are thus
categorized incorrectly. In general the performance is better in the central
expectiles than in the outer ones. However, if one does not use a hard 50%
criterion but more of a comparison between the acceptance probabilities for
the covariates the structure gets quite obvious over all different covariates.

3.4 Simulation roundup

Overall we can say that boosting is a flexible tool that results in good point
estimates, confidence intervals for large data sets with strong heteroscedastic-
ity might be more reliable with a LAWS estimate, but the estimated Bayesian
expectiles are as efficient and provide better coverage for small samples. The
addition of Spike-and-Slab priors provides a powerful tool for model selection
which should nevertheless be controlled manually.

4 Example

A data set consisting of 5389 observations of children was obtained from the
Demographic Health Surveys (DHS, www.measuredhs.com). The study was
conducted in Tanzania in 1992. It contains information on weight, height, sex
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Figure 4: Boxplots for acceptance parameters being over 0.5 in the left panel,
average of acceptance probabilities above each box. Boxplots of the estima-
tions of the parameter β in the right. Note that β0s for the different expectile
levels are supposed to be different.

and age of the children themselves, information about the parents - namely
the mother - such as her BMI at the birth of the child, her educational back-
ground (in four categories) as well as her current employment status (either
employed or unemployed) and the information on the residence. The latter
actually splits into two: the categorical variable on the surrounding (urban or
rural) and the spatial variable, indicating the province mother and child are
living in. Chronic malnutrition leads to stunting (insufficient height for age)
which will be used as measure for the extent of undernourishment. The height
of the children is compared to a reference population of supposedly healthy
children of the same age in a so called z-score: zi = (AIi −MAI)/σ. In this
formula AIi stands for the stunting index of child i, MAI the median stunting
value in the reference population and σ for the standard deviation of stunting
in the reference population. The mean value in our data set is −177.9, the
standard deviation 142.24, 90% of the children have a z-score lower than zero
and the 95%-quantile reaches from −455.00 to 108.05. As explained in the
introduction, we use a model incorporating the continuous covariates non-
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linearly, the categorical variables linearly and the province as a spatial effect
(see equation(3)). The estimation was executed as described in Section 2:
the nonlinear effects are modeled with Bayesian P -splines, the spatial effect
with a Markov random fields and to judge the importance of the categorical
covariates in the different expectiles, we used spike and slab priors for reg-
ularisation. The model was estimated for the τ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.9
and 0.95-expectiles.

The results for the linear effects are displayed in Table 1. The proportion
of MCMC iterations in which the effect was considered different from zero by
the spike and slab selection is presented in the line below. Effects, for which
this proportion exceeds 50% are printed in boldface. For reasons of clarity
only five different expectiles are displayed, the rest behaves analogously. Note
that for the covariate work the sign of the effect changes over the expectiles.
This means that the impact of the employment of the mother is positive
in the lower parts of the conditional distribution, whereas it has a negativ
impact in the middle to higher ends. A similar effect can be seen for the
impact of secondary school in comparison to no education at all. The positive
effect of the variable rural is no surprise, as the proximity to the farms and
the traditional higher family bonding is of high importance for the adequate
supply. The negative effect of sex simply displays the fact, that boys of this
age are generaly less tall than girls.

Nonlinear effects are displayed in Figure 5. The results are very close to
those from Kandala et al. (2001), where the data set was analysed in a mean
regression setting. There are small differences between the expectiles, but in
general the effects are stable over the whole distribution.

For the spatial effects see Figure 6. The effect of the capital Dar es
Salaam in the east of the country is positive over all expectiles, which is
in contradiction to the negative effect of the variable urban in comparison
to rural. Thus we conclude, that the effect of the capital as being better
supplied than the rest of the country voids this effect. Another fact worth
mentioning is the positive effect of the south west on the higher expectile.
This region neighbours Lake Tanganyika and is known for its fertility.

5 Conclusion

The Bayesian formulation of expectile regression outlined in this paper pro-
vides both the Bayesian counterpart to frequentist expectile regression and

17



Variable / τ 0.05 0.2 0.8 0.95
mother’s work 4.15 0.14 -5.45 -13.62
reference: “unemployed” 0.96 0.26 0.99 1.00

mother’s education: reference: “no education”

“primary school” -1.93 -0.21 -7.55 -17.66
0.52 0.34 0.87 0.99

“ secondary school” 19.79 14.64 0.56 -7.80
1.00 1.00 0.36 0.84

“higher education” 61.62 55.60 59.67 78.22
1.00 1.00 1.00 1.00

mother’s residence 12.56 13.73 10.63 3.10
reference: “urban” 1.00 1.00 1.00 0.69

child’s sex -5.27 -5.62 -3.52 -1.95
reference: “female” 0.99 1.00 0.94 0.68

Table 1: Estimated parametric effects for Childhood Malnutrition data. Ref-
erence categories and spike and slab acceptance probabilities obtained by
MCMC are included in italics. Covariates accepted more often than 50% of
the time are set in boldface.

the expectile analogue to Bayesian quantile regression. While standard semi-
parametric regression specifications in expectile regression can already be
handled in a frequentist setting based on iteratively weighted least squares
estimation, the Bayesian formulation opens up the possibility to include more
complex regression specifications. We showed this by applying Spike-and-
Slab regularisation to expectile regression which is to our knowledge the first
automatized variable selection approach implemented in the expectile re-
gression context. Further extensions could be the Dirichlet process mixture
priors for random effects or Bayesian regularisation priors using a condi-
tional Gaussian prior structure as suggested for Bayesian quantile regression
in Waldmann et al. (2013). Moreover, Bayesian expectile regression com-
prises the determination of the smoothing variances δ2j as an integral part of
the inferential procedure and provides measures of uncertainty also for com-
plex functionals of the model parameters. However, the asymmetric normal
likelihood will usually induce a model misspecification and the impact of this
misspecification will have to be studied in detail.
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(a) Nonlinear effect for BMI of mother at birth
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Figure 5: Estimated nonlinear effects for the childhood malnutrition data.
Results for expectiles from 0.05 to 0.95 shown.

A further integral part of this misspecification can also be found in the
interval estimates constructed from the MCMC algorithm. These fail in
terms of coverage for large samples and strong heteroscedasticity while the
quality of the point estimates proves satisfying. That is at least in comparison
to a “classical” LAWS estimate, for example. In consequence, the overall
questions about expectile regression remain unchanged and independent from
the estimation procedure.

Two of the main questions regarding expectile regression are the crossing
of expectile curves and the interpretation of single expectiles. While non-
crossing estimates exist in a frequentist setting and have been proposed in
different complexity by Sobotka and Kneib (2012) and Schnabel and Eil-
ers (2012), it would be at least challenging to apply them in a boosting or
Bayesian setting. Regarding the interpretation of the estimates, additional
arguments to the ones presented in Section 2 are presented by Schulze Wal-
trup et al. (2013). However, both questions remain in the focus of research
regarding expectiles.
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Figure 6: Estimated spatial effects for the childhood malnutrition data pro-
vided in a map of Tanzania.
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