
Semiparametric Mode Regression

Margret-Ruth Oelker∗†, Fabian Sobotka‡, Nadja Klein‡ & Thomas Kneib‡

April, 2015

Abstract

Regression models for the conditional mode of a response distribution can provide useful ad-

ditional information compared to mean and median analyses. Unfortunately, the conditional

mode is intrinsically di�cult to determine for continuous data. As a consequence, most of the

previous approaches for mode regression resort to kernel density estimation from which the

mode is then determined in a second step. We propose direct inference in semiparametric mode

regression based on an iteratively re-weighed least squares (IRLS) optimization of a continuous,

quadratic approximation of the conditional mode loss function. Adaptive tuning parameters

within the algorithm provide stable estimates and avoid additional manual tuning. For linear

predictors, a close link to kernel-based approaches allows to derive consistency and asymptotic

normality of the estimator. The quadratic approximation of the loss function can also easily be

combined with quadratic penalties in semiparametric extensions of mode regression comprising

for example penalized spline or spatial components. We evaluate our conditional mode speci-

�cation in several simulation studies with di�erent error structures and illustrate its relevance

along two real data sets.
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1 Introduction

Recent years have seen a tremendous increase in interest related to regression beyond the mean

of the conditional distribution of a response given covariates. The most prominent examples

are quantile regression and the special case of median regression. They are particularly attrac-

tive alternatives to mean regression due to two reasons: Due to their inherent robustness with

respect to outliers, and due to the general information they provide concerning distributional

features such as heteroscedasticity or skewness. Surprisingly, regression models for the condi-

tional mode of the response distribution given covariates have received far less attention. This

may partially be explained by the inherent di�culty to determine an estimate for the mode

based on samples from a continuous distribution, where in theory each sampled value should

appear only once almost surely, and therefore, there will be multiple �empirical modes�. Still,

estimating conditional modes is of high interest as

• the mode is by far the visually most prominent feature of a density as compared to the

mean and the median,

• the mode is extremely robust with respect to outliers,

• the mode provides a location measure that is easily communicated to practitioners such

that mode regression will be of high interest in applied regression situations,

• there may be situations where the dependence of the mode on covariates may be quite

di�erent from the dependence of the median and/or the mean,

• mode regression allows to deal with truncated dependent variables. It can still be es-

timated and interpreted as long as the modal part of the distribution is not truncated.

This can, for example, be relevant in applications on income where quite often the upper

part of the response distribution is truncated due to non-participation of the high income

part of a society.

Consider the regression speci�cation

y = xTβ + ε, (1)

where y is the response variable of interest, x ∈ Rq is a vector of covariates supplemented with

regression coe�cients β ∈ Rq and ε is the error term. Unlike in mean regression, we do not
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assume E(ε) = 0 which leads to regression e�ects on the mean of the response variable, but

arg max
ξ

fε|x(ξ|x) = 0. (2)

That is, the conditional density of the error terms fε(·|x) is assumed to have a global mode

at zero. In turn, this implies that the predictor xTβ is the conditional mode of the response

distribution fy(·|x). The mode regression coe�cient is obtained as

β = arg max
b

fε(y − xTb|x). (3)

An equivalent approach is based on the step loss function Lε(ξ) = 1 − 1(−ε ≤ ξ ≤ ε), where

ε is a positive constant that de�nes a local environment around zero. With this loss function,

we obtain

βε = arg min
b

E
[
Lε(y − xTb)|x

]
. (4)

In the limiting case ε→ 0, Lε(ξ) approaches

L(ξ) = 1(ξ 6= 0), (5)

and βε approaches β from equation (3) (Manski, 1991). Held (2008, page 158) proves the

equivalence of the two approaches in more detail. However, based on n independent observations

(yi,xi), i = 1, . . . , n, from model (1) subject to the condition (2), an estimate for the mode

regression coe�cient can not be determined by an empirical analogue to (3) unless speci�c

assumptions are made for the error density fε(·|x). In contrast, (4) is empirically minimized

by

β̂ε = arg min
β

n∑
i=1

[
Lε(yi − xTi β)

]
,

which does not require any other further assumptions than independence of the observations.

However, for the limiting case ε → 0, this criterion is not useful for modal regression based

on data with continuous error distributions since in general, there will be no unique solution �

even if the density of the errors εi has a global mode. As a consequence, earlier attempts to

mode regression usually either rely on nonparametric kernel methods from which the mode is

then derived in a second step, or on di�erent types of approximations (5).

Collomb et al. (1987) follow the �rst of these two routes and show the uniform convergence of the

mode determined from a kernel density estimate to the conditional mode function for a certain

3



class of processes. Lee (1989) approaches the estimation of conditional modes by an empirical

approximation to the theoretical loss function de�ning the mode based on a rectangular kernel.

Lee (1989) also shows identi�cation and strong consistency of the resulting estimate, but this

requires quite strong assumptions on the error distribution, which has either to be symmetric

around the mode (in which case median or mean regression would be obvious alternatives to

determine the mode) or � if assumed to be asymmetric � all error distributions have to be

identical leading to an i.i.d. model. Lee (1993) extends his approach from 1989 by replacing the

rectangular kernel with a quadratic kernel. This allows to construct a more e�cient estimate,

but it also requires stronger assumptions on the error term such as local symmetry around the

mode. Yu and Aristodemou (2012) introduce Bayesian mode regression relying on a working

likelihood corresponding to either a uniform or a triangular density.

Einbeck and Tutz (2006) again rely on a kernel regression estimate to implicitly derive the mode

in a regression model, but they extend the linear regression speci�cation to a semiparametric

predictor. This allows for the nonlinear dependence of the conditional mode on the covariate of

interest, but the approach is limited to one single predictive variable. A multivariate extension

based on a product kernel for the multivariate covariate vector is outlined in Taylor and Einbeck

(2011). However, the resulting estimate is hard to interpret beyond two-dimensional covariates

since no additivity assumption can be placed on the predictor. Gannoun et al. (2010) follow

a di�erent approach by noting that for many distributions there exists a simple parametric

relationship between mode, median and mean. As a consequence, once estimates for the mean

and the median are available, the conditional mode can be derived based on this parametric

relationship. Their approach is motivated by a forecasting problem in �nancial time series

such that no interpretability for the regression e�ects on the mode is required, which would be

di�cult to achieve when combining mean and median estimates.

Kemp and Santos Silva (2012) return to the idea of Lee (1989, 1993). They use a modi�ed

kernel to approximate the limiting case (5) and to derive a consistent, asymptotically normal

estimator for linear mode regression models. In this paper, we build upon Kemp and Santos

Silva (2012) and

• provide a di�erentiable approximation of the limiting case (5) that is based on nested

intervals such that an iteratively re-weighted least squares (IRLS) algorithm can be used

to estimate the mode regression coe�cients (Section 2),

• show the consistency and the asymptotic normality of the obtained estimator,

• investigate the practical performance of the approach in a simulation study,
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• extend the purely linear mode regression model to additive models by combining non-

parametric e�ects of several covariates in one penalized IRLS framework (Section 3),

• provide an extended analysis of the evolution of the BMI in England that has been already

studied in Kemp and Santos Silva (2010) and where the polynomial speci�cation of the

e�ect of the age is replaced by a nonparametric speci�cation (Section 4).

• perform a geoadditive analysis of the rents in the city of Munich combining penalized

spline smoothing with spatial e�ects (Section 5).

The main advantage of this Nested Interval Least Squares (NILS) framework is that it allows

to easily include extended regression functionality from (generalized) additive models which

also rely on IRLS estimation. In fact, we can further exploit this connection by determining

the smoothing parameters within the IRLS framework such that the proposed semiparametric

mode regression is fully data-driven.

2 The Nested Interval Least Squares Approach

As seen in the introduction of this paper, there are two equivalent approaches to mode regres-

sion: maximizing the conditional density fε(·|x) and minimizing the expectation of the step loss

function Lε(ξ) for the limiting case ε → 0. The reasoning behind the latter can be illustrated

based on a set of simulated standard normal data: Iteratively reducing the environment [−ε, ε]
allows to determine the mode via nested intervals that contain the largest fraction of observa-

tions. Stacking these intervals upon each other allows to graphically indicate how reducing the

width of the intervals captures the mode of the distribution. For comparison, in Figure 1, a

kernel density estimate is added.

2.1 Construction of the Estimator

Our approach to mode regression follows a similar reasoning: The limiting case L(ξ) is approx-

imated such that it is zero not only for ξ = 0 but in a surrounding of ξ = 0. The approximation

� denoted by L(ξ) � will replicate the nested interval approach, that is, L(ξ) will have a very

broad minimum in the early iterations and it will be very close to L(ξ) for the �nal iteration

of the proposed algorithm. However, L(ξ) is approximated by a continuously di�erentiable

function. This has two important advantages: (i) The approximation L(ξ) can be linked to
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Figure 1: Determining the mode based on nested intervals: Based on 100 realizations from
a standard normal distribution (�+�), nested intervals are constructed such that the interval
covers the largest possible fraction of data points given a �xed width. Stacking these intervals
upon each other allows to graphically indicate how reducing the width of the intervals captures
the mode of the distribution. For comparison, a kernel density estimate is added.

iteratively re-weighted least squares estimation, and (ii) the smooth approximation allows to

determine asymptotic properties such as consistency and asymptotic normality.

In detail, we employ the function

L(ξ) = 1− exp(c
1
2g − ((kξ)2g + c)

1
2g ), (6)

depending on the set of tuning parameters T = {g, k, c} with limT →T L(ξ) = L(ξ) for some set

of limiting values T . The approximation L(ξ) is constructed as the scaled composition of the

two functions f(ξ) and h(ξ). The former is given by f(ξ) = 1 − exp(−ξ). Let k be a positive

number, then f(k · ξ) actually approximates the indicator L(ξ) with the approximation being

closer to L(ξ) the larger k is. The latter function is de�ned as h(ξ) = (ξ2g + c)
1
2g , where g is as

a positive integer and c is a small, positive constant. As illustrated in Figure 2, h(ξ) accounts

for the broad minimum needed to imitate the nested interval approach. For the limiting value

g = 1, h(ξ) simply approximates the absolute value function. Due to the constant c, it is

a continuously di�erentiable approximation of the absolute value. Scaling the composition

f(h(k · ξ)) gives function (6). As L(ξ) is continuously di�erentiable, an iteratively re-weighted
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Figure 2: Illustration of the employed loss function. The left panel shows function f(|ξ|).
The panel in the middle depicts function h(ξ), where the tuning parameter c = 10−5 is �xed.
Parameters k and g vary as follows: g = 20, . . . , 1, k = 0.1, . . . , 6 in 99 steps. The right panel
shows the scaled composition L(ξ) for the same tuning parameters.

least squares algorithm is derived. The approximated objective

M(β) =
n∑
i=1

L(yi − xTi β)

is minimized by iterating

β̂(l+1) = (1− ν)β̂(l) + νA−1(l)a(l) (7)

until convergence. Thereby

a(l) = XTdiag

(
D(yi − xTi β̂(l))

yi − xTi β̂(l)

)
y,

A(l) = XTdiag

(
D(yi − xTi β̂(l))

yi − xTi β̂(l)

)
X, (8)

and D(ξ) = ∂L(ξ)
∂ξ

denotes the derivative of the employed loss. The design matrix X =

(x1, . . . ,xn)T ∈ Rn×q comprises the covariate vectors xi = (1, xi1, . . . , xi,q−1)
T , i = 1, . . . , n,

and the step length ν > 0 controls the speed of convergence. The algorithm is terminated when∑q
j=0 |β(l+1) − β(l)|∑q

j=0 |β(l)|
≤ τ,

where τ is a small, positive constant. For a detailed derivation of (7), see Appendix A.
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To imitate the idea of nested intervals, the tuning parameters have to be chosen such that g is

relatively large in the early iterations of the IRLS algorithm while it should equal one for the

�nal iteration. In contrast, k is relatively small in the beginning of the algorithm and as large

as possible for the �nal iteration. The constant c is as small as possible. To allow for a smooth

transition T → T and thus reliable results, the algorithm will have a small step length ν (for

example, ν = 0.25) and thus relatively many iterations until convergence. In Section 2.3, the

(data-driven) choice of the tuning parameters is discussed in more detail.

2.2 Asymptotic Properties

For the �nal iteration of the IRLS algorithm, it holds that g = 1 and that k is relatively large.

Hence, to show asymptotic properties, we assume g = 1 and consider the properties of

β̂n = arg min
β
M(β) (9)

for kn →∞ and n→∞ at appropriate rates. The index n emphasizes the dependence on the

sample size n. With g = 1, minimizing M(β) is equivalent to the minimization of 1 − K(u)

where

K : R→ R, u 7→ K(u) =
1

2
exp

{
−
√
u2 + c

}
, 0 < c ≤ 1, (10)

and where u = kn · (y − xTβ). The kernel K(u) in turn is an approximation of 1
2

exp(−|u|)
which is the density of a Laplace distributed random variable U with mean E(U) = 0 and vari-

ance V(U) = 2. That is, for the �nal iteration, the proposed approximation can be interpreted

as one minus a rounded (and thus, di�erentiable) Laplace kernel. As discussed in Section 1,

approaching mode regression with kernel methods is well established and investigated. Kemp

and Santos Silva (2012) derive asymptotic properties for mode regression for a general ker-

nel K(u), where u = (y−xTβ)/δn with positive bandwidth δn depending on the sample size n

and with the objective function 1−M(β) = n−1
∑n

i=1(δ
−1
n (y−xTβ)). One can easily see that

function (10) structurally �ts in this framework as the tuning parameter kn relates inversely

to the bandwidth δn. Moreover, we show in Lemma 1 and Lemma 2 that a scaled version

of function (10) meets all requirements needed to prove asymptotically consistent and normal

estimates.
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Consistency For proving consistency, we make the following extended assumptions following

Kemp and Santos Silva (2012):

A1 {(εi,xi)}∞i=1 is an independent and identically distributed (i.i.d.) sequence, where εi takes

values in R and xi takes values in R
q for some �nite q.

A2 The parameter space B is a compact subset of Rq and contains the true value β∗.

A3 The distribution of x is such that:

(i) E(‖xi‖) < ∞, where ‖a‖ denotes the Euclidean norm of a for any scalar or �nite-

dimensional vector a,

(ii) P(xTi c = 0) < 1 for all �xed c 6= 0.

A4 There exists a version of the conditional density of ε given x, denoted fε|x(·|·): R×Rq →
R, such that:

(i) supε∈R,x∈Rq fε|x(ε|x) ≤ ∞,

(ii) fε|x(ε|x) is continuous for all ε and x. In addition, there exists a set A ⊆ Rq such

that P(xi ∈ A) = 1 and fε|x(ε|x) ≤ fε|x(0|x) for all ε 6= 0 and x ∈ A.
A5 {kn}∞n=1 is a strictly positive sequence such that:

(i) kn →∞,

(ii) n (kn ln(n))−1 →∞.

Assumptions A1 and A3 are standard assumptions. Together with A4 and Lemma 1, they

are needed to prove that the objective functionM has a global minimum at β = β∗ which is

unique (compare Lemma 1, Kemp and Santos Silva, 2012). Note that A1 does imply an i.i.d.

assumption for εi|xi, but not for εi. Furthermore, A1 could be relaxed even further, but then

stronger assumptions on the distribution of xi would be required. Assumptions A2 and A5 are

required to prove that the objective function satis�es a uniform law of large numbers (Lemma

2, Kemp and Santos Silva, 2012). Assumption A4 (ii) imposes that the conditional density

has a global mode at zero. Assumption A5 ensures that kn is increasing with a moderate rate.

This is the crucial factor in the algorithm since no symmetry assumptions are made on the

conditional density. We come back to the choice of kn in Section 2.3. The kernel needs to be a

bounded density that can be normalized having a bounded derivative:

Lemma 1. The kernel function K : R → R de�ned in (10) is di�erentiable and ful�lls the

following conditions:

(i)
∫∞
−∞K(u)du = 1,

(ii) supu∈R |K(u)| = c0 <∞,
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(iii) supu∈R |K ′(u)| = c1 <∞, where K ′(u) = dK(u)/du.

The proof of Lemma 1 can be found in Appendix B.2.

With these assumptions, we obtain the consistency of the mode regression estimate:

Theorem 1. If assumptions A1�A5 hold, the IRLS-based mode regression estimate is consis-

tent, that is

β̂n
P→ β∗.

Theorem 1 is a direct consequence of Kemp and Santos Silva (Theorem 1, 2012) and Lemma 1.

Asymptotic Normality To obtain asymptotic normality, we need the following additional

assumptions:

B1 E(|xi|5+ξ) <∞ for some ξ > 0.

B2 β∗ belongs to the interior of B.
B3 fε|x(ε|x) is three times di�erentiable with respect to ε for all x such that:

(i) f
(j)
ε|x(ε|x) = ∂jfε|x(ε|x)/∂εj is uniformly bounded for j = 1, 2, 3,

(ii) E
[
f
(2)
ε|x(0|x)xxT

]
is negative de�nite.

B4 The sequence {kn}∞n=1 is such that:

(i) n/k7n = o(1),

(ii) n (k5n ln(n))
−1 →∞.

As expected, each of these assumptions is a stronger version of the assumptions A1�A5. In

particular, further moments of the distribution of xi are required to be �nite (B1) and the

true parameter has to be in the interior of the parameter space B (B2). The latter assumption

is standard in maximum-likelihood estimation. Assumption B3 guarantees the existence of a

Taylor expansion of the �rst derivative f
(1)
ε|x(u/kn|x) around u = 0. Note that no smoothness in

xi is required such that the theory also holds for categorical covariates. Finally, assumptions

B4(i) and B4(ii) imply more constrained rates on kn compared to assumption A5. We will see

in Theorem 2 that B4(ii) implies that the speed of convergence of the estimate is at most n2/7.

For the kernel function, the following stronger assumptions about its smoothness are needed:

Lemma 2. The kernel function K : R → R de�ned in (10) is three times di�erentiable and

ful�lls the following conditions:

(i)
∫∞
−∞ uK(u)du = 0,
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(ii) limu→±∞K(u) = 0,

(iii)
∫∞
−∞ u

2|K(u)|du = M0 <∞,

(iv)
∫∞
−∞ |K

′(u)|2du = M1 <∞,

(v) supu∈R |K ′′(u)| = M2 <∞,

(vi) supu∈R |K ′′′(u)| = M3 <∞,

(vii)
∫∞
−∞ |K

′′(u)|2du = M4 <∞.

With Lemma 2 and Theorems 2 and 3 from Kemp and Santos Silva (2012) asymptotic normality

follows:

Theorem 2. Under Assumptions A1�A5 and B1�B4, the IRLS-based mode regression estimate

is asymptotically normal, that is

(
n

k3n

)1/2 [
β̂n − β∗

]
d→ N(0,Ω∗),

where the asymptotic covariance matrix is given by

Ω∗ = C∗−1B∗C∗−1,

B∗ = lim
n→∞

V

((
n

k3n

)1/2
(
−∂M(β)

∂β

∣∣∣∣
β∗

))
= M1E

(
fε|x(0|xi)xixTi

)
,

M1 =

∫ ∞
−∞
|K ′(u)|2du < 1

4
,

K ′(u) = dK(u)/du,

C∗ = lim
n→∞

E

(
−∂

2M(β)

∂β∂βT

∣∣∣∣
β∗

)
= E

(
f
(2)
ε|x(ε|x)(0|xi)xixTi

)
.

A consistent estimate for the asymptotic covariance matrix is obtained by

Ω̂n = Ĉ
−1
n B̂nĈ

−1
n

P→ Ω∗,

where

B̂n = n−1
n∑
i=1

kn

[
K ′
(
kn

(
yi − xTi β̂n

))]2
(xix

T
i );

Ĉn = n−1
n∑
i=1

k3nK
′′
(
kn

(
yi − xTi β̂n

))
(xix

T
i ).
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Remark The close connection to the approach of Kemp and Santos Silva (2012) provides not

only the asymptotic theory for the NILS approach. Kemp and Santos Silva (2012) argue that

their approach has two limiting cases: As they employ the Gaussian kernel, mean regression

for δn −→ ∞, and mode regression for δn −→ 0. Considering L(ξ) as one minus a rounded

Laplace kernel yields a similar interpretation for the NILS approach: The loss function Lε
corresponds to the loss function of median regression for kn = g = 1. For g = 1 and kn −→∞,

L(ξ) −→ L(ξ). Hence, depending on the choice of kn, the NILS approach is closer to mode

or to median regression. As x̄ > x̃median > x̃mode for positively skewed distributions and

x̄ < x̃median < x̃mode for negatively skewed distributions, the NILS approach seems to be a

natural choice to approximate mode regression.

2.3 Adaptive Tuning

As indicated in Section 2.1, the NILS approach requires tuning. The constant c > 0 guarantees

that the loss function L(ξ) is di�erentiable. As long as it is su�ciently small, it has a minor

impact on the performance and in our experience, c = 10−5 works well. The integer g governs

how broad the minimum of L(ξ) is. It should be large enough to guarantee D(ξ) 6= 0 for

the initial iteration and decreases towards 1 within the natural numbers while iterating. As

the value of k a�ects the width of the minimum of L(ξ) for g > 1, it is possible to choose

a �xed sequence for g (we propose to choose the �xed sequence from 10 to 1 for g) and to

address all issues of tuning by a properly chosen sequence kn of k. Since k determines how

close L(ξ) and L(ξ) are, it has to be chosen carefully and its impact on the asymptotic variance

of the estimates has to be controlled. Thus, we propose to choose the sequence of values for

kn driven by the data and by the asymptotic theory. The initial value for kn is determined as

kinitial = (n/const)1/7 where const is chosen such that n ful�lls both assumptions B4(i) and

B4(iii): const = n5/12 · log(n)7/12/(n7/12). Then, kinitial is increased up to kfinal = kinitialn
1/7/sd

in 10 steps while iterating and where sd is the standard deviation of the residuals of a �tted

median regression. After that, the �nal value for kn is kept until convergence. In order to

obtain smooth transitions and to reach a value of kn that is su�ciently large, the step length

is set to ν = 0.25.
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2.4 Numerical Experiments

To evaluate the performance of the NILS approach in �nite samples, we consider the estimation

accuracy and the applicability of the asymptotic results in a linear model. Concretely, we

generate nrep = 100 replications of the model

y = β0 + β1x1 + β2x2 + β3x3 + ε

= 1 + 0.2x1 − 2x2 + 3x3 + ε, (11)

where x1, x2, x3 are drawn from the continuous uniform distribution on [0, 2]. Thereby, di�erent

model features are systematically varied:

• The distribution of the errors ε is either Gaussian ε ∼ N(0, 1), log-normal ε ∼ LN(0, 1)

or gamma ε ∼ Ga(s = 2, r = 2), where s and r denote the shape and the inverse scale

parameter. That is, we consider a symmetric scenario where mean, median and mode

coincide and two skew scenarios with di�erently shaped error distributions. As the mode

of the skew distributions is unequal zero, they are shifted accordingly.

• Di�erent sample sizes are considered: n ∈ {100, 500, 1000, 10000}.

For each replication of model (11), four di�erent methods are compared:

• the NILS approach with adaptive tuning as proposed in Section 2.3,

• the approach of Kemp and Santos Silva (2012),

• mean regression and

• median regression.

According to Kemp and Santos Silva (2012), the bandwidth δn of their approach is chosen based

on the median of the absolute deviation from the median least squares residual of a preceding

mean regression: MAD = medi
{∣∣(yi − xTi β)−medj(yj − xTj β)

∣∣} and δn = 1.2 ·MAD · n1/7.

The mean regression estimates are employed as starting values.

The results of the median regression are obtained by an IRLS algorithm that approximates the

absolute loss function |ξ| by
√
ξ + c, where c denotes a small positive constant, for example, c =

10−5. This is advantageous as it allows for exactly the same computational structure for both,

median and mode regression.

As the speed of convergence of the asymptotic theory in Section 2.2 is rather slow, we expect

that the coverage rates of the con�dence intervals (CI) based on the asymptotic covariance
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Error Distribution: N(0, 1) LN(0, 1) Ga(2, 2)
n: 100 500 1000 10000 100 500 1000 10000 100 500 1000 10000

Mode β0 0.04 0.10 0.09 0.29 0.26 0.28 0.36 0.45 0.05 0.06 0.09 0.11
regression β1 0.04 0.06 0.13 0.32 0.32 0.48 0.53 0.79 0.08 0.15 0.12 0.26
NILS β2 0.09 0.10 0.07 0.29 0.32 0.50 0.57 0.78 0.09 0.18 0.12 0.21

β3 0.08 0.08 0.11 0.28 0.35 0.50 0.53 0.65 0.04 0.12 0.16 0.20

Mode β0 0.76 0.87 0.76 0.90 0.63 0.54 0.49 0.37 0.70 0.71 0.67 0.40
regression β1 0.83 0.79 0.80 0.93 0.80 0.85 0.76 0.83 0.79 0.75 0.84 0.85
NILS BS β2 0.73 0.79 0.84 0.86 0.81 0.83 0.83 0.79 0.73 0.72 0.80 0.83

β3 0.84 0.81 0.83 0.90 0.78 0.82 0.80 0.75 0.84 0.73 0.79 0.89

Mode β0 0.50 0.77 0.72 0.81 0.58 0.35 0.13 0.01 0.33 0.46 0.53 0.60
regression β1 0.59 0.77 0.69 0.86 0.83 0.87 0.80 0.88 0.39 0.59 0.46 0.64
Kemp β2 0.55 0.70 0.76 0.81 0.77 0.88 0.88 0.81 0.39 0.51 0.59 0.60

β3 0.57 0.74 0.76 0.86 0.71 0.84 0.81 0.83 0.39 0.44 0.55 0.57

Mode β0 0.75 0.83 0.74 0.85 0.67 0.46 0.21 0.03 0.64 0.77 0.78 0.78
regression β1 0.75 0.78 0.69 0.80 0.89 0.91 0.83 0.91 0.83 0.81 0.80 0.91
Kemp BS β2 0.78 0.72 0.74 0.77 0.88 0.91 0.90 0.83 0.74 0.80 0.79 0.85

β3 0.74 0.70 0.77 0.90 0.89 0.89 0.89 0.85 0.83 0.82 0.83 0.80

Table 1: Coverage rates of the con�dence intervals estimated for di�erent sample sizes and
di�erent error distributions; BS denotes that the results rely on B = 1000 bootstrap samples.

matrix Ω̂n are reliable only for a rather large number of observations n. Hence, beside the CIs

derived from asymptotic normality, we evaluate (1− α) CIs based on bootstrap samples of the

residuals ε̂ = y −Xβ̂n. For each sample (y∗b ,X)b=1,...,B with y∗b = Xβ̂n + ε̂∗b , the according

model is estimated and we obtain the bootstrap estimates β̂
∗
b=1,...,B. The pointwise (1− α) CI

for the estimated coe�cient β̂n is then de�ned by the α/2 and the 1 − α/2 quantile of the

empirical distribution of the bootstrap estimates β̂
∗
b=1,...,B. This approach assumes that the

functional form of the regression model is correctly speci�ed and that the errors are identically

distributed (Fox, 2008, page 598). While this may seem rather restrictive, nonparametric

bootstrap samples are not a good choice for mode regression as the samples (y,X)∗b=1,...,B

contain duplicated observations. Duplicated or even multiplied observations imply a mode

of ε|X and can therefore render the estimation procedure unstable. Following Efron and

Tibshirani (1993), we choose B = 1000 to determine the bootstrap CIs.

Results To judge the results, the estimation accuracy and the coverage rates of 95% CIs are

considered. The left panel of Figure 3 shows boxplots of the resulting coe�cients for n = 100

observations, ε ∼ N(0, 1) (top) and ε ∼ LN(0, 1) (bottom). The results can be summarized as

follows:

• In the most simple scenario with standard normal errors, the estimation accuracy of the
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NILS approach is not as precise as the results of mean and median regression which was to

be expected since the error distribution is symmetric. Due to some outliers, the variations

of the approach of Kemp and Santos Silva (2012) are slightly larger.

• In the scenario with log-normal errors, mean, median and mode of the error distribution

di�er by a location shift. The lower left plot of Figure 3 illustrates that this shift is

captured by the estimates of the intercept β0. The results of mean and median regression

are clearly scattered around a value di�erent from the true value which is indicated by a

horizontal line. Again, this was to be expected as the structure of the errors is additive.

Both, the NILS approach and the proposal of Kemp and Santos Silva (2012) are biased

slightly regarding the intercept while the remaining coe�cients are estimated equally well

by all methods.

• The middle panel of Figure 3 shows the widths of the con�dence intervals for each co-

e�cient obtained with the asymptotic theory of Section 2.2. One sees that the interval

widths for the NILS and the Kemp approach di�er substantially as they depend on the

choice of the tuning parameters kn and δn. For the NILS approach, kn is increased steadily

while iterating whereas Kemp and Santos Silva (2012) choose a �xed bandwidth. Table 1

gives the corresponding coverage rates for normally, log-normally and gamma distributed

errors, n ∈ {100, 500, 1000, 10000}. Both approaches perform di�erently well for di�erent

error distributions. Beside the di�erent tunings employed, another reason for the partly

insu�cient results is the slow rate of convergence of at most n2/7. In practice, we advise

to apply bootstrap methods to assess the estimate's variance. The coverage rates relying

on B = 1000 bootstrap samples in Table 1 seem to con�rm this recommendation for both

approaches.

3 Semiparametric Mode Regression

3.1 Semiparametric Modeling

So far, for mode regression, predictors have been restricted to parametric e�ects � either due

to methodical reasons or to ensure numerical stability. In contrast, the NILS approach allows
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to easily augment the linear predictor in model (1) to semiparametric predictors of the form

y = xTβ +
r∑
j=1

fj(zj) + fgeo(s) + ε,

where as before, xTβ represent the linear e�ects. The functions fj represent nonlinear smooth

e�ects of continuous covariates zj, j = 1, . . . , r, modeled by penalized B-splines (Eilers and

Marx, 1996) of degree 3 and with 20 outer knots as a default option. The e�ect fgeo allows to

include spatial information which will be relevant in our application on the Munich rent index

in Section 5.

Semiparametric models � which are also known as generalized additive (mixed) models (Hastie

and Tibshirani, 1990; Wood, 2006) � are an established tool in many �elds of regression mod-

eling. And in fact, the predictor above is not the most general form. For mean regression,

Fahrmeir et al. (2013) give an extensive overview of generic predictor representations where

further e�ect types such as interactions between two continuous covariates or random e�ects

can be included into the predictor. The general assumption is that each function f (indepen-

dent of the type of the covariate x) can be written as a linear combination of appropriate basis

functions, that is, f(x) =
∑d

k=1Bk(x)βk which allows to write a vector of n function evaluations

in matrix notation as f = Xβ. To achieve speci�c properties such as the smoothness of a func-

tion f , estimation is regularized by additional penalty terms. Speci�cally, we assume quadratic

penalties of form Pλ(β) = λβTKβ, where K ∈ Rq×q is an appropriate penalty matrix and

λ ≥ 0 is a penalty parameter that determines the strength of the regularization. Estimation in

mode regression is then enabled by augmenting matrix A de�ned in equation (8):

A = XTdiag

(
D(yi − xTi β̂(l))

yi − xTi β̂(l)

)
X + λK.

Like a modular system and with none but the usual restrictions, mode regression can be com-

bined with any quadratic penalty and/or smooth component. As we do work with an IRLS

algorithm, the proposed approximation can be combined with the R package mgcv (Wood, 2011)

such that a wide range of smooth components and several options to choose the penalty param-

eter λ are available. Note that the asymptotic theory of Section 2.2 does not include penalized

estimates. While for �xed smoothing parameters one might argue that the asymptotic theory

may carry over to penalized estimation, a much more careful investigation would be required

for data-driven smoothing parameter estimates. Anyway, to achieve reliable results, a moderate
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Figure 4: Examples for data �ts of functions f1(x) and f2(x) (by rows) for ε ∼ LN(0, 1),
n = 100. On the left, the results of mean, median and mode regression are compared. On the
right, the bootstrap con�dence intervals for the NILS approach are illustrated. The penalty
parameter λ is chosen by the REML criterion.

number of observations relative to the model complexity was already required in a parametric

setting, compare Section 2.4. Therefore, bootstrap methods turned out to be an attractive

alternative. We will likewise employ bootstrap methods to asses how stable the estimated ef-

fects are in semiparametric mode regression. More speci�cally, we consider the pointwise α/2

and 1 − α/2 quantiles of the functions �tted on the bootstrap samples in order to judge the

variability of a �tted function.

3.2 Numerical Experiments

We investigate the performance of the proposed methods empirically. In contrast to the pre-

vious settings, penalized smooth components require to choose the penalty parameter(s) λ

18



Figure 5: Examples for data �ts of functions f3(x) and f4(x) (by rows) for ε ∼ LN(0, 1),
n = 100. On the left, the results of mean, median and mode regression are compared. On the
right, the bootstrap con�dence intervals for the NILS approach are illustrated. The penalty
parameter λ is chosen by the REML criterion.

adequately. For mean regression, di�erent strategies such as k-fold cross-validation with a spe-

ci�c loss criterion or the generalized cross-validation criterion of O'Sullivan et al. (1986) are

available. Often, these criteria are based on rank estimation, that is, on the estimated hat

matrix, or estimated degrees of freedom. It is not clear whether this makes sense for the em-

ployed loss function and if so, how data-sensitive the proposed method is. Moreover, combining

the estimation with the R package mgcv implies that the estimation of the coe�cient vector β

and of the penalty parameter λ are interlaced. Hence, we consider not only the performance

of semiparametric mode regression but compare the performance of di�erent strategies for the

choice of λ. Concretely, we consider (i) the generalized cross-validation criterion of O'Sullivan

et al. (1986) where β and λ are estimated separately (referred to as �CV�), (ii) the same gen-

eralized cross-validation criterion with interlaced estimation (�GCV�) and (iii) the negative log
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restricted likelihood criterion with interlaced estimation (�REML�); whereat (ii) and (iii) are

implemented in mgcv. As a benchmark, we combine the approach of Kemp and Santos Silva

(2010) with quadratic penalties, too.

The adaptive tuning depends on the assumptions for the asymptotic theory for parametric

models and requires a preceding median regression. As in some semiparametric settings the

results of median regression di�er substantially from those of the mode regression, we avoid

adaptive tuning in the following. Instead, tuning parameters that summarize the experiences of

the data-adaptive choice of k in the parametric settings in Section 2.4 are employed. For sam-

ples sizes n = 100 and n = 500, we consider nrep = 100 replications of the model y = f(x) + ε.

The errors ε are normally or log-normally distributed as in Section 2.4. In order to consider

an extreme scenario where the mode should be found at the lower boundary of the data, ex-

ponential errors ε ∼ Exp(0.5) are included. The data generating function f(x) is chosen as

either

• a linear e�ect f1(x) = x,

• a parabola f2(x) = x2,

• a cubic polynomial f3(x) = x3

• or a trigonometric function f4(x) = sin(2(4x− 2)) + 2 exp(−162 · (x− 0.5)2).

The covariate x is uniformly distributed on [−2, 2] for f1(x), f2(x), f3(x) and on [0, 1] for f4(x).

The functions are modeled with cubic B-spline bases with 20 equally spaced outer knots and

second order di�erences in the penalty matrix.

Figures 4 and 5 show the �tted functions for exemplary data sets with sample size n = 100.

In the left panels, the results of mean, median and mode regression are compared while in the

right panels, 1 − α = 0.95 con�dence intervals based on B = 100 bootstrap samples illustrate

the variability of the estimation procedure.

Results To evaluate the results, the root mean squared errors (RMSE) for the �tted values

are shown in Figures 6 and 7 for n = 100. We conclude:

• Combining penalized splines and the NILS approach seems to be very reasonable for

the purpose of a nonlinear mode regression, especially, when the penalty parameter λ is

chosen by GCV or REML. With skew errors and GCV/REML, the NILS approach results

in the lowest RMSE in nearly all settings. For normal errors, it is obviously less e�cient,

but the loss is about of the same magnitude as from mean to median regression.
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• The performance of the approach of Kemp and Santos Silva (2010) depends strongly on

the set of starting values. Even though the boxplots are based on the best starting values

we found (a preceding mean regression), the approach of Kemp and Santos Silva (2012)

comes along with a distinctively larger RMSE in nearly all settings.
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Figure 6: RMSE for function f1(x) (left) and function f2(x) (right) for normal (top), log-normal
(middle) and exponential (bottom) errors; n = 100.
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Figure 7: RMSE for function f3(x) (left) and function f4(x) (right) for normal (top), log-normal
(middle) and exponential (bottom) errors; n = 100.
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Model (12) Model (13) Model (14)
Mode Mode Mode

Mean Median
Kemp

Mean Median
NILS

Mean Median
NILS

β0 26.610 25.380 23.846 26.437 25.303 23.088 26.533 25.382 23.049
βn 0.074 0.426 -0.354 0.074 0.431 0.009 0.075 0.444 -0.084
βy 0.064 0.052 -0.028 0.064 0.051 -0.024 � � �
βa1 3.051 3.549 4.095 � � � � � �
βa2 -0.342 0.565 0.088 � � � � � �
βa3 0.733 0.839 -2.059 � � � � � �

Table 2: Estimated parametric e�ects for the mean, median and mode of the BMI in the
considered models.

4 Mode Regression for the BMI Distribution in England

To explain the development of the body mass index (BMI) in England, we reanalyze a data set

already used in Kemp and Santos Silva (2010) with a focus on non-pregnant women between the

ages of 18 and 65 observed in the period between 1997 and 2006. This yields a data set of 44,651

observations with the age, the calendar year of the study and a binary factor indicating non-

white women as available covariates. Our �rst model is in accordance with Kemp and Santos

Silva (2010) where the e�ect of age is modeled by a polynomial while the other covariates are

treated linearly:

BMI = β0 + βnnon-white + βyyear + βa1 log(age) + βa2 log(age)2 + βa3 log(age)3 + ε. (12)

As seen in Table 2, one �nds a slightly negative e�ect of the calendar year in mode regression

while in mean regression, the e�ect of the calendar year is positive. In the left panel of Figure 8,

the estimated e�ect of the age is shown.

A more �exible way to model the e�ect of the age is to replace the linear predictor above with

BMI = β0 + βnnon-white + βyyear + f(age) + ε, (13)

where f(age) is modeled by penalized cubic B-splines with 14 knots as the default choice of 20

knots caused some numerical instabilities. The set of tuning parameters is chosen as described

in Section 3.2, and the penalty parameter λ is chosen by the REML criterion. Estimates of the

parametric e�ects are given in Table 2, the estimate of the smooth function is shown in the

right panel of Figure 8. At �rst sight, the e�ect of the age seems to be wigglier, but the trend

does perfectly �t to the routines of a typical lifestyle and to typical biological changes: The

23



20 30 40 50 60

−
3

−
2

−
1

0
1

2

age

f(
a

g
e

)

Mean

Median

Kemp

20 30 40 50 60

−
3

−
2

−
1

0
1

2

age

f(
a

g
e

)

Mean

Median

NILS

Figure 8: The estimated e�ect of age in model (12) (left panel) and in model (13) (right panel).
For comparison, the results of mean and median regression are added.

e�ect of the BMI is relatively constant in early adulthood and increases around the age of 30.

The second increase of the e�ect coincides with the typical age of the climacteric period.

In a third model, not only the e�ect of the age but of the age and of the calendar year are

modeled smoothly:

BMI = β0 + βnnon-white + f1(year) + f2(age) + ε, (14)

Again, the estimates of parametric e�ects are given in Table 2. In Figure 9 (top), the estimates

of f(age) and f(year) are plotted. For both e�ects, there is a clear di�erence between the

�tted functions for mean, median and mode regression. For mean and median regression, the

estimated e�ect of the age has the same functional form as in model (13), while the estimated

e�ect of the calendar year is an increasing function suggesting an increasing BMI over time.

However, for mode regression, the e�ect is ambiguous: There is a positive e�ect in the �rst two

years of the study, but a negative one in the last two years. In Figure 9 (bottom), the results

of the models �tted on B = 50 bootstrap samples are added con�rming the shape of the e�ect

of the age on the mode of the response (left panel). As before, the e�ect of the year cannot be

clearly classi�ed (right panel).

As seen in the empirical evaluation in Section 2.4, the di�erences in the estimated intercepts

β̂0 as seen in Table 2 indicate a general skewness in the conditional distribution of the BMI.

However, in Section 2.4, the e�ects of the covariates are estimated equally well for mean, median

and mode regression even when the errors are skewed. As the estimated e�ects in Table 2 di�er,

this may be an indication for a more complex error structure.
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Figure 9: The estimated e�ects of the calendar year (left panel) and the age (right panel) in
model (14). On top, the results of mean and median regression are added. On bottom, �tted
functions for B = 50 bootstrap samples are added.

5 The Munich Rent Index

In a second application, we analyze data on the rents in Munich with mode regression. The

data has been collected in 2003 and gives detailed information on the living conditions and

the associated costs of 3051 �ats in Munich. Previous analyses of this data set show strong

nonlinear and spatial e�ects on the expected net rent as dependent variable, but also reveal

the presence of heteroscedasticity and skewness (Kneib, 2013). Hence, we compare the results

of mean, median and mode regression for the model equation

rent = xTβ + f1(year) + f2(size) + fspat(district) + ε, (15)

where x consists of 12 categorical covariates indicating several quality attributes of a �at such

as the kitchen equipment or the type of heating (see Table 3 for a complete list). Functions
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Mean Median NILS

Intercept 8.84 ( 8.81, 8.94) 8.91 ( 8.87, 9.01) 8.93 (8.87, 9.05)

Absence of bathroom 0.89 ( 0.52, 1.18) 0.71 ( 0.35, 1.20) 0.23 (-0.16, 0.85)

Presence of second bathroom -0.64 (-0.79, -0.48) -0.87 (-1.07, -0.70) -0.97 (-1.28, -0.81)

Special features of bathroom 0.54 ( 0.37, 0.78) 0.53 ( 0.30, 0.72) 0.71 (0.47, 0.90)

Normal quality kitchen 0.70 ( 0.57, 0.93) 0.64 ( 0.56, 0.86) 0.70 (0.59, 0.80)

Good quality kitchen 1.05 ( 0.86, 1.20) 1.13 ( 0.91, 1.29) 1.03 (0.68, 1.16)

Absence of intercom -0.47 (-0.66, -0.41) -0.58 (-0.77, -0.51) -0.62 (-0.86, -0.58)

Simple �oor cover -1.10 (-1.33, -0.96) -1.05 (-1.28, -0.90) -1.00 (-1.21, -0.84)

Absence of warm water supply -1.39 (-1.81, -1.02) -1.42 (-1.92, -1.01) -1.82 (-2.70, -1.27)

Absence of central heating system -1.16 (-1.29, -0.86) -1.31 (-1.56, -0.96) -1.31 (-1.50, -0.67)

Presence of storage heating system -0.79 (-1.10, -0.57) -0.66 (-0.96, -0.50) -0.38 (-0.68, 0.09)

Simple and old building -0.71 (-0.96, -0.54) -0.83 (-1.18, -0.65) -0.67 (-0.94, -0.27)

Simple and post world war building -0.64 (-0.83, -0.31) -0.84 (-1.05, -0.51) -1.18 (-1.37, -0.74)

Table 3: List of categorical covariates in model (15) and the corresponding estimated e�ects for
mean, median and mode regression. In parenthesis, there are 95% con�dence intervals based
on B = 50 bootstrap samples.

f1(year) and f2(size) represent nonlinear e�ects of the year of construction and of the size of

the �at (in square meters). They are approximated by penalized cubic splines with 14 outer

knots and with a second order di�erence penalty. The spatial e�ect fspat(district) is de�ned by

100 districts in Munich and estimated by a Markov random �eld (Rue and Held, 2005).

The estimated coe�cients for the categorical covariates obtained with mode, mean and median

regression are given in Table 3. While, for the mean, a second bathroom makes the �at about

0.89e per square meter more expensive, the e�ect of this covariate is stronger for mode re-

gression. We also see that �ats in simple post-war buildings are generally cheaper, but there

is a clear di�erence between a price reduction of 0.64e on average and a reduction of 1.18e

for mode regression. Overall, the table shows that the estimates for the mean and the median

are very similar while we can �nd stronger di�erences in comparison to the mode regression

estimates. Therefore, we might distinguish between average rents and typical rents. This is

supported by the estimated nonlinear e�ect of the size of a �at in square meters as shown in

Figure 10. Again, we �nd strong similarities between the mean and median while the estimated

e�ect for mode regression is less extreme, especially for �ats larger than 140m2. Similarly, the

estimated spatial e�ects of mean and mode regression depicted in Figure 11 show similar pat-

terns even though the results of the median regression are less extreme. The results of mode

regression show that the typical rents of a few outlying districts di�er immensely from those

estimated by the other location measures. In fact, the variability of the spatial e�ect is the

largest for mode regression and the smallest for median regression.

Overall, the estimated tendencies are roughly the same for mean, median and mode regression
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Figure 10: Estimated e�ects of year of construction and size in square meters in model (15).

� despite some e�ects that are remarkably di�erent for average and for typical �ats. The results

of mode regression point out e�ects that should be investigated carefully in order to understand

the pricing mechanism.

6 Remarks

We developed a new estimator for the conditional mode based on a local quadratic approxi-

mation L of the limiting case in (5) which can be determined iteratively with a nested interval

approach. The properties of our kernel function allow to adapt asymptotic properties of the

estimator in a parametric setting. However, similar to Kemp and Santos Silva (2012), the rate

of convergence is rather slow such that depending on the error structure, con�dence intervals

are much to narrow. In most situations, this problem can be reduced with bootstrap methods.

The main advantage of our approach is that it can easily be extended to semiparametric pre-
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Figure 11: Estimated spatial e�ects of the districts in model (15) in mean, median and mode
regression. For the hatched areas, there are no observations. The �gure is created with the
R package BayesX (Kneib et al., 2014).

dictor structures, yielding considerably expanded �exibility in the speci�cation of conditional

mode regression. The penalized IRLS framework also allows to borrow existing inferential tools

from mean regression, for example, for the determination of smoothing parameters. An open

question for future research is the extension of the asymptotic results to such semiparametric

speci�cations, especially when including data-driven estimates for the smoothing parameter

and/or basis dimensions increasing with the sample size.

In cases, where the error structure is additive, mean, median and mode regression should only

di�er in a shift of the intercepts such that mode regression (in addition to the appeals men-

tioned in the introduction) can be a helpful tool to draw conclusions about the underlying error

structure. Although Taylor and Einbeck (2011) show that the true multivariate mode regres-

sion is hard to interpret due to the non-additivity of the predictor, extending our approach

to bivariate problems would allow to study the mode of a joint bivariate distribution and is

conceptually straight forward.
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A Derivation of the IRLS Algorithm

In what follows, the iteratively re-weighted least squares (IRLS) algorithm from page 7 is

derived. We start with a �rst order Taylor expansion ofM(β) around β(l):

M(β) ≈ M(β(l)) +∇M(β(l))
T (β − β(l))

∇M(β(l))
T (β − β(l)) =

n∑
i=1

(
∇L(yi − xTi β(l))

)T
(β − β(l))

∇L(yi − xTi β(l)) =
∂L(yi − xTi β(l))

∂(yi − xTi β(l))

∂(yi − xTi β(l))

∂β

= D(yi − xTi β(l)) · (−xi)

withD(ξ) =
∂L(ξ)

∂ξ
= k((kξ)2g + c)

1
2g
−1(kξ)2g−1

· exp(c
1
2g − ((kξ)2g + c)

1
2g ).

The local trick of Fan and Li (2001) gives

(∇L(yi − xTi β(l)))
T (β − β(l)) ≈ D(yi − xTi β(l)) ·

yi − xTi β
yi − xTi β(l)

· (−xTi ) · (β − β(l)).

With the quadratic approximation of Ulbricht (2010), we obtain

(yi − xTi β)(−xTi )(β − β(l)) = −yixTi (β − β(l)) + xTi βx
T
i (β − β(l))

≈ −yixTi β + yix
T
i β(l) +

1

2
(βTxix

T
i β + βT(l)xix

T
i β(l)).

Overall, we have

(∇L(yi − xTi β(l)))
T (β − β(l)) ≈ −aTi β + aTi β(l) +

1

2
(βTAiβ + βT(l)Aiβ(l))

with aTi =
D(yi − xTi β(l))

yi − xTi β(l)

yix
T
i

and Ai =
D(yi − xTi β(l))

yi − xTi β(l)

xix
T
i .

Hence, the approximated objective function can be written as

M(β) ≈ M(β(l))− aTβ + aTβ(l) +
1

2
(βTAβ + βT(l)Aβ(l)) =Mapp.
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Mapp has the derivatives

s(β) =
Mapp

∂β
= −a+Aβ

and H(β) =
Mapp

∂β∂βT
= A.

Hence, the update of the current estimate β(l) in iteration (l) is

β(l+1) = β(l) − νH(β(l))
−1s(β(l))

= β(l) − νA−1(l) (−a(l) +A(l)β(l))

= β(l) + νA−1(l)a(l) − νA−1(l)A(l)β(l)

= (1− ν)β(l) + νA−1(l)a(l).

Apart from the update of the derivative D(ξ) of the approximated loss, the algorithm is as

complex as usual IRLS algorithms. With A(l) positive de�nite for all iterations l, the algorithm

converges almost surely. However, as L(ξ) = 1 = const. and therewith D(ξ) = 0 for su�ciently

large |ξ|, the initial values of β(l) have to be chosen carefully. The algorithm can be easily

implemented; we employ an R (R Core Team, 2013) implementation.

B Proofs for Section 2.2

B.1 Characteristics of K and Some Auxiliary Functions

Note that

exp(−
√
u2 + c) < exp(−|u|), (16)

as
√
u2 + c > |u| for all u ∈ R. ∫ ∞

−∞

1

2
exp(−|u|)du = 1, (17)

since 1
2

exp(−|u|) is the density of the Laplace distribution with E(u) = 0, V(u) = 2. Moreover,

u√
u2 + c

< 1. (18)

30



The derivatives of K are

K ′(u) = −1

2
exp(−

√
u2 + c)

u√
u2 + c

, (19)

K ′′(u) =
1

2
exp(−

√
u2 + c)

(
u2

u2 + c
− c

(u2 + c)3/2

)
, (20)

K ′′′(u) = u exp(−
√
u2 + c)

(
1.5c

(u2 + c)5/2
− u2

√
u2 + c− 3c

2(u2 + c)2

)
. (21)

Note: |K ′|, |K ′′| and |K ′′′| are symmetric around zero.∫ ∞
0

ua exp(−bu)du =
a!

ba+1
, (22)

for a ∈ Z, b > 0, see Gradshteyn and Ryzhik (2007; Section 3.326, equation 2.10).

De�ne

s : R+
0 → R, u 7→ s(u) =

(
u2

u2 + c
− c

(u2 + c)3/2

)
, (23)

with |s(u)| ≤ c−1/2 as:

-
∂s(u)

∂u
=
cu(2
√
u2 + c+ 3)

(u2 + c)5/2
,

with roots at u = 0 and u = 1
2

√
9− 4c.

- |minu≥0 s(u)| = |s(0)| = | − c−1/2| > |maxu≥0 s(u)| = |s(1
2

√
9− 4c)| = |1− 20

27
c|.

sup
u≥0

exp(−u) = 1. (24)

u exp(−|u|) < 1, for allu ∈ R. (25)

De�ne

t : R+
0 → R, u 7→ t(u) =

1.5c

(u2 + c)5/2
− u2

√
u2 + c− 3c

2(u2 + c)2
, (26)

Later on, we need |t(u)| ≤ 3
2
(c−1 + c−3/2). This follows from
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-

t(u) = t(+)(u)− t(−)(u) with

t(+) : R+
0 → R, u 7→ t(+)(u) =

1.5c

(u2 + c)5/2
+

3c

2(u2 + c)2
,

t(−) : R+
0 → R, u 7→ t(−)(u) =

u2
√
u2 + c

2(u2 + c)2
.

-
∂t(+)(u)

∂u
= −u

(
6c

(u2 + c)3
+

7.5

(u2 + c)7/2

)
,

with one root at u = 0.

- 0 ≤ t(+)(u) ≤ maxu≥0 t(+)(u) = 3
2
(c−1 + c−3/2).

-
∂t(−)(u)

∂u
=

2cu− u3

2(u2 + c)5/2

with roots at u = 0, u =
√

2c.

- 0 = minu≥0 t(−)(u) ≤ t(−)(u) ≤ maxu≥0 t(−)(u) = t(−)(
√

2c) = 3−3/2c−1/2.

- maxu≥0 t(+)(u) > maxu≥0 t(−)(u) ⇒ |t(u)| ≤ 3
2
(c−1 + c−3/2).

B.2 Proofs

Lemma 3. The kernel function K : R → R de�ned in (10) is di�erentiable and ful�lls the

following conditions:

(i)
∫∞
−∞K(u)du = 1,

(ii) supu∈R |K(u)| = c0 <∞,

(iii) supu∈R |K ′(u)| = c1 <∞, where K ′(u) = dK(u)/du.

Proof. blubb

(i)
∫∞
−∞K(u)du

(16),(17)
< 1 and K(u) > 0.

Hence, it exists a constant δ ∈ R+ such that
∫∞
−∞ δK(u)du = 1.
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(ii) Using (16) and (24), it follows that

sup
u∈R
|K(u)| < max

u∈R

1

2
exp (−|u|) =

1

2
<∞.

(iii) |K ′(u)| is symmetric around zero, see (19); hence, it is to prove that supu∈R+
0
|K ′(u)| <∞.

|K ′(u)| =

∣∣∣∣−1

2
exp(−

√
u2 + c)

u√
u2 + c

∣∣∣∣
(18)
<

1

2
exp(−

√
u2 + c)

(16)
<

1

2
exp(−u)

<
1

2
.

Lemma 4. The kernel function K : R → R de�ned in (10) is three times di�erentiable and

ful�lls the following conditions:

(i)
∫∞
−∞ uK(u)du = 0,

(ii) limu→±∞K(u) = 0,

(iii)
∫∞
−∞ u

2|K(u)|du = M0 <∞,

(iv)
∫∞
−∞ |K

′(u)|2du = M1 <∞,

(v) supu∈R |K ′′(u)| = M2 <∞,

(vi) supu∈R |K ′′′(u)| = M3 <∞,

(vii)
∫∞
−∞ |K

′′(u)|2du = M4 <∞.

Proof. For di�erentiability, see (19), (20), (21).

(i) ∫ ∞
−∞

uK(u)du =

[
1

2
exp(−

√
u2 + c)(−

√
u2 + c− 1)

]∞
−∞

= 0.
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(ii) Follows directly from the de�nition.

(iii) ∫ ∞
−∞

u2|K(u)|du = 2 · 1

2

∫ ∞
0

u2 exp(−
√
u2 + c)du

(16)
<

∫ ∞
0

u2 exp(−u)du

(22)
= 2.

(iv) ∫ ∞
−∞
|K ′(u)|2du (19)

=

∫ ∞
−∞

1

4
exp(−2

√
u2 + c)

u2

u2 + c
du

=
1

2

∫ ∞
0

exp(−2
√
u2 + c)

u2

u2 + c
du

(18),(16)
<

1

2

∫ ∞
0

exp(−2u)du

(22)
=

1

4
.

(v) |K ′′(u)| is symmetric around zero, see (20); therefore, it is to prove that

sup
u∈R+

0

|K ′′(u)| < ∞.

|K ′′(u)| =

∣∣∣∣12 exp(−
√
u2 + c)s(u)

∣∣∣∣
(23)

≤ 1

2
exp(−

√
u2 + c)c−1/2

(16)
<

1

2
exp(−u)c−1/2

(24)

≤ 1

2
√
c
.
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(vi) |K ′′′(u)| is symmetric around zero, see (21); therefore, it is to prove that

sup
u∈R+

0

|K ′′′(u)| < ∞.

|K ′′′(u)| (21)
=

∣∣∣u exp(−
√
u2 + c)t(u)

∣∣∣
(26)

≤ u exp(−
√
u2 + c)

3

2
(c−1 + c−3/2)

(16)
< u exp(−u)

3

2
(c−1 + c−3/2)

(25)
<

3

2
(c−1 + c−3/2).

(vii) ∫ ∞
−∞
|K ′′(u)|2du (20)

= 2

∫ ∞
0

|K ′′(u)|2du

(20)
= 2 · 1

4

∫ ∞
0

exp(−2
√
u2 + c)

(
u2

u2 + c
− c

(u2 + c)3/2

)2

du

=
1

2

∫ ∞
0

exp(−2
√
u2 + c) (s(u))2 du

(23)

≤ 1

2

∫ ∞
0

exp(−2
√
u2 + c)c−1du

(16)
<

1

2c

∫ ∞
0

exp(−2u)du

(22)
=

1

4c
.
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