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Abstract

Shared frailty models are frequently used for inducing dependence between sur-

vival times. In this paper, we consider bivariate current status data that are rea-

sonable to model by shared frailty models. A time-dependent association measure

that has a conditional probability interpretation is revisited for its potential appli-

cation to such data. We propose a method of estimation and derive asymptotic

standard errors for this measure. Its small sample performance and its performance

in assessing the temporal variation in the strength of association in realistic sce-

narios is investigated by means of experiments. We show that the measure based

on the conditional probability can vary with time even in the absence of any time-

dependent effects. Furthermore, we give evidence that it lacks interpretability in

suggesting appropriate frailty models. We provide an illustration with multivariate

current status data arising from a community-based study of cardiovascular dis-

eases in Taiwan. We compare the observed patterns of association with the ones

obtained by employing a fairly new time-varying association measure that is rele-

vant for shared frailty models, owing to its connection to the cross-ratio function,

and which serves as a diagnostic tool for suggesting classes of frailty distributions

with constant, increasing or decreasing association over time.
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1 Introduction

Bivariate current status data can be formally represented as {X, δ1 = I(T1 ≤ X), δ2 =

I(T2 ≤ X)}, where I denotes the indicator function, T1 and T2 are the failure times of

interest and X is the monitoring time at which T1 and T2 are measured from the same

observational units and that is independent of the failure times (Jewell et al. 2005; Sun

2006). In this paper, we consider bivariate current status data that are reasonable to

model by shared frailty models (Duchateau and Janssen 2008; Hougaard 2000; Wienke

2011), with the frailty solely generating the association structure between T1 and T2 and

the variability between the observational units, also referred to as the heterogeneity in

the data, being represented by the variance of the frailty. Such bivariate current status

data arise in various fields (Jewell et al. 2005). Consider for example tumorigenicity

experiments on a single non-lethal tumor at two different sites, e.g. liver and brain, to

investigate whether the environment accelerates the time until tumor onset in animals. In

these experiments, the time to tumor onset in the animals is only known to be less than

or greater than the observed time of death or sacrifice. A shared frailty model is natural

in this setting, the shared latent frailty representing environmental exposures relevant to

the progression of disease at different sites.

Another examples arises in twin pair studies in genetics, where the phenotypes of interest

are the ages at onset of a specific disease. For neurological disorders such as Alzheimer’s

disease, the exact age of onset is usually not known even when a definitive diagnosis is

available. If Tj (j = 1, 2) is the unknown age of onset for the jth twin, then in such

cases only bivariate current status information (δ1, δ2) is observed instead of (T1, T2). In

other words, it is only known at the monitoring time whether the jth twin has the disease

or not. Interest may focus on the strength of association between T1 and T2 for both

monozygotic and dizygotic twins. Again, a shared frailty model is natural, the latent

frailty variable representing genetic characteristics that may have a bearing on the onset

of the disease of interest.

In some circumstances, it is also of interest to assess the time dependence of association

(Anderson et al. 1992; Oakes 1989), for example to investigate the age-varying influence of
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genetic factors on the disease-free life expectancy of individuals by comparing the disease-

free life spans of monozygotic and dizygotic twins.

In shared frailty models for bivariate survival data, the frailty distribution is identifiable

through Clayton’s local cross-ratio function (Clayton 1978), which describes how the

heterogeneity of the hazard functions in the survivor population evolves over time. Hence,

the cross-ratio function may serve as a diagnostic tool in an exploratory analysis for

suggesting appropriate frailty distributions and assessing the temporal variation in the

strength of association in bivariate survival data (Farrington et al. 2012; Viswanathan

and Manatunga 2001). This association measure is unavailable for current status data,

though.

The odds ratio is the most obvious and popular association measure for binary data and is

widely used in many fields, such as in epidemiological studies as a measure of association

between the occurrence of a particular disease state or condition and an exposure factor

(Jewell 2003). It can easily be estimated after fitting a linear logistic model to dichotomous

data (Collett 2002). The odds ratio can be computed from current status data. However,

the odds ratio suffers the disadvantages that it can vary with time even in the absence

of any time-dependent effects and that it does not reliably suggest appropriate frailty

distributions (Unkel and Farrington 2012).

Anderson et al. (1992) introduced the following time-dependent measure for association

based on the conditional probability:

ψ(t1, t2) =
P(T1 > t1|T2 > t2)

P(T1 > t1)
=

S(t1, t2)

S1(t1)S2(t2)
, (1)

where Sj(tj) = P(Tj > tj) denotes the marginal survivor function for Tj (j = 1, 2) and

S(t1, t2) = P(T1 > t1, T2 > t2) is the joint survivor function. Large values of ψ(t1, t2)

indicate positive dependence between T1 and T2. For independent events T1 > t1 and

T2 > t2, ψ(t1, t2) = 1. If S(t1, t2) < S(t1)S(t2), then there is negative dependence

between T1 and T2. In Anderson et al. (1992) the measure (1), indexed by age, is applied

to right-censored data from the Danish Twin Registry to describe the differences in the

strength of association between monozygotic and dizygotic twins with respect to their life

spans and to investigate how these associations depend on the age of the twins.

Unfortunately, for current status data, the joint survivor function S(t1, t2) is unobservable;
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only S(x, x), where X = x denotes the observed monitoring (censoring) time, is available

along with the marginals S1(x) = S(x, 0) and S2(x) = S(0, x). This means that for current

status data, one can assess the association between two survival variables by means of

ψ(x) =
S(x, x)

S1(x)S2(x)
. (2)

In this paper, we investigate the measure (2) and pay particular attention to the eval-

uation of its usefulness to govern the temporal variation in the strength of association

inherent in bivariate current status data and in serving as an exploratory tool for suggest-

ing frailty distributions. We propose a method of estimation and introduce asymptotic

standard errors for (2). We also apply an association measure introduced in Unkel and

Farrington (2012), which is based on the association parameter derived from Clayton’s

copula (Clayton 1978) for quantifying time-dependent association. This measure tracks

the variation of the cross-ratio function with time. Therefore, it serves as a diagnostic

tool for suggesting classes of frailty distributions with constant increasing or decreasing

association over time. The shape of the observed time-varying association aids identifica-

tion of a suitable frailty model, which then could be fitted to the data set at hand. Up to

the author’s knowledge, the association measure by Unkel and Farrington (2012) has been

only applied so far to bivariate serological survey data on pairs of infections with similar

and different transmission routes, where the time-varying association is likely to represent

heterogeneities in activity levels and/or susceptibility to infection (see also Unkel et al.

(2014) and Farrington et al. (2013)).

In the present paper, our methods are illustrated with multivariate current status data

arising from a community-based study on three cardiovascular diseases in Taiwan. These

data were originally analyzed by Wang and Ding (2000) under the assumption of con-

stant pairwise association over time. We explore the possible time dependence of as-

sociation in the data. The remainder of the paper is organised as follows. In Section

2 we present maximum likelihood estimators for the association measure based on the

conditional probability and derive asymptotic standard errors. An evaluation of how the

conditional probability measure performs with respect to identifying time-varying effects

in shared frailty models with bivariate current status data is given in Section 3. We also

investigate the finite sample performance of the association measure in realistic scenarios
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using simulations. In Section 4 the methodology discussed in this paper is applied to the

aforementioned data set. Concluding comments are given in Section 5. Computations

for this paper were carried out using the software package R version 3.2.1 (R Core Team

2015). All computer code used is available upon request.

2 Maximum likelihood estimation and asymptotic

standard errors

Let π00 = P(T1 > t1, T2 > t2) = S(t1, t2), π10 = P(T1 ≤ t1, T2 > t2), π01 = P(T1 >

t1, T2 ≤ t2) and π11 = P(T1 ≤ t1, T2 ≤ t2). In the sequel, the time scale is age and

X = x is the age at which individuals are monitored. In terms of bivariate current

status data, let π00(x) be the probability that an individual of age x has experienced

neither of the two events and π10(x) the probability that an individual of age x has

experienced event 1 but not event 2, and similarly define π01(x) and π11(x). The condi-

tional probability measure provides insights into the time-dependent nature of associa-

tion by estimating ψ(x) = π00(x)
π0+(x) π+0(x)

at each age x for which data are available, where

π0+(x) = π00(x) + π01(x) and π+0(x) = π00(x) + π10(x).

Bivariate current status data on nx fixed individuals of age x give rise to a multinomial

observation (n00x, n10x, n01x, n11x), where
∑

i,j=0,1 nijx and n00x is the number of individ-

uals of age x in the sample for whom neither event has occurred, n10x is the number

of individuals that have not experienced event 2 but have experienced event 1, and so

on. From the log-likelihood contribution lx =
∑

i,j=0,1 nijx ln (πij(x)), one can obtain a

maximum likelihood estimate (MLE) of ψ(x) as

ψ̂(x) =
nxn00x

n0+xn+0x

, (3)

where n0+x = n00x+n01x and n+0x = n00x+n10x. It is customary to work with ln(ψ̂) than

with ψ̂ itself, so we shall do so in the sequel.

To obtain asymptotic standard errors for ln(ψ̂), the delta method for a function of multi-

nomial counts is applied (Agresti 2013, Section 16.1). Consider a 2× 2 contingency table

with multinomial cell counts (n00, n01, n10, n11). Let π = (π00, π01, π10, π11)
⊤ be the vector

of cell probabilities with sample proportions π̂ = (π̂00, π̂01, π̂10, π̂11)
⊤, where π̂ij = nij/n
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for i, j = 0, 1 and sample size n =
∑

i,j=0,1 nij . The multivariate central limit theorem

implies

√
n [π̂ − π]

d→ N (0, diag(π)− ππ⊤) ,

where diag(π) is a 4 × 4 diagonal matrix with the elements of π on its main diagonal.

Suppose that g(u00, u01, u10, u11) is a differentiable function that has a nonzero differential

ζ = (ζ00, ζ01, ζ10, ζ11)
⊤ at π, where

ζij =
∂g

∂πij
(i, j = 0, 1)

denote ∂g/∂uij evaluated at u = π with u = (u00, u01, u10, u11)
⊤. By the delta method

(Agresti 2013, Section 16.1),

√
n [g(π̂)− g(π)]

d→ N (0, σ2) ,

where the asymptotic variance σ2 equals

σ2 = ζ⊤
[

diag(π)− ππ⊤
]

ζ =
∑

i

∑

j

πijζ
2
ij −

(

∑

i

∑

j

πijζij

)2

.

We apply the delta method to the log conditional probability, taking

g(π) = ln(ψ) = ln

(

π00
π0+π+0

)

= ln(π00)− ln(π0+π+0)

= ln(π00)− (ln(π00 + π01) + ln(π00 + π10))

= ln(π00)− ln(1− π11 − π10)− ln(1− π11 − π01) .

The partial derivatives ζij =
∂(ln(ψ))
∂πij

are

ζ00 =
1

π00
,

ζ01 =
1

(1− π11 − π01)
=

1

π+0
,

ζ10 =
1

(1− π11 − π10)
=

1

π0+
,

ζ11 =
1

(1− π11 − π10)
+

1

(1− π11 − π01)
=

1

π0+
+

1

π+0
.
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Since
∑

i

∑

j πijζij = 1
π0+

+ 1
π+0

− 1 and ζ200 = 1/π2
00, ζ

2
01 = 1/π2

+0, ζ
2
10 = 1/π2

0+, ζ
2
11 =

1
π2
0+

+ 1
π2
+0

+ 2
π0+π+0

, it holds that

σ2 =
∑

i

∑

j

πijζ
2
ij −

(

∑

i

∑

j

πijζij

)2

=
1

π00
+
π01
π2
+0

+
π10
π2
0+

+ π11

(

1

π2
0+

+
1

π2
+0

+
2

π0+π+0

)

−
(

1

π0+
+

1

π+0

− 1

)2

=
1

π00
+
π01 + π11 − 1

π2
+0

+
π10 + π11 − 1

π2
0+

+ 2
(π11 − 1)

π0+π+0
+ 2

(

1

π0+
+

1

π+0

)

− 1 .

Then, σ/
√
n is an asymptotic standard error for g(π̂). Hence, the asymptotic standard

error of ln(ψ̂) is

σ(ln(ψ̂)) =

(

1

nπ00
+
π01 + π11 − 1

nπ2
+0

+
π10 + π11 − 1

nπ2
0+

+
2

n

(

π11 − 1

π0+π+0
+

1

π0+
+

1

π+0

)

− 1

n

)1/2

. (4)

Replacing πij for i, j = 0, 1 in (4) by their estimates yields the estimated standard error

σ̂(ln(ψ̂)) =

(

1

nπ̂00
+
π̂01 + π̂11 − 1

nπ̂2
+0

+
π̂10 + π̂11 − 1

nπ̂2
0+

+
2

n

(

π̂11 − 1

π̂0+π̂+0
+

1

π̂0+
+

1

π̂+0

)

− 1

n

)1/2

. (5)

If ln(ψ̂(x)) along with the estimated standard error σ̂(ln(ψ̂(x)) is computed at each age

x available, one can assess the time dependence of association in bivariate current status

data. We also use the following summary measure of association across age groups x =

1, 2, . . . ,M :

ln(ψ) =

∑M
x=1 px ln(ψ̂(x))
∑M

x=1 px
, Var(ln(ψ)) =

1
∑M

x=1 px
, (6)

where px is the (estimated) precision of ln(ψ̂(x)), that is, the reciprocal of its (estimated)

variance σ̂2(ln(ψ̂(x)).

3 Experiments

It is assumed in the sequel that age x is the only measured attribute of an individual and

that all unmeasured attributes are described by a random variable Z > 0 with density
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f(Z) and E(Z) = 1. Consider the following shared frailty model (Duchateau and Janssen

2008; Hougaard 2000; Wienke 2011) for the hazard rate for an individual of age x and

random effect (frailty) Z:

λj(x, Z) = Z λ0j(x) ,

for j = 1, 2, where the baseline hazard rates λ0j(x) are independent of Z and describe the

age effect. The random variation in Z induces the association between the failure times T1

and T2; T1 and T2 are conditionally independent given Z = z. In this Section we consider

gamma distributed frailties (Z ∼ Γ(θ, 1/θ)), inverse Gaussian frailties (Z ∼ InvG(1, θ))

and compound Poisson frailty models (Z ∼ CP (1, θ−1, ν)).

3.1 Evaluation of the time-varying association in shared frailty

models

The heterogeneity at the population level or association in survivors is constant for the

gamma distribution, decreases with time for the inverse Gaussian, and increases with

time for the compound Poisson distribution (Aalen et al. 2008). To investigate whether

ln(ψ(x)) reflects these population effects, data are generated as follows. Cumulative

baseline hazards Λ0j(x) =
∑

≤x λ0j(x) are generated for ages x = 0.05, 0.06, . . . , 50.00

and the following three models for the baseline hazards λ0j (j = 1, 2): a constant baseline

hazard, λ0j(x) = cj (with c1 = 0.2 and c2 = 0.1), a Gompertz baseline of the form λ0j(x) =

aj exp{bjx} (with a1 = 0.006, b1 = 0.02, a2 = 0.008 and b2 = 0.03), and an exponentially

damped linear (EDL) function of age (Farrington 1990), λ0j = (αjx− γj) exp{−βjx}+ γj

(with α1 = 0.2, γ1 = 0.02, β1 = 0.2, α2 = 0.25, γ2 = 0.03, and β2 = 0.3). A shared

gamma frailty model with Z ∼ Γ(θ, 1/θ) and θ = 2 is defined, so that E(Z) = 1 and

Var(Z) = 1/2, and the log conditional probabilities are calculated at each x for the three

baseline hazards. Figure 1 (i) displays the three tracings for ln(ψ(x)) versus x.

[Figure 1 about here.]

Note that the frailty is independent of time and hence there is no time-varying association

on an individual level, that is, the heterogeneity in individuals does not vary with age.

Furthermore, since the frailty is gamma distributed, there is no time-varying association
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on a population level either, that is, there is no time-varying association in survivors.

Nevertheless, according to the plot (i), ln(ψ) increases with age for all baseline mod-

els. Moreover, the shape of the temporal variation in the strength of association clearly

depends on the baseline hazard chosen. Hence, there is evidence that the conditional prob-

ability is severely influenced by the cumulative baselines. Recall that a time-dependent

association measure should be free from the influence of the baseline hazards because in

a shared frailty model the frailty Z solely generates the association structure between T1

and T2. To reduce the effect of differences in the baseline hazards, in Figure 1 (ii) ln(ψ(x))

is plotted against -ln(π00(x)) (Viswanathan and Manatunga 2001). When plotted against

− ln(π00(x)), ln(ψ) is largely free of the influence of the baseline hazards. Nevertheless,

ln(ψ) still increases with age for all baseline models. Data are also generated from shared

inverse Gaussian and compound Poisson frailty models and constant baseline hazards

(with c1 = 0.2 and c2 = 0.1). The results are displayed in Figure 1 (iii)–(iv) and Figure 1

(v)–(vi) for the inverse Gaussian and compound Poisson frailty models, respectively, for a

range of values of Var(Z) = θ−1. The log conditional probability totally fails to mirror the

declining heterogeneity induced by the inverse Gaussian distribution for the whole range

of shape parameters. For the compound Poisson frailty models the measure increases,

thus mirroring the increasing heterogeneity of the survivor population. However, ln(ψ) is

not able to differentiate between inverse Gaussian and compound Poisson frailties, and

induces very different dependence patterns in survivors. Hence, there is evidence that

ln(ψ) is not a suitable diagnostic for suggesting a frailty distribution.

3.2 Simulation study

Cumulative baseline hazards are obtained for ages x = 1, 2, . . . , 40 and constant baseline

hazards λ0j(x) = cj (j = 1, 2) with c1 = c2 = 0.05. For each of the three frailty models

Z ∼ Γ(0.1, 10), Z ∼ InvG(1, 0.1) and Z ∼ CP (1, 10, 1.5) the proportions S1(x), S2(x) and

S(x, x) are calculated and ln(ψ(x)) is obtained from these proportions for x = 1, . . . , 40.

The multinomial probabilities π00(x), π01(x), π10(x) and π11(x) are used to generate 10000

4-tuples of bivariate current status data (n00x, n10x, n01x, n11x) for each of the four fixed

sample sizes nx = 50, 100, 200 and 400. If one of the values in the 4-tuple of observations
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is zero, 0.5 is added to all counts (Agresti 2013, Section 10.6). Estimates of the association

measure along with its standard errors are obtained for the 10000 replications using the

procedure described in Section 2. Figure 2 shows ln(ψ(x)) along with the arithmetic mean

of the ln(ψ̂(x)) for sample size nx = 50 and nx = 400.

[Figure 2 about here.]

For nx = 50 and nx = 400, there is virtually no bias for the three shared frailty models.

For x = 20 and x = 40, Table 1 shows the bias of ln(ψ̂), its mean standard error (s.e.),

the empirical s.e. obtained as the standard deviation of the 10000 simulated values, and

the coverage probability of the 95% confidence intervals (P95), that is, the proportion of

the 10000 confidence intervals containing ln(ψ(x)).

[Table 1 about here.]

The relative bias is less than 3% even for nx = 50. The empirical standard error matches

the mean standard error of the asymptotic values. The coverage probabilities are close

to the nominal level 0.95. As one would expect, as the sample size increases the bias and

variance of ln(ψ̂(20)) and ln(ψ̂(40)) decrease.

4 Application

In this Section, the time dependence of association is analyzed using current status data

arising from a community-based study in cardiovascular epidemiology conducted in Tai-

wan from 1991 to 1993. The sample consists of 6314 participants age 1-93 years. The

data comprised measurements of the participants’ current age at the time of study and

the prevalence indicators of three diseases: diabetes mellitus, hypercholesterolemia and

hypertension. The aim of this study was to investigate whether the onset ages of these

diseases are correlated with one another. Because the natural history of these chronic dis-

eases was difficult to trace precisely, the data contained only information about whether

or not a subject under the study had already developed the diseases and about the sub-

ject’s current age at the time of the study. Let T1, T2 and T3 denote the onset age of

diabetes mellitus, hypercholesterolemia and hypertension, respectively, and let x denote
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the individual’s age in years at the monitoring time. Then, for each individual the ob-

served data are of the form (x, δ1, δ2, δ3), where δj = I(Tj ≤ x) (j = 1, 2, 3). For a more

detailed description of the data, the reader is referred to Wang and Ding (2000). Wang

and Ding (2000) assumed that the pairwise dependence structures of the three diseases

all follow a gamma frailty model and then estimated the Clayton copula association pa-

rameters. The Clayton copula association parameter is related to Kendall’s tau, which is

a measure of rank correlation for bivariate dependence that is invariant subject to both

linear and nonlinear monotonic changes of scale of failure times (Kendall 1938). Kendall’s

tau between Ti and Tj , denoted by τij , is defined as

τij = E
[

sign
((

T
(1)
i − T

(2)
i

)(

T
(1)
j − T

(2)
j

))]

,

where T (k) (k = 1, 2) are independent copies of T and sign(x) = −1 for x < 0, sign(x) = 0

for x = 0 and sign(x) = 1 for x > 0. If Ti and Tj are independent, τij = 0. For each

pair (T1, T2), (T1, T3) and (T2, T3), Wang and Ding (2000) tested H0: τ = 0 versus H1:

τ > 0 and computed the p-value of the test. The estimated values of the corresponding

Kendall’s tau with p-values given in parentheses are τ̂12 = 0.304 (p < 0.001), τ̂13 = 0.128

(p = 0.028) and τ̂23 = 0.082 (p = 0.052). Ding and Wang (2004) also analyzed the

data and performed pairwise non-parametric independence tests of (T1, T2), (T1, T3) and

(T2, T3). The associations between T1 and T2 as well as T1 and T3 were both very strong

with p-values close to zero. The association between T2 and T3 was significant at the .05

level, but not at the .01 level. Note that this data example is used only for illustrative

purposes here, because the prevalence of the three cardiovascular diseases were determined

via participant interviews, health examinations or previous medical history, rather than

based on a formal medical diagnosis.

In the sample, the prevalence indicator δ1 is equal to 1 for 434 individuals, δ2 = 1 for 711

individuals and δ3 = 1 for 1111 individuals. Figure 3 is a cumulative sum diagram of the

cumulative number of persons with the cardiovascular disease diabetes mellitus (DM),

hypercholesterolemia (HC) and hypertension (HT), respectively, versus the cumulative

number of persons in the sample. The greatest convex minorants of the three cumulative

sums are superimposed. Underneath the x-axis in Figure 3 the ages in years are presented

that correspond to the cumulative totals labelled above.
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[Figure 3 about here.]

Across the age range the cumulative frequencies of hypercholesterolemia are greater than

for diabetes mellitus but the slopes of the greatest convex minorants are virtually sim-

ilar at higher ages. At age 57 with 75% of the total number of participants aged 57

or less, the cumulative sums of prevalence indicators for hypertension and hypercholes-

terolemia intersect. In the age range 57-93 hypertension is the cardiovascular disease that

has the highest prevalence of the three diseases with the slope of greatest convex mino-

rant being the steepest. Summary values for the association parameter ln(ψ) shown in

equation (6) are presented in Table 2. If one of the values in the 4-tuple of observations

(n00x, n01x, n10x, n11x) is zero, 0.5 is added to all counts (Agresti 2013, Section 10.6).

[Table 2 about here.]

The values for ln(ψ) are all close to zero and suggest that there is almost no correlation

between (T1, T2), (T1, T3) and (T2, T3). We also use a fairly new association measure

denoted φ(x) and introduced in Unkel and Farrington (2012), which is defined as the

unique root φ0(S(x, x), S1(x), S2(x)) of the implicit function

f(φ, S(x, x), S1(x), S2(x)) =
(

S1(x)
1−eφ + S2(x)

1−eφ − 1
)

1

1−eφ − S(x, x) .

For a shared gamma fraily model, φ(x) is constant and equal to the logarithm of the

cross-ratio function (CRF). If the frailty is not gamma distributed, φ(x) will not be equal

to the logarithm of the CRF. However, Unkel and Farrington (2012) show that φ(x)

tracks the CRF for all shared frailty models with monotone CRF regardless of the frailty

distribution, in the sense that it shows the same variation with age. Hence, φ(x) can

be used as a diagnostic tool for suggesting gamma frailty distributions with constant

association over time or frailty models that lead to time-varying association. The value

φ(x) = 0 corresponds to independence; φ(x) > 0 corresponds to positive association and

φ(x) < 0 corresponds to negative association although there is no frailty interpretation

in this case. Summary values for this association measure, denoted φ, are computed

analogously to equation (6), and are presented in Table 2. The values for φ are similar to

the association patterns found by Wang and Ding (2000). Associations are significantly
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positive for all three pairs of diseases, while the association between (T2, T3) is notably

lower than for (T1, T2) and (T1, T3). However, overall measures are crude, so we plotted

the estimated values of the association parameters ln(ψ(x)) and φ(x) at each age x in

Figure 4. The areas of the points within each graph are proportional to the precisions;

the smooth lines are nonparametric precision-weighted estimates of trend.

[Figure 4 about here.]

For the log conditional probability, the three tracings indicate independence between

(T1, T2), (T1, T3) and (T2, T3). However, this is due to the fact that in the definition of ψ in

(2) the numerator can only attain values between its lower Fréchet bound max{0, S1(x)+

S2(x) − 1} and upper Fréchet bound min{S1(x), S2(x)}. This implies that as x → 0,

ln(ψ(x)) → 0. In this sense, the observed association patterns in Figure 4 are misleading;

the absence of positive association at early ages is solely a result of the definition of the

conditional probability measure. It is a serious shortcoming of this measure that the

degree of association at is influenced by its range restriction.

On the other hand, the plots for φ̂ suggest that there is a strong association at early ages

for the three pairs of diseases and that the heterogeneity in the survivor population may

be decreasing towards a positive asymptote for the pair DM/HC and towards zero for both

DM/HT and HC/HT. The decreasing association in adulthood could be due to a selection

effect caused by a time-invariant frailty model (e.g. an inverse Gaussian frailty model) or

a temporal variation of the frailty itself. In any case, the observed association patterns of

φ̂ that are displayed in Figure 4 raise doubts whether the assumption of gamma frailties

with constant association over time is justified.

5 Discussion

The conditional probability measure ψ(t1, t2) is available for case I interval-censored data,

which are also named current status data. We presented its variant ψ(x) for current status

data and developed maximum likelihood estimation and standard errors for this measure.

We also introduced a summary measure of association across age groups. Our proposed
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estimator and standard errors have shown good finite sample performance in the simu-

lation experiments. However, we showed that the conditional probability measure can

vary with time even in the absence of any time-dependent effects. Furthermore, it lacks

interpretability in suggesting appropriate frailty models. Moreover, because of its range

restriction the conditional probability measure is flawed based on theoretical grounds.

The real data example illustrates that estimates of the conditional probability measure

can lead to observed association patterns that are misleading. Contrary to the conditional

probability measure ψ(x), the shape of the time-varying association measure φ(x) aids

identification of a suitable frailty model. Note that in the application, φ̂ is plotted against

age in order to keep the age-related interpretation of the association pattern. To remove

the dependence on the baseline hazards and to compare association patterns across dif-

ferent data sets, φ̂ can be plotted against − ln(π̂00(age)), suitably isotonized. For the

application that was considered in this paper, the estimated temporal patterns of φ(x)

give evidence that the assumption of constant association over time is violated. One may

argue that the observed pairwise dependence structures between the three cardiovascular

diseases can be expected to be different from those obtained when associations are strat-

ified according to levels of further covariates such as gender. However, age is the only

available attribute for the set of individuals in the study and therefore we were not able

to look further into such features.

Finally, recall that the methods developed in the present paper are entirely exploratory.

At no stage do we model the data. We see ourselves in a stage prior to fitting current

status data by means of frailty models. The aim is to investigate the observed association

patterns, which then may serve as a guide for embarking on a suitable frailty model.

Clearly, the conditional probability measure is not an appropriate tool for assessing the

temporal variation in the strength of association in shared frailty models with bivariate

current status data.
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Table 1: Bias and variance of ln(ψ̂) for three shared frailty models and four different
sample sizes evaluated at x = 20 and x = 40.

x = 20

Frailty model ln(ψ(20)) nx = 50 nx = 100 nx = 200 nx = 400

Z ∼ Γ(0.1, 10) 0.2375

bias 0.0019 0.0014 0.0004 0.0003
mean s.e. 0.0622 0.0443 0.0313 0.0222
empirical s.e. 0.0633 0.0444 0.0317 0.0222
P95 0.9199 0.9411 0.9423 0.9507

Z ∼ InvG(1, 0.1) 0.1762

bias 0.0006 0.0007 0.0005 0.0006
mean s.e. 0.0695 0.0491 0.0347 0.0246
empirical s.e. 0.0698 0.0493 0.0344 0.0247
P95 0.9358 0.9429 0.9487 0.9491

Z ∼ CP (1, 10, 1.5) 0.2039

bias 0.0041 0.0030 0.0008 0.0008
mean s.e. 0.0666 0.0476 0.0336 0.0238
empirical s.e. 0.0669 0.0481 0.0338 0.0240
P95 0.9452 0.9311 0.9492 0.9421

x = 40

Frailty model ln(ψ(40)) nx = 50 nx = 100 nx = 200 nx = 400

Z ∼ Γ(0.1, 10) 0.1751

bias 0.0023 0.0013 0.0006 0.0005
mean s.e. 0.0737 0.0523 0.0370 0.0262
empirical s.e. 0.0531 0.0448 0.0374 0.0261
P95 0.9279 0.9435 0.9455 0.9510

Z ∼ InvG(1, 0.1) 0.2806

bias 0.0026 0.0009 0.0001 0.0006
mean s.e. 0.0954 0.0668 0.0471 0.0333
empirical s.e. 0.0972 0.0674 0.0474 0.0331
P95 0.9436 0.9466 0.9453 0.9509

Z ∼ CP (1, 10, 1.5) 0.2306

bias 0.0051 0.0009 0.0008 0.0002
mean s.e. 0.0712 0.0506 0.0360 0.0255
empirical s.e. 0.0724 0.0509 0.0363 0.0257
P95 0.9381 0.9405 0.9449 0.9415
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Table 2: Associations, ln(ψ) and φ, for the three pairs of cardiovascular diseases along
with 95% confidence intervals in parentheses.

Pair of diseases ln(ψ) φ

DM and HC -0.0109 (-0.0135, -0.0084) 0.9055 (0.7301, 1.0810)
DM and HT -0.0141 (-0.0165, -0.0117) 0.7375 (0.5983, 0.8768)
HC and HT 0.0221 (0.0193, 0.0248) 0.3838 (0.2523, 0.5152)
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Figure 1: ln(ψ) against x and − ln(π00(x)) for various frailty models; upper panel:
Z ∼ Γ(2, 1/2) for constant baseline (solid line), Gompertz baseline (dotted line)
and EDL baseline (dot-dashed line) (horizontal dashed line: no association);
middle panel: Z ∼ InvG(1, 0.1) (solid line), Z ∼ InvG(1, 0.5) (dashed line),
Z ∼ InvG(1, 2) (dotted line), Z ∼ InvG(1, 10) (dot-dashed line) and constant
baseline hazards; lower panel: Z ∼ CP (1, 10, 1.5) (solid line), Z ∼ CP (1, 2, 1.5)
(dashed line), Z ∼ CP (1, 0.5, 1.5) (dotted line), Z ∼ CP (1, 0.1, 1.5) (dot-
dashed line) and constant baseline hazards.
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Figure 2: ln(ψ(x)) (solid line) and (mean of) ln(ψ̂(x)) for nx = 50 (dotted line) and
nx = 400 (dashed line) for the Gamma (i), inverse Gaussian (ii) and compound
Poisson (iii) frailty model.
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Figure 4: Association, measured by ln(ψ̂) (left) and φ̂ (right), between ages at disease
onset for the three pairs of cardiovascular diseases. Top: diabetes mellitus (DM)
and hypercholesterolemia (HC); center: DM and hypertension (HT); bottom:
HC and HT. The dots represent empirical values and the lines show smoothed
trends (horizontal dashed line: no association).


