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Abstract

We are interested in modeling the behavior of random sums over time. Such models are particularly
useful in insurance and finance, to describe the behavior of total losses (like operational losses) over
time, and to correctly estimate tail-related risk indicators. To this end, we formulate a generalized
additive Markov-switching compound process combining Poisson and Generalized Pareto distribu-
tions. This flexible model takes into account two important features: on the one hand, we follow
the idea of generalized additive models for location, scale and shape (GAMLSS), and thereby al-
low all parameters of the considered distributions to depend on economic covariates. On the other
hand, we allow this dependence to vary over time, via a hidden state variable. A simulation study
indicates that, even in the case of a short time series, the model is easily and well estimated with
a standard maximum likelihood procedure. Relying on this approach, we analyze a dataset of 817
losses resulting from frauds in the Italian bank UniCredit. We show that our model improves the
estimation of the total loss distribution over time, compared to standard alternatives. In particular,
this model provides estimations of the 99.9% quantile that are never exceeded by the historical total
losses.
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1 Introduction

In this paper, we are interested in modeling the distribution of random sums over time. The quantity of

interest is given by

Lt =
Nt∑
i=1

Yi,t, (1)

for t = 1, . . . , T , where Nt is the number of events over the period t, and Yi,t is the severity of the ith

event occurring during period t. In the actuarial literature, this model is used for modeling the total

claim of an insurance company over time [Embrechts et al., 1997, p.9] whereas in the banking literature

it is used to model the total operational loss suffered by a bank [Chernobai and Yildirim, 2008]. The

number of events is therefore a number of losses (i.e. individual claims or operational events), whose

intensity is measured in monetary units. Standard actuarial/financial models usually make the following

assumptions on the behavior of Nt and Yi,t:

Nt
iid∼ Poisson(λ),

Yi,t
iid∼ GPD(γ, σ),

with λ, γ, σ > 0, and where realisations of Nt and Yi,t, ∀{t, i} are independent. λ is the frequency

parameter, whereas GPD(γ, σ) stands for the Generalized Pareto cumulative distribution function, given

by

GPD(Y ; γ, σ) =

 1−
(

1 + γ
Y

σ

)−1/γ

, γ 6= 0

1− e−Y/σ, γ = 0

(2)

where γ is the shape parameter, σ the scale parameter and Y > 0. In the remainder, we only focus on

the case where γ > 0 (i.e. the heavy tail case).

This model is known as a compound Poisson process, or a double stochastic process [Guillou et al.,

2015] with GPD distributed intensity. In the financial literature, the distribution of Nt is referred to as

the frequency distribution whereas the distribution of Yi,t is termed the severity distribution. In practice,

the total loss over a time period is characterized by a large number of small losses and a small number of

very large (extreme) losses, with the latter being the main drivers of Lt. For example, over a year, a bank

might suffer from many small transaction errors (e.g. employees making accounting mistakes) and then

it records one huge loss (e.g. due to unauthorized trading). In this context, we use the GPD to correctly

take into account the probabilities of these extremely large losses. This is particularly important in

financial applications where the goal is to estimate a quantile of Lt far in the tail (e.g. a 99.9% quantile).
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The basic model given by equation (1) can be modified in several ways to account for more realistic

empirical features. For example, in a regression context, the parameters of the frequency and severity

distributions might be expressed as functions of explanatory variables. Indeed, it is quite likely that

the general economic conditions, the situation of the financial markets or firm-specific factors influence

the loss process. Such relationships are suggested by a number of recent empirical studies [see, among

others, Chernobai et al., 2011, Cope et al., 2012, Wang and Hsu, 2013, Chavez-Demoulin et al., 2016].

Mathematically speaking, we could assume that, for θ ∈ {λ, σ, γ}, (i.e. one of the frequency or severity

parameters in model (1)), the following relationship holds:

g(θ) = ηθ = Xθβθ +
J∑
j=1

hθ,j(X
θ
j ), (3)

where g(·) is a monotonic link function, Xθ is a vector of linear predictor for parameter θ, Xθ
j , j = 1, . . . , J ,

is the jth nonlinear predictor and hθ,j is an unspecified smooth function of the covariate (nonparametric

part). This general setup is known as the semiparametric generalized additive model for location, scale,

and shape (GAMLSS), which is a generalization of the generalized additive model (GAM) to response

variables that are not of the exponential family type [Rigby et al., 2005]. It allows to consider linear and

nonlinear dependences of covariates with the parameters of a distribution function. This approach has

been successfully used in different applications. Among others, Rigby et al. [2005] consider a Box-Cox

t distribution for the Body Mass Index (BMI) of Dutch girls, Stasinopoulos and Rigby [2007] study

insurance claims data using the negative binomial distribution, Serinaldi [2011] models the price of

electricity whereas Sohn et al. [2015] explore the characteristics of personal income in Germany with the

Dagum distribution. More recently, Chavez-Demoulin et al. [2016] consider a GAMLSS framework for

both Poisson and GPD distributions in a model of type (1). They investigate the effect of two covariates:

the type of event (e.g. if a loss results from a fraud, employee malpractices or another failure of internal

controls) and the year of occurrence. These models can easily be estimated via penalized likelihood

maximization with cubic splines for the nonparametric parts. Model and smoothing parameters selection

is usually performed using the Akaike Information criterion (AIC) and/or generalized cross-validation

procedures [Fahrmeir et al., 2013].

On the other hand, a model as the one given by equation (1) often focuses on data that have a time

series structure. In case of parameters instabilities (as it is often the case in economics and finance; see

Hamilton [1989], Lamoureux and Lastrapes [1990] and Ang and Timmermann [2012]), equation (3) is

not sufficient to account for abrupt changes in the dependence structure. In this situation, a popular

modeling strategy is to rely on regime-switching models, where parameters vary over time according to

an unobservable Markov chain. Such models are referred to the literature as Markov-switching (MS) or
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regime-switching models [Hamilton, 1989, Zucchini et al., 2016]. They have been applied successfully to

model changes in market volatility [Klaassen, 2002], in interest rates [Pesaran et al., 2006] or in business

cycles [Goodwin, 1993]. Extensions of the basic MS model allows for multiple covariates and response

functions from the generalized linear model (GLM) framework. Until recently, the literature focused

mainly on parametric dependencies with the covariates, but Langrock et al. [2015] introduce a Markov-

switching generalized additive model (MS-GAM) allowing for nonparametric functional forms of the

effect of explanatory variables, depending on a latent Markov chain. Their approach allows for flexible

dependences in the model when the distribution of the response variable belongs to the exponential family

(i.e. a distribution considered in the GAM framework). They provide a simple estimation procedure,

based on a forward recursion and a maximization of a penalized likelihood function. The applications

that they consider rely on normally- and Poisson-distributed response variables. However, distributions

like the GPD (that are not of the exponential type) or more complicated compound stochastic processes

have not been considered yet, thus excluding models of type (1) to benefit from these advanced modeling

approaches.

In this paper, we consider an extension of the framework of Langrock et al. [2015] to these more

complex models, called Markov-switching GAMLSS (MS-GAMLSS) in the following. Then we focus on

the particular case of model (1). Such an extension is of interest because taking into account the param-

eters’ instability might drastically improves the goodness-of-fit of the models used for the sum of losses

over time. Indeed, Guillou et al. [2013] and Guillou et al. [2015] argue that insurance claims frequency

and severity distributions might vary over time, according to some (unobservable) environmental and

economic factors (like competition intensity). They considered either discrete shock sizes or shock sizes

drawn from a GPD with parameters depending on a state variable. However, they did not allow for other

explanatory variables than the state variable. Chavez-Demoulin et al. [2014] as well as Chavez-Demoulin

et al. [2016] consider the effect of time on sums of extreme events over time nonparametrically, but not in

the MS framework. Moreover, it is likely that the effect of a covariate might vary according to the state of

the economy or from the regulatory environment. For example, in the banking sector, Cope et al. [2012]

suggest two potential opposite relationships between unemployment rate and the severity of operational

losses: on one side an increase in the unemployment rate might indicate stronger criminal activities (e.g

robbing banks instead of robbing individuals), increasing the expected loss severity. On the other side,

a decrease of the unemployment rates might be a sign for a thriving economy with incentives to commit

larger felonies (e.g. robbing banks because there is more money on the table), leading to the same effect

on the expected loss severity. One can, therefore, imagine that in period of economic expansion the

latter relationship holds, whereas in economic recessions the other effect takes place. In addition, Cope
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et al. [2012] outline a series of regulatory indicators (level of controls, rule of law, state of the corruption)

that appear to be linked with the severity of operational losses. As noticed in Ang and Timmermann

[2012], MS models in finance were initially used to distinguish changes in regulatory policies [Sims and

Zha, 2006]. Therefore, a MS component in our model should help to take into account the parameters’

instability induced by changes in (latent) economic and regulatory conditions that are not captured by

the other explanatory variables. Finally, the internal controls set by banks to mitigate and manage their

operational losses might change abruptly over time: a change of stakeholder or of the CEO might cause

strategic changes that have an impact on the risk-taking process, as well as on internal controls. Such

features, which are hard to quantify, might be captured by a MS component.

These considerations motivate the formulation of a model of type (1) where the parameters λ, γ and

σ depend (nonparametrically) on covariates, and where the functional relationships between covariates

and parameters vary according to a (hidden) regime-switching process. Our contribution draws a bridge

between the methodological approaches of Chavez-Demoulin et al. [2016] and Guillou et al. [2015] by

combining semiparametric regression and regime-switching models for a compound Poisson-GPD response

variable into a single model. It enables a flexible modeling of the behavior of random sums over time,

jointly taking into account the time dependence as well as the dependence with other covariates. Contrary

to the GAMLSS approach of Chavez-Demoulin et al. [2016], the Poisson part of the model cannot be

estimated independently from the GPD part, and we show how to perform the joint estimation. An

interesting feature of the considered model is that by combining information about the frequency and

the severity of the process, we have several observations at each point in time. This allows for improving

the estimation of the state probabilities and the regression functions, even if the time series is short. A

simulation study supports this finding.

Lastly, we use our model and estimation technique to study a database of 817 large losses resulting

from external frauds in the Italian bank UniCredit over a time period of 38 quarters. We assume that the

parameters depend nonparametrically on three explanatory variables, and that the functional forms of

the dependence vary according to a hidden state variable. We use the percentage of revenue coming from

fees (PRF), the unemployment rate and the VIX index as covariates to account for the internal economic

performance, the macroeconomic situation and the general state of the financial markets, respectively.

We compare our model with three alternatives (constant, pure MS and pure GAMLSS models) and

show the economic consequences (in term of requested capital) of using the different models. Our results

suggest that the MS-GAMLSS model provides the best fit among all alternative considered, as it is the

model with the best AIC criterion and the only model for which the estimated 99.9% quantiles are not

exceeded by the observed total losses.
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The structure of the remainder of the paper is as follows: in Section 2, we describe the model

and discuss its estimation. In Section 3, we perform a simulation study to analyze the finite sample

properties of the suggested estimation technique. In particular, we consider the situation where the

number of available periods is small. In Section 4, we introduce the data and the considered covariates,

then we perform the analysis using the MS-GAMLSS model. Additionally, we investigate the regulatory

consequences arising from our approach, compared to a constant approach, a MS-constant approach or

a GAMLSS approach. We also discuss the economic interpretation of our results. Lastly, we conclude

with Section 5.

2 Methodology

2.1 MS-GAMLSS for a compound Poisson-GPD process

In this section, we begin by presenting the general framework of Markov-switching generalized additive

models for location, scale and shape parameters [MS-GAMLSS, see Adam et al., 2016, preprint], before

considering the special case of a compound Poisson-GPD process. We assume that the distribution of a

response variable Zt at time t given a vector of covariates Xt and an underlying M-state Markov chain

St is given by

P(Zt < z|Xt, St) = F (z; θ
(St)
t (Xt)), (4)

for t = 1, . . . , T , where θ
(St)
t (Xt) is the vector of associated parameters of size K at time t and F is the

cumulative distribution function of Lt. {zt}t=1,...,T , {xt}t=1,...,T and {st}t=1,...,T denote the realized time

series of the response variable, the vector of covariates and the latent state, respectively. Additionally,

we suppose that, for k = 1, . . . , K; t = 1, . . . , T and St = 1, . . . ,M , we have

gk(θ
(St)
k,t (Xθk

t )) = η
(St)
k,t (Xθk

t ) = Xθk
t β

(St)
θk

+

Jθk∑
j=1

h
(St)
θk,j

(Xθk
j,t), (5)

where gk is a monotonic link function for the kth parameter θ
(St)
k,t , Xθk

t is a vector of covariates at time t

for the kth parameter, considered in a linear way; β
(St)
θk

is a vector of parameters for these covariates in

state St; X
θk
j,t , j = 1, . . . , Jθk , is the jth covariate at time t considered in the nonparametric, whereas h

(St)
θk,j

is an unspecified smooth function that links this variable to θ
(St)
k,t . Each function h

(St)
θk,j

can be expressed

as a finite linear combination of B-spline basis functions B1, . . . , Bq:

h
(St)
θk,j

(Xθk
j,t) =

q∑
i=1

w
(St)
k,j,iBi(X

θk
j,t). (6)
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As in Langrock et al. [2015] and Chavez-Demoulin et al. [2016], we consider cubic B-splines. More details

are given in the next section.

In the case of Zt following a Poisson distribution, model (4) is fully characterized by a single parameter

(K = 1, θ = λ) and equation (5) characterizes the conditional expectation of Zt, meaning that the model

can be reduced to the MS-GAM framework of Langrock et al. [2015]. However, if Zt is of the type GPD,

then K = 2 and equation (5) can be used to describe the conditional joint behavior of γ and σ. Now, if

Zt = Lt and is given by equation (1), we have

Nt|Xt, St
iid∼ Poisson(λ

(St)
t (Xλ

t )), (7)

Yi,t|Xi,t, St
iid∼ GPD(γ

(St)
i,t (Xγ

i,t), σ
(St)
i,t (Xσ

i,t)). (8)

In the framework of the MS-GAMLSS, λ
(St)
t (Xλ

t ), γ
(St)
i,t (Xγ

i,t), and σ
(St)
i,t (Xσ

i,t) can be fully characterized

by the following equations

log(λ
(St)
t (Xλ

t )) = η
(St)
λ (Xλ

t ) = Xλ
t β

(St)
λ +

Jλ∑
j=1

h
(St)
λ,j (Xλ

j,t), (9)

log(γ
(St)
i,t (Xγ

i,t)) = η
(St)
i,γ (Xγ

i,t) = Xγ
i,tβ

(St)
γ,i +

Jγ∑
j=1

h
(St)
γ,j (Xγ

i,j,t), (10)

log(σ
(St)
i,t (Xσ

i,t)) = η
(St)
i,σ (Xσ

i,t) = Xσ
i,tβ

(St)
σ,i +

Jσ∑
j=1

h
(St)
σ,j (Xσ

i,j,t). (11)

Notice that the indices i in equations (10) and (11) allow to account for loss-specific explanatory variables

that might be different across losses at a given time (e.g. categorical variables). A similar feature might

be considered for the frequency distribution. In that case, the total number of events in a time period is

the sum of all events across categories during this period. For notational brevity, we omit this extension

in the rest of Section 2. The density function of Nt, Yi,t and Lt, conditional on St and Xt, will be denoted

by fN(nt;λ
(st)
t ), fY (yi,t; γ

(st)
t , σ

(st)
t ) and fL(lt;λ

(st)
t , γ

(st)
t , σ

(st)
t ), respectively, with lt denoting a realization

of Lt. The reference to Xt is not made explicit to simplify the notation. Thanks to the (conditional)

independence assumption between frequency and severity, we have the following relationship between

these densities:

fL(lt;λ
(st)
t , γ

(st)
t , σ

(st)
t ) = fN(nt;λ

(st)
t )

nt∏
i=1

fY (yi,t; γ
(st)
t , σ

(st)
t ). (12)

The cumulative distribution function FL of Lt can be obtained via standard numerical integration tech-

niques (usually through Monte Carlo simulations).
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Lastly, we need to characterize the transition process between the M Markov states. We make the

assumption of a first-order Markov chain. Then, under the homogeneity assumption of the Markov

chain, the probabilities of transiting from state i to state j, ∀i, j = 1, . . . ,M are constant over time.

Consequently, we can summarize the transition probabilities in a transition probability matrix (tpm)

Γ = (πij) of size M ×M , where πij = P(St = j|St−1 = i), i, j = 1, . . . ,M . The initial state probabilities

are summarized in a vector δ, where δi = P(S1 = i), i = 1, . . . ,M . Usually, the various states are strongly

persistent, meaning that the diagonal elements of Γ are close to one.

In this model, we make the assumption that the Markov chain that drives the conditional frequency

and the conditional severity is identical. This implies that the latent factors driving both processes are

similar. This assumption could be relaxed, though, and we would be in the case of a particular multiple

MS process.

2.2 Estimation of the model

We use the forward recursion procedure described in Langrock et al. [2015], adapted for the special case

of our model described by equations (1) and (7) to (11). More specifically, we define the vector of forward

variable,

αt = (αt(1), . . . , αt(M)) , t = 1, . . . , T, (13)

where αt(j) = fL(l1, . . . , lt, st = j|x1, . . . , xt), for j = 1, . . . ,M . These forward variables are, at each time

t = 1, . . . , T and for each state j = 1, . . . ,M , the joint probability of observing our sample up to time t

and to have st = j. Then the recursive scheme presented in Langrock et al. [2015] can be applied :

α1 = δQ(l1), (14)

αt = αt−1ΓQ(lt) (t = 2, . . . , T ), (15)

where Q(lt) =diag(fL(lt;λ
(1)
t , γ

(1)
t , σ

(1)
t ), . . . , fL(lt;λ

(M)
t , γ

(M)
t , σ

(M)
t )). This recursion follows from

αt(j) =
M∑
i=1

αt−1(i)πijfL(lt;λ
(j)
t , γ

(j)
t , σ

(j)
t ). (16)

Additional details can be found in Zucchini et al. [2016]. Eventually, the likelihood function of model

(7)-(12) is given by

L(Θ) =
M∑
i=1

αT (i) = δQ(l1)ΓQ(l2)...ΓQ(lT )1, (17)

where 1 ∈ RM is a column vector of ones and Θ is the set of all parameters of the model. In our case of

interest, this expression is easily obtained from the conditional density given by equation (12).
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If we consider all explanatory variables in a linear way, then an estimator Θ̂ of Θ is obtained by

maximizing equation (17) with respect to the parameters β = (βλ, βγ, βσ) in equations (9)-(11), Γ and

δ. Besides, if we consider several covariates nonparametrically (i.e. if Jθk > 0), the functions h
(St)
θk,j

,

k = 1, . . . , K and j = 1, . . . , Jθk can be expressed as a finite linear combination of B-spline basis functions

as in equation (6). Following Eilers and Marx [1996], the number q of basis functions that are used

should be chosen sufficiently large to account for complex functional forms (throughout this paper, we

use q = 11). In order to avoid overfitting, the estimation is performed by maximization of a penalized

likelihood, where the penalty term is a function of the integrated squared curvature of the nonparametric

function estimate [Eilers and Marx, 1996]. This integral is approximated by the second order difference

of (6). The penalizing term is given by equation (7) in Langrock et al. [2015]. For our model, it becomes

D =
3∑

k=1

M∑
m=1

Jθk∑
j=1

κk,m,j
2

q∑
i=3

(∆2w
(m)
k,j,i)

2, (18)

where κk,m,j ≥ 0 is the smoothing parameter in state m for the jth functional form of the kth parameter

and ∆2w
(m)
k,j,i = w

(m)
k,j,i − 2w

(m)
k,j,i−1 + w

(m)
k,j,i−2, i.e. the second-order difference of w

(m)
k,j,i. Maximum likelihood

estimators of the proposed model are obtained by maximizing the penalized log-likelihood function

Lpen.(Θ) = log(L(Θ))−
3∑

k=1

M∑
m=1

Jθk∑
j=1

κk,m,j
2

q∑
i=3

(∆2w
(m)
k,j,i)

2, (19)

for a particular vector of smoothing parameters κ.

The maximization of equation (19) is rapidly subject to numerical underflow when T is large. This

issue is addressed by considering the log-likelihood function instead of the likelihood itself. However,

because we are dealing with product of matrices, we cannot simply apply a log-transform to equation

(17). Instead, we need to use a scaling algorithm, as described in Zucchini et al. [2016], pp. 48 and

following. Theoretically speaking, an additional underflow issue might arise when some elements of {nt}

are too large, since the density in equation (12) goes to zero for large nt. Nevertheless, in practice nt is

often quite small, and we did not come across this issue in the considered application.

Beside underflow issues, maximizing expressions (17) and (19) can be challenging numerical tasks.

It is important to test several starting values to avoid local minima. We need also to take into account

constraints on the parameters (especially positivity constraints and sum of the rows equal to 1 for the

tpm). In a first step, Zucchini et al. [2016] suggest to use a re-parametrization. Subsequently, the

maximization can be carried out with a regular optimization routine. In this work, we follow Langrock

et al. [2015] and use a standard nonlinear optimizer after a suitable re-parametrization employing a

multinomial logistic link function for the tpm.
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To ensure the correct identifiability of this model, we fix the value of one of the basis coefficient w
(St)
k,j,i

in each function of each regime and for each parameter. A common strategy consists in taking an odd

number of B-spline basis q and to assume w
(St)

k,j, q+1
2

= 0, for j = 1, . . . , Jθk , k = 1, . . . , 3 and St = 1, . . . ,M .

Furthermore, regarding the transition probabilities, we make the assumption of a stationary transition

process, implying that δ is the solution to the linear system δ = δΓ subject to
∑M

i=1 δi = 1. This standard

assumption is discussed, among others, in Zucchini et al. [2016].

2.3 Choice of the smoothing parameter and the number of states

In this paper, we use a C-fold cross-validation technique in the simulations and the application for the

purpose of smoothing parameters selection. In this approach, the initial time series is randomly parti-

tioned into C subsamples. Then the model is repeatedly fitted treating one of the subsamples as missing

data, and the (negative) cross-validated likelihood score is computed on the subsample only, treating

this time the calibration data as missing. The chosen smoothing parameter is the one that minimizes

the average cross-validated score over the C partitions. Nevertheless, in case of small samples and the

presence of very large discrepancies between partitions, the C-fold approach might be problematic. An

alternative is to use repeated random subsamples: the initial dataset is repeatedly partitioned into two,

randomly and without replacement. This method is appealing in our case, as the GPD can produce data

that vary a lot (a feature potentially reinforced with the MS component of the model). For computational

convenience, the selection is performed over a search grid Λ ⊂ RM×(Jλ+Jσ+Jγ)
≥0 .

Model comparison can be done with the AIC. The AIC for a particular model (i.e. with a particular

smoothing parameters κ and a particular subset of covariates) is given by

AIC(Θ̂, κ) = −2 log(L(Θ̂)) + 2 · df(κ) (20)

where df(κ) is the effective degrees of freedom of the final model obtained with smoothing parameter κ

and Θ̂ the estimated parameters of the model. In a parametric model, the degrees of freedom is given

by the number of parameters whereas is a semiparametric context, it can be obtained by the trace of the

product of the Fisher information matrix for the unpenalized likelihood and the inverse Fisher information

matrix for the penalized likelihood [Gray, 1992]. Among several models, the one that minimizes the AIC

will be considered as the best model. This approach is computationally more efficient than a cross-

validation approach but it might also lead to significant undersmoothing problems [Hurvich et al., 2012].

Moreover, due to the complexity of the likelihood function, the Fisher information matrix needs to be

numerically estimated. We use this criterion in the empirical study to compare several candidate models.
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Lastly, regarding the number of states, Langrock et al. [2015] argue that in practice this choice is

rather arbitrary. In the economic context, Ang and Timmermann [2012] explain that this choice is

difficult to do ex-ante using the data, and should be based on theoretical arguments. They notice that

it is not uncommon to fix the number of regime at some values, typically two. One of the main reasons

is that related econometric tests are difficult to implement, due to non-standard distributions of the test

statistics under the null. Besides, several information criteria (AIC, SBIC, Hannan-Quinn criterion or

cross-validated likelihood) can be of some help, but they tend to favour a high number of states. A better

practice seems to check a-posteriori the goodness-of-fit of the estimated models using different numbers

of states, with the goal to detect if an additional complexity might improve the overall goodness-of-fit.

This analysis can be carried out by examining the autocorrelation of the (pseudo-)residuals.

Another important criterion that needs to be taken into account is the length of the time series under

study. It is intuitively clear that it will be very difficult to properly identify a large number of different

states when the time series is short, due to the typical high persistence of the states and consequently

to the possibility of not observing all states. In our particular case of random sums over time, however,

this issue is partially reduced. Thanks to the time aggregation, we observe many loss realizations for a

single point in time (we have a single realization of the Poisson process, but many realizations of the

GPD random variable). Hence, fewer time periods are needed to estimate well the regression function in

a given state compared to other models. In the present work, we restrict our attention to cases where

two states are sufficient to describe the temporal structure, since in our application we only have few

time periods.

3 Simulations

In this section, we study the finite sample behavior of the suggested estimation procedure, for the proposed

model. We consider a two-states MS-GAMLSS compound Poisson-GPD process:

Lt =
Nt∑
i=1

Yi,t, t = 1, . . . , T,

Nt ∼ Poisson(λ
(st)
t (Xλ

t )),

Yi,t ∼ GPD(γ
(st)
t (Xγ

t ), σ
(st)
t (Xσ

t )),

st ∈ {1, 2}.

This model is similar to the one described by equations (1) and (7) to (12). We assume that the

severity at time t is only a function of time-dependent covariates, and not from loss-specific covariates
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(i.e. Xθ
i,t = Xθ

j,t = Xθ
t , ∀i, j and θ ∈ {σ, γ}). The superscripts λ, γ and σ indicate that we can consider

different subsets of explanatory variables for each parameter. Furthermore, we assume that all covariates

follow a uniform distribution between 0 and 1:

Xθ
t ∼ U(0, 1), θ ∈ {λ, γ, σ}.

We consider the following regression equations for the parameters, in state st ∈ {1, 2}:

log(λ
(st)
t (Xλ

t )) = β
(st)
λ,0 + h(st)(Xλ

t ),

log(σ
(st)
t (Xσ

t )) = β
(st)
σ,0 + h(st)(Xσ

t ),

log(γ
(st)
t (Xγ

t )) = β
(st)
γ,0 ,

with

h(1)(x) = 0.6(x− 0.5)2 + sin(−2x− 1),

and

h(2)(x) = −0.5− 2.8(x− 0.5) + 0.2(x− 0.5)2 + 0.6 sin(−2x− 1) + 0.5 cos(4x− 2).

We use the following values for the constant terms: β
(st)
σ,0 = [1.3, 1.5] and β

(st)
γ,0 = [−.2, −.7]. For β

(st)
λ,0 ,

we assume β
(1)
λ,0 = β

(2)
λ,0 = βλ,0 and we use three different values: βλ,0 ∈ {2, 3, 4}. The different values of

βλ,0 imply average numbers of observations at each time that are around 4, 12 and 25, respectively. It

allows us to look at the effect of an increasing number of observations per time period on the quality of

the estimation. Regarding the covariates, we consider the cases where xt = xλt = xσt (Scenario 1) and

where xλt 6= xσt (Scenario 2). For the tpm, we assume that π11 = π22 = .95. In both scenarios, we make

the simplifying assumption that the behavior of γ is independent from any covariate (this assumption

can be easily relaxed, though). The selection of the smoothing parameters is made using a 10-fold cross-

validation procedure, considering that the smoothing parameter in a given state is the same for λ and

σ. Therefore the selection is performed among 25 vectors of size 4, with their components belonging

to Λ = {0.5, 2, 8, 25, 50}. We use two different values for the number of time periods: T ∈ {50, 100}.

Regarding the number of basis functions q and the number of simulated samples B, we set them to 11

and 200, respectively. For identifiability, the weight associated to the 6th basis is set to 0. This simulation

set-up is inspired by the one of Langrock et al. [2015].

To assess the quality of the estimation, we compute an estimator of the MISE between the true

functional form h(j) and the estimated one, ĥ(j), for each θ ∈ {λ, σ} and each state j ∈ {1, 2}:

M̂ISE
ν
(j)
θ

=
1

B

B∑
i=1

 1∫
0

(
ĥ

(j)
θ (x)− h(j)

θ (x)
)2

dx

 . (21)
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In addition, we compute the average estimates β̄
(j)
θ,0 of β

(j)
θ,0, for j ∈ {1, 2} and θ ∈ {λ, γ, σ}, as well as

the average estimate π̄ii of the diagonal elements πii, i = 1, 2 of the tpm. Using the Viterbi algorithm

detailed in Zucchini et al. [2016], we decode the estimated states ŝt. We compute the proportion of

correctly classified state, for each sample:

R =
1

T

T∑
t=1

1(st = ŝt), (22)

with 1(·) being an indicator function taking value 1 when the condition in parenthesis is met, 0 otherwise.

The average R̄ and median R̃ across all samples give us measures of the accuracy with which we are able

to identify the states over time.

Tables 1 and 2 display the various MISE and average estimates for Scenarios 1 and 2, respectively.

Figure 1 shows the boxplots of the correct classification rates (mean and median ratio in each simulation

can be found in Table 3). In general, we estimate quite well the dependence structure even for short

time series when the average number of observations per time period is at least 12. Figure 2 shows the

95% coverage bands on the final parameters estimates for λ and σ, when T = 50, βλ,0 = 4 for Scenario

1. The coverage bands for the other scenario are available as supplementary materials. We see that in

general, the functional forms are well estimated, but when the covariates take values close to their upper

bound, the quality of the estimation deteriorates. It seems that in this region, both functional forms are

closer one to another and thus are harder to distinguish. Overall, all other parameters of the model are

well estimated and the quality of the estimation improves quite quickly when the number of observations

during each time period increases. No big differences are observed between Scenarios 1 and 2. Regarding

the correct classification ratio, even for T = 50 we reach an average of 98.7% of correctly classified states

when βλ,0 = 4. The median ratio is even better, varying between 94% and 100%. One should also notice

that for the case where βλ,0 = 2 and T = 50 (i.e. samples with an average size of 202 observations),

very bad estimated values of πii, i = 1, 2 and of the classification ratio are sometimes observed. This,

in turn, has a negative effect on the estimation of the other parameters. Hence, when the time series is

short, the frequency of the process (i.e. the number of losses over a time period) should compensate, in

order to obtain a good final estimation. However, overall, the simulation study demonstrates the good

performance of the estimation procedure, even for samples of reasonable sizes.
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xλt = xσt βλ,0 M̂ISE
h
(1)
λ

M̂ISE
h
(2)
λ

M̂ISE
h
(1)
σ

M̂ISE
h
(2)
σ

π̄11 π̄22

T = 50 2 0.159 0.184 0.240 0.223 0.899 0.890

(0.310) (0.280) (0.311) (0.274) (0.152) (0.173)

3 0.067 0.099 0.106 0.112 0.901 0.918

(0.092) (0.115) (0.148) (0.155) (0.123) (0.103)

4 0.044 0.061 0.053 0.056 0.923 0.921

(0.053) (0.066) (0.074) (0.051) (0.110) (0.097)

T = 100 2 0.082 0.099 0.134 0.121 0.933 0.938

(0.179) (0.126) (0.206) (0.154) (0.061) (0.070)

3 0.046 0.058 0.069 0.078 0.934 0.933

(0.064) (0.067) (0.088) (0.095) (0.054) (0.053)

4 0.027 0.037 0.042 0.048 0.940 0.937

(0.033) (0.029) (0.049) (0.043) (0.044) (0.045)

β0(λ) β̄
(1)
λ,0 β̄

(2)
λ,0 β̄

(1)
σ,0 β̄

(2)
σ,0 β̄

(1)
γ,0 β̄

(2)
γ,0

T = 50 2 1.973 1.948 1.456 1.496 −0.531 −1.119

(0.343) (0.367) (0.520) (0.381) (0.828) (1.285)

3 3.033 3.047 1.347 1.561 −0.262 −0.790

(0.228) (0.276) (0.363) (0.332) (0.243) (0.330)

4 3.996 3.988 1.286 1.513 −0.219 −0.739

(0.175) (0.147) (0.223) (0.167) (0.131) (0.145)

T = 100 2 1.981 1.953 1.43 1.498 −0.383 −0.864

(0.231) (0.204) (0.379) (0.233) (0.488) (0.546)

3 2.986 3.007 1.307 1.505 −0.247 −0.771

(0.167) (0.155) (0.233) (0.195) (0.144) (0.329)

4 3.989 3.999 1.304 1.505 −0.216 −0.722

(0.128) (0.118) (0.168) (0.143) (0.138) (0.102)

Table 1: Results of Scenario 1, with xλt = xσt . The MISE are computed with B = 200 simulated samples,

with the length T of the time series being either 50 or 100. β̄
(j)
θ,0 denotes the mean estimate over all

estimates β̂
(j)
θ,0, for j = 1, 2 and θ ∈ {λ, σ, γ}. The different values of βλ,0 correspond to (average) total

sample sizes of 202, 565 and 1497 for T = 50, and 414, 1191 and 3025 for T = 100, respectively. Standard

errors over the 200 samples are in parentheses.
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xλt = xσt βλ,0 M̂ISE
h
(1)
λ

M̂ISE
h
(2)
λ

M̂ISE
h
(1)
σ

M̂ISE
h
(2)
σ

π̄11 π̄22

T = 50 2 0.1641 0.1563 0.1943 0.1954 0.907 0.906

(0.231) (0.223) (0.238) (0.275) (0.119) (0.131)

3 0.094 0.103 0.107 0.118 0.924 0.908

(0.186) (0.145) (0.186) (0.176) (0.087) (0.105)

4 0.036 0.0485 0.052 0.065 0.925 0.923

(0.04) (0.039) (0.083) (0.062) (0.072) (0.073)

T = 100 2 0.093 0.112 0.122 0.126 0.939 0.933

(0.1314) (0.188) (0.154) (0.161) (0.052) (0.084)

3 0.040 0.055 0.065 0.066 0.934 0.936

(0.047) (0.061) (0.081) (0.067) (0.057) (0.058)

4 0.026 0.039 0.034 0.046 0.939 0.935

(0.028) (0.027) (0.043) (0.042) (0.047) (0.05)

β0(λ) β̄
(1)
λ,0 β̄

(2)
λ,0 β̄

(1)
σ,0 β̄

(2)
σ,0 β̄

(1)
γ,0 β̄

(2)
γ,0

T = 50 2 2.004 1.917 1.396 1.522 −0.545 −1.172

(0.343) (0.309) (0.442) (0.351) (1.199) (1.228)

3 3.011 2.992 1.322 1.504 −0.279 −0.788

(0.215) (0.251) (0.285) (0.276) (0.279) (0.344)

4 4.002 3.974 1.289 1.491 −0.225 −0.77

(0.143) (0.159) (0.214) (0.192) (0.153) (0.272)

T = 100 2 2.012 1.973 1.312 1.516 −0.295 −1.009

(0.245) (0.277) (0.277) (0.271) (0.284) (1.129)

3 2.987 3.004 1.299 1.509 −0.226 −0.760

(0.160) (0.175) (0.223) (0.185) (0.157) (0.301)

4 3.999 4.001 1.287 1.505 −0.207 −0.719

(0.118) (0.133) (0.155) (0.149) (0.089) (0.134)

Table 2: Results of Scenario 2, with xλt 6= xσt . The MISE are computed with B = 200 simulated samples,

with the length T of the time series being either 50 or 100. β̄
(j)
θ,0 denotes the mean over all estimates β̂

(j)
θ,0,

for j = 1, 2 and θ ∈ {λ, σ, γ}. The different values of βλ,0 correspond to (average) total sample sizes of

202, 565 and 1497 for T = 50, and 414, 1191 and 3025 for T = 100, respectively. Standard errors over

the 200 samples are in parentheses.
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T = 50 xλt = xσt xλt 6= xσt

β
(St)
0 (λ) 2 3 4 2 3 4

R̄ 0.891 0.957 0.987 0.876 0.955 0.995

R̃ 0.94 0.98 1.00 0.94 0.980 1.00

π̃11 0.951 0.935 0.947 0.948 0.950 0.943

π̃22 0.943 0.945 0.947 0.946 0.943 0.942

T = 100 xλt = xσt xλt 6= xσt

β
(St)
0 (λ) 2 3 4 2 3 4

R̄ 0.942 0.976 0.992 0.953 0.982 0.995

R̃ 0.95 0.98 0.99 0.97 0.99 1

π̃11 0.947 0.948 0.951 0.953 0.95 0.95

π̃22 0.953 0.947 0.949 0.949 0.953 0.945

Table 3: Mean and median correct classification ratio, as well as median of the estimated diagonal

transition probabilities for Scenarios 1 and 2. Left (resp. right) panel: T = 50 (resp. T = 100).
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Figure 1: Boxplots for the proportion of correctly classified latent states, given by equation (22). 1

corresponds to 100% of the time periods correctly classified. (a): xλt = xσt . (b): xλt 6= xσt . Top: T = 50.

Bottom: T = 100.
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Figure 2: 95% coverage bands (dotted and dashed) for λ
(j)
t (xλt ) (left) and σ

(j)
t (xσt ) (right). Dashed dotted

(resp. solid): true function for j = 1 (resp. j = 2). T = 50 and β0(λ) = 4.

4 Empirical Study

In this section, we apply the proposed procedure to real financial data. We consider a novel dataset of

817 operational losses at UniCredit, one of the largest European banks, resulting from external frauds.

Operational losses are defined by the Basel Committee for Banking Supervision (BCBS) as direct or

indirect losses resulting from inadequate or failed internal processes, people and systems or from external

events [BCBS, 2004]. In this application, we focus on the particular class of operational losses resulting

from external frauds. Over the past 15 years, impressive fraud losses regularly made the headlines of

newspapers for their huge economical consequences. Famous examples are losses from rogue trading at

the Barings bank (1995), rogue trading at Société Générale (2007) and JP Morgan (2012), the LIBOR

scandal (2011) or more recently, massive fraudulent cyber-attacks of the SWIFT system in Bangladesh,

Russia and Japan (2016).

4.1 Description of the data

UniCredit operates in 17 countries. In 2007, its share price reached e42.8, before a drastic decline

following the subprime crisis in 2008 and the sovereign crisis in 2011 to reach e2.83. Its total asset at

the end of the first quarter of 2016 reached e892.04bn. Around 50% of UniCredit total revenue comes

from its Italian activities. In the context of the Advanced Measurement Approach, UniCredit is asked

by its regulator to model the distribution of its total operational loss Lt over time. For operational

losses, the capital reserve is derived from the estimated 99.9% quantile of Lt (i.e. from the estimation
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of Q0.999(Lt) defined s.t. P(Lt ≤ Q0.999(Lt)) = 0.999). The standard modeling approach relies on

unconditional compound Poisson-GPD processes [see, among others, Moscadelli, 2004, Dutta and Perry,

2006, Soprano et al., 2009, Chapelle et al., 2008]. However, a recent stream of papers emphasizes the effect

of some economic variables and the importance of regulatory changes on the distribution of Lt, suggesting

that it might be more accurate to model the quantile of Lt, conditional on covariates and a latent

state: Q0.999(Lt;Xt, St), defined by P(Lt ≤ Q0.999(Lt;Xt, St)) = 0.999. Since our MS-GAMLSS approach

handles these features, we will use it to study the variation over time of the total loss distribution, and

in particular of Q0.999(Lt;Xt, St).

The collection period of the losses ranges between January 2005 and June 2014. Losses have been

scaled by an unknown factor for anonymity reasons. The minimal amount considered is 25,000e (so

that we have a sample of extreme losses, where the GPD is a reasonable hypothesis for the severity

distribution, see e.g. Embrechts et al. [1997], Beirlant et al. [2005]). We have access to the exact date

of each loss, meaning that we can assign each loss to a specific year and a specific quarter, and compute

the total loss for each quarter. We work on a quarterly basis as we wouldn’t have enough time periods

to estimate correctly the transition probabilities of the model otherwise. However, on a regulatory point

of view, banks are expected to define the capital reserve for a horizon of one year. In this case, a simple

addition of the forecast capital for 4 consecutive quarters could be used. As in Cope et al. [2012] and

Chavez-Demoulin et al. [2016], we adjust the loss amounts for inflation, using the Italian consumer price

index from the OECD website. The final loss amounts used to fit the model are obtained by subtracting

the collection threshold (25,000e) to the adjusted loss amount (it can be reinstated later to shift all losses

from this amount, the other parameters being not affected by this transformation). Figure 3 shows the

evolution of the total loss per quarter, the number of losses per quarter as well as the distribution of the

loss amounts over time (in the log scale). The number of losses per quarter ranges between 8 and 54. We

observe a decrease of the number of losses starting in 2008. Regarding the total loss, we face a big spike

in the second quarter of 2009, due to a single extremely large loss. The total loss during that quarter

is twice as big as the second biggest observed total loss, taking place in 2006. Following this spike, the

average total loss per quarter seems to remain at much lower levels until the end of the considered period.

Regarding the economic covariates, Chernobai et al. [2011] discover a strong link between firm-specific

covariates and the intensity of the operational loss process. They conclude that a high level of financial

distress is associated with more frequent operational events, especially frauds. Regarding the severity

of the operational losses, Cope et al. [2012] suggest that the expected severity of the lossesis positively

linked with the economic well-being of a country. In this application, we use the following covariates:
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• To model the frequency parameter λ, we use a firm-specific variable, namely the percentage of

the total revenue coming from fees (PRF). The PRF might be seen as a measure of the economic

well-being of the bank. The higher this ratio is, the less dependent the bank is from market interest

rates. Simultaneously, the PRF could also measure the level of activity of the bank on behalf of

clients. The higher the PRF, the more the bank provide services to clients. A high level of this

activity can increase the average number of losses resulting from frauds (as more clients are likely

to commit frauds).

• To model the scale parameter σ, we use the Italian unemployment rate. This quantity serves as

a proxy of the overall economic performance of Italy, where UniCredit has its main activities. As

explained in the introduction, the bad or good state of an economy might create incentives for

people to commit larger frauds.

• To model the shape parameter γ, we consider the values of the VIX index. The VIX is a measure

of the market volatility, based on put and call options of the S&P500. It is also considered as a

barometer of market sentiments. It might help measuring the stability of the financial system. High

values of the VIX indicate a high uncertainty on the financial markets, which can be translated in

higher probabilities of extreme losses.

A natural extension of the present framework would be to use several covariates for each parameter.

However, since our time series is quite short, we don’t want too many parameters needing to be estimated.

Hence we restrict our attention to the case where each parameter depends on a single covariate.

At each time, we consider the covariates’ values from the previous quarter to perform the regression.

The use of lagged values of the covariates allows to limit causality issues and to predict the distribution

without also predicting these variables (in the case of a one-step ahead forecast). The evolution of these

covariates, over the considered period, is displayed in Figure 4. We observe several important changes (at

the end of 2007, in September 2009 or in 2011), all corresponding to some crisis (namely the subprime

crisis and the sovereign crisis). These changes might indicate potential shifts between two different

regimes or some structural breaks. Especially, notice that we observe a high peak of the (lagged) VIX

index at the same time as the observed peak of the total loss (for the second quarter of 2009).
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Figure 3: From left to right: total loss, number of losses per quarter, observed losses (grouped per quarter

in log-scale).
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Figure 4: Value of the explanatory variables over the considered period. From left to right: lagged values

(one quarter) of the PRF, the Italian unemployment rate and the VIX index.

4.2 Results

Figure 5 shows the estimated functional forms for the different parameters and in the two states (VIX

values have been divided by 100 to vary between 0 and 1). The smoothing parameters have been chosen

with a CV procedure (with repeated resamples), over a grid of vectors built on the values {.5, 2, 8, 15, 25}.

The selected value of the smoothing parameter is identical for each covariate and in each state, and equal

to 8. The nonparametric approach seems useful to handle some non-linearities (in particular for the

unemployment rate and the VIX). We used 11 basis functions. Increases in the PRF are associated

with increases in λ, in both states. This association is stronger in state 2 compared to state 1. For the

unemployment rate, we observe a U-shape of the functional forms: up to a given point (around 10%),

an increase in the unemployment rate is associated with a decrease in σ, and then with an increase in σ

beyond this point (however, since the density of the covariate beyond this point is low, it can be simply

a boundary effect). For the VIX index, we observe in one state a strong increase in γ when the VIX

increases, whereas in the other state, the functional form is quite flat. Estimated values of the constant
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parameters and of the transition probabilities, are given in Table 4. Both states are found to be highly

persistent, as indicated by the diagonal elements of the tpm close to one (see Table 4).

Figure 6 displays the estimated parameters in both states, over time. Using the Viterbi algorithm, we

assign the period January 2005 - March 2007 to the second state. Then we observe three shifts between

states: from state 2 to state 1 during the 2nd and 3rd quarter of 2007, from state 1 to state 2 during

the last quarter of 2007, and then from state 2 to state 1 during the first quarter of 2008, up to June

2014. Figure 7, left side, shows the state probabilities over time. The first shift corresponds to the period

where a merger with another bank, Capitalia, takes place. Looking at UniCredit historical figures and

yearly reports, we observe a huge increase in the leverage ratio for the 3rd quarter of 2007, following

the buyout of Capitalia during the previous quarter. The second shift (during the last quarter of 2007)

corresponds to a period of intense reduction of the leverage ratio, as well as a restructuring of UniCredit

activities. Lastly, the third shift corresponds to the start of a progressive increase in the Tier-I capital

ratio. It could indicate that following the crisis, UniCredit decided to operate a drastic change in its

risk management. January 2008 sees also the enforcement of Basel II rules for the advanced internal

rating-based approach. This change of regulation could be the source of changes in the risk management

process, which in turn influence the frequency and severity of operational losses.

The relationships between parameters and covariates seem different among regimes. Especially, vari-

ations of the VIX appear to be linked with larger variations of γ in state 1, compared to state 2. It could

be due to the fact that state 1 is a crisis regime, where the uncertainty is particularly important. At

these times, the likelihood of an extreme event appears more tightly linked with market conditions, and

increases drastically. Despite its strategical and/or structural changes, UniCredit seems to be heavily

dependent from the volatility of the financial markets in this regime. However, when the VIX decreases,

γ decreases more in state 1, compared to state 2. Consequently, when the VIX is low in state 1, we

reach lower values of γ and lower probabilities of extreme events. This is also due to a difference of level

between regimes: the constant parameter is lower in state 1, compared to state 2 (for a value of the VIX

equal to zero, we would observe respectively values of γ equal to 0.39 and 0.50).

Regarding the scale parameter σ, we see that it decreases with the increase in the unemployment

rate, up to a given value. The inflexion point seems different among regimes. We could give the following

interpretation of these results: when the economic situation worsens (i.e. when the unemployment rate

increases), there are less opportunities and incentives to commit large frauds (i.e. the scale of the frauds

decreases). However, when the situation becomes too bad (e.g. when the unemployment rate reaches

10%), people have less to lose and we face an increased probability of large frauds. Over time, σ is larger

in state 1 than in state 2, indicating that the change of regime is synonym of an increased variability of
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the losses, possibly because of the increased macroeconomic instability in state 1.

For λ, no big differences among regimes are observed for the functional form of the dependence. A

way of explaining the observed relationship could be that the PRF measures the level of activity of the

bank. When the PRF increases, it indicates that the bank carries out more services for clients, leading

to potentially more losses resulting from frauds of clients. Nevertheless, the frequency parameter seems

mostly determined by the constant parameter, indicating that the relationship with the covariate is

weak. This constant is quite different between regimes, and induces a major change of level: in state 2,

λ fluctuates around 35, whereas in the other state, λ varies between 15 and 20. Once again, structural

or regulatory changes might be the cause of this drop.

Boostrap confidence intervals (based on 1000 resamples) are displayed in Figure 10 in the Appendix.

They are fairly wide and hence do not let us firmly conclude that differences among functional forms in

the two regimes are significant, nor do they allow us to say if the relationships with the covariates are

significant. This is a concern with MS models, already reported by Zucchini et al. [2016], and that is

emphasized by the complex nonparametric dependence in the model.

To study the regulatory implications of the proposed approach, we compute Monte Carlo estima-

tors Q̂0.999(Lt;Xt, St) of Q0.999(Lt;Xt, St). Figure 7 displays these estimations in each state, computed

for every quarter using 100, 000 random draws from the convolution of the Poisson and GPD distri-

butions. Looking at the quantiles’ values conditional on the decoded states, we see that up to 2007,

Q̂0.999(Lt;Xt, St) is quite stable. Then, after the regime change, Q̂0.999(Lt;Xt, St) increases drastically in

2008 and 2009, during the crisis. We never observe a breach of the quantile, i.e. total losses larger than

the corresponding estimated quantiles (conditional on the decoded state), despite a huge total loss on

the 2nd quarter of 2009. Thanks to the proposed dependence structure, we detect a large increase in the

shape parameter at that time, and an increase in the 99.9% quantile. From a regulatory perspective, our

model indicates correctly that more capital should be needed to cover potential operational losses during

that period, compared to the previous periods. This is interesting economically speaking, as this model

could prevent financial institution to set aside too much or too little capital.
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Figure 5: Estimated nonarametric functional forms between the covariates and the parameters of the

model. Solid (resp. dotted) line: state 1 (resp. 2). From left to right: PRF, unemployment rate and

VIX index.
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Figure 6: Estimated values of the parameters in both states (solid: state 1; dotted: state 2) over the

covered period.
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Figure 7: Left: state probabilities for the different regimes (thin solid: first state; dotted: second state).

Right: Q̂0.999(Lt;Xt, St) over time, in both states (dashed: first state, dotted: second state). Grey bar:

total loss

To benchmark the perfomance of our model, we compare our two-states MS-GAMLSS model with

three others models. First, we consider the unconditional, constant model: the frequency and severity
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distributions are assumed to have parameters constant over time and across covariates, as in Embrechts

et al. [1997], Chapelle et al. [2008], Dutta and Perry [2006]. Second, we consider a GAMLSS model

as in Chavez-Demoulin et al. [2016], where the dependence with covariates is taken into account (non-

parametrically), but where the structure is assumed not to change over time. Third, we consider a

MS-Poisson-GPD model without explanatory variables (MS-CST): the parameters of the frequency and

the severity distributions change according to a latent state variable only (no additional dependence with

economic variables is assumed). This model is close to the one considered in Guillou et al. [2013]. These

three alternatives are, in fact, special cases of our more general MS-GAMLSS model introduced in Sec-

tion 2. For the pure GAMLSS model, the shape of the functional forms for the different nonparametric

components can be found in Appendix A (Figure 12). The estimated functional forms seem similar to

the ones obtained with the MS-GAMLSS model in the first state. The values of the constants for these

models can be found in Table 4.

We plot the estimations ofQ0.999(Lt;Xt, St) obtained with the various models (Figure 8). The constant

model seems to be the worst: it does not detect structural changes, and leads to VaR estimations that

appear to be too small during the first period, and too large in the second period. The MS-CST model

detects the same structural changes as the MS-GAMLSS model, but it cannot adapt well to changes

inside a particular regime (especially during the second quarter of 2009). Last, the GAMLSS models

seems to better stick to the data than the two other models, but we observe a breach of the quantile

for the first quarter of 2006. Thus, a simple GAMLSS model cannot handle structural changes as the

one detected with the MS-GAMLSS models. In terms of AIC, the constant and GAMLSS models are

less good than the MS models. The MS-GAMLSS model has the best AIC, but it is close to the AIC

of the MS-CST model. However, in term of breach of the 99.9% quantile (i.e. the number of total loss

realizations that are larger than the computed 99.9% quantile), the MS-GAMLSS model provides the

best results among all models. This is surely an important criterion from a regulatory perspective, since

no breach is expected from the regulators.

For an informal assessment of the global fit of the considered models, we draw conditional pseudo-

residuals QQ-plots for the severity distribution. By conditional, we mean here pseudo-residuals condi-

tional on the decoded state. More precisely, we use the Viterbi algorithm and the estimated regression

function to assign at each time and each observation an estimated state ŝt, as well as estimated severity

parameters γ̂(ŝt)(xt) and σ̂(ŝt)(xt). Then, we compute ei,t = (1/γ̂(ŝt)(xt)) log(1+γ̂(ŝt)(xt)(zi,t−τ)/σ̂(ŝt)(xt)),

∀t, i, which should be approximately i.i.d. realizations of a standardized exponential distribution [Chavez-

Demoulin et al., 2016]. Figure 9 indicates a relative good fit for all considered models, except far in the

tail. This is presumably due to a few losses (and the relative small size of our sample), for which none
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of the models seem to estimate the distribution correctly.

Overall, the MS-GAMLSS model seems provide the best fit for the data (as we do not observe a breach

of the quantile) and to adequately describe the historical macroeconomic scenario: in 2008, we faced an

increased uncertainty on the financial markets, and on the solvency of the whole banking system. In this

situation, extremely large losses become more likely (as the financial system could completely collapse at

that time) and the shape parameter of the total loss distribution increases despite drastic modifications

of the risk management. The VIX seems to capture this uncertainty. At the end of 2010 and 2011, a

similar high uncertainty takes place during the sovereign crisis and raises (once again) the question of the

survival of the global banking system. Hence, a model allowing for structural changes and dependence

with economic covariates is able to handle this kind of scenario.
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Figure 8: Q̂0.999(Lt;Xt, St) over time obtained with the alternative models: constant (dotted), MS-CST

(dashed), GAMLSS (solid). Grey bar: total loss.

Final results π̂11 π̂22 β̂
(1)
0 (σ) β̂

(2)
0 (σ) β̂

(1)
0 (γ) β̂

(2)
0 (γ) β̂

(1)
0 (λ) β̂

(1)
0 (λ) -LL AIC

CST - - 10.11 - −0.66 - 3.07 - 9674.8 19354

GAMLSS - - 9.94 - −0.69 - 2.9 - 9631.4 19283

MS-CST 0.94 0.88 10.08 10.07 −0.74 −0.55 2.81 3.55 9631.4 19279

MS-GAMLSS 0.95 0.93 10 9.81 −0.95 −0.70 2.8 3.47 9619.2 19272

Table 4: Estimations of the constant parameters for the four models. CST stands for the unconditional

constant model, whereas MS-CST stands for the MS model with no additional explanatory variables.
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Figure 9: QQ-plots for the pseudo-residuals of the four models. Top, from left to right: MS-GAMLSS

and MS-CST models. Bottom, from left to right: GAMLSS and CST models.

4.3 Economic implications and limitations

Economically speaking, a bank that uses a MS-GAMLSS model to establish its requested capital is able

to set aside more capital in a high-risk period, and less capital in a low-risk period. Hence, the model

facilitates a better allocation of financial resources. Also, it meets the expectations of the regulators for a

better adequateness between the risk level and the requested capital. In particular, in this application, the

MS-GAMLSS model is the only one that avoids a breach of the estimated 99.9% quantile. In contrast, the

other models suffer at least a breach of the quantile which indicates structural issues, since the probability

of a breach at a particular quarter, conditional on the current economic conditions, is of 1/1000. If such

an event happens, either the model suffers from a misspecification or we are extremely unlucky. Lastly,

since we use lagged values for the explanatory variables in our application, it implies that we are able to

provide good (in-sample) one-step ahead predictions of the total loss distribution.

Nevertheless, the use of covariates and switching regimes has the drawback of increasing the variability

of the capital requirements over time. In our application, we use the VIX index, which is based on the

derivative market and prone to brutal variations. With the MS-GAMLSS model, the required capital

would be multiplied by 10 in a single period. Financially speaking, it might not be possible for an ALM
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department to provision 9 million a quarter, then 90 million the next quarter, and 350 million more

6 months after (recall, however, that the losses have been multiplied by an unknown scaling factor for

anonymity reasons, implying that the given numbers are in reality different). To reduce this variability,

a solution would be to set an upper threshold for the VIX, limiting the consequences of unexpected large

bursts. However, such a constraint is hardly justifiable from a theoretical perspective.

Moreover, in term of managerial actions, little can be done with explanatory variables not internal

to the bank (e.g. the bank has no power -alone - on the VIX level, or on the unemployment rate).

Our results suggest an important dependence with market volatility, but it is quite likely that the VIX

itself is not a determinant of the severity distribution. An explanatory variable based on the interaction

between the market conditions and the total exposure could be more suited and more useful in term

of risk management. Thus, MS-GAMLSS models seem to be interesting tools to study the formation

process of operational losses, but should be carefully justified from a theoretical perspective (especially

regarding the set of covariates) if used to make predictions.

An additional issue might arise for the prediction and decoding of the states. Here, we consider the

simplistic case of a stationary two-state model, but the transition probabilities might vary over time, or

more states might exist. A misspecification of these aspects of the model could be damageable in term

of predictive ability. Moreover, if we make a mistake in the prediction of the state, we could wrongly

assume a low-risk state instead of a high-risk state and decide to set aside less capital than needed. Once

again, it is a danger of MS models, and it needs to be analyzed by risk managers willing to use them.

Lastly, notice that sometimes, the initialization of the estimation procedure might be problematic. Here,

we use an initial solution that allows the minimization algorithm to converge to a good solution after a

reasonable number of iterations (we test multiple sets of starting parameters). We came across several

regions of the likelihood function where it does not happen, and where the final solution leads to different

decoded sequences of states. Therefore, it seems quite important to select carefully this initial solution.

Lastly, this empirical study suggests that the distribution of operational losses is, indeed, non-

stationary and varies with the economic conditions, since simpler models cannot avoid breaches of the

99.9% quantile. Therefore, this feature should be taken into considerations by the regulators. Otherwise

we face the risk to set the requested capital to some kind of average value. Such a strategy would be

clearly inefficient, because it would lead to set aside too much capital in low-risk periods (e.g. when

market conditions are good and the risk management is effective) and too few capital in high risk periods

(e.g. when the market conditions are unstable and the internal structure of the bank generates risks).
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5 Conclusion

In this paper, we studied the particular case of a compound Poisson-GPD process, a model frequently

used in insurance and finance for the behavior of random sums over time. We focused on a particular

extension of this model, in the context of Markov-switching generalized additive models for location,

scale and shape (MS-GAMLSS). The interest of this extension lays in the fact that it can properly take

into account a dependence structure with covariates, as well as structural changes arising over time. We

detailed how to estimate the parameters of this model, using a direct maximisation of the log-likelihood

function. In a simulation study, we showed that even if the length of the time series is as short as 50

time periods, we can still correctly estimate the parameters of the model when the average number of

events occurring in a period is at least 12. Subsequently, we applied our MS-GAMLSS model to the

modeling of operational losses in the banking industry. We considered a novel database of 817 fraud

losses, provided by the bank UniCredit. We studied the conditional distribution of the total losses per

quarter, over a 10-year period. As explanatory variable for the frequency parameter, we used lagged

values of the percentage of revenue coming from fees (PRF), whereas for the scale parameter we used

lagged values of the Italian unemployment rate. For the shape parameter, we used lagged values of the

VIX index.

We found increasing relationships between the PRF, the VIX index and the related parameters,

whereas an increase in the unemployment rate up to 10% was linked with an decrease in the scale

parameter, then with an increase beyond that point. Using the Viterbi algorithm, we found three shifts

between states, two of them in 2007, and the third one on the 1st quarter of 2008. We suggested that

the regimes can be labelled as non-crisis and in-crisis regimes, and are mostly characterized by different

levels of the parameters. Especially, in the regime assigned to the period 2008-2014 (the in-crisis regime),

we observed a strong dependence of the severity distribution with the market volatility (approximated

by the VIX). Due to this increased uncertainty in 2009, the probability of an extreme event was found

to increase drastically in 2009. However, when the market conditions go back to normal, the probability

of extreme losses was found to be lower in this regime. We conjectured that these finding might be due

either to structural changes undergone by UniCredit in 2007 following its merger with Capitalia, or by

changes in its risk management, following the financial crisis and the enforcement of Basel II rules in

2008.

From a regulatory perspective, and compared to simpler models (without switching regimes or ex-

planatory variables), the MS-GAMLSS model proved to be better since it was the only model where we

did not observe a total loss larger than the 99.9% quantile. These results indicate that a Markov-switching
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structure and a dependence with covariates help to better take into account the non-stationarity of the

distribution of operational losses. In addition, this model allows to provision less capital during less risky

periods, with the consequence that financial resources can be allocated more adequately. However, it

comes to the cost of potentially big variations of the requested capital from one period to another.

Several extensions and improvements of the present work could be considered. First, we focused on a

complex but single case of the MS-GAMLSS framework (namely the compound Poisson-GPD process).

It would be quite easy to consider other distributions of the GAMLSS family that could be useful in

other applications (e.g. for stock returns models with generalized hyperbolic distributions, or loss given

default models in credit risk applications with Beta distributions). Second, we only considered a two-

state case, motivated by the shortness of the time series in our application. Considering additional states

(if sufficient data are available) might help to capture different features of the data. Third, we used a

simplistic selection procedure of the smoothing parameter, searching over a grid of candidate vectors in

RM×(Jλ+Jσ+Jγ)
≥0 . However, this search becomes rapidly unfeasible when the number of covariates or the

number of states is high. A solution solution would be to use a shrinking penalizing method, similar to

ridge or LASSO regression in the parametric context [Fahrmeir et al., 2013]. Adapted procedures have

been proposed in the GAM case [Marra and Wood, 2011] and in the GAMLSS case [Mayr et al., 2012] but

it does not exist yet in our context. This question should be undoubtedly the focus of future investigations.

Fourth, we did not consider extensively issues related to confidence intervals and model selection. We

restrict ourselves to the use of the AIC and bootstrap procedures with fixed covariates. Instead, one

should consider e.g. extensive bootstrap procedures combined with cross-validation. Regarding the

model selection, we believe that cross-validation or out-of-sample predictive ability should be the preferred

selection procedures, and not information criteria which are often too lenient on overcomplex models.

Due to the limited length of our time series we did not perform out-of-sample predictions but such

prediction exercises should assess the practical usefulness of the proposed model. Lastly, we made

the assumption that a single Markov chain was driving the behavior of the conditional frequency and

severity distributions. However, assuming different Markov chains in equations (9) to (11) could ease the

estimation of the model, because we could estimate both switching regimes independently. We did not

consider this alternative but this is clearly a possible extension of the present work.
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6 Appendix A
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Figure 10: Estimated functional forms related to the three covariates considered, obtained with the MS-

GAMLSS model (solid line: state 1, dotted: state 2). Dashed: 95% confidence intervals. X-axis: value

of the covariate. Y-axis: log(θ̂(j)(X)), θ ∈ {λ, σ, γ} and j = 1, 2.
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Figure 12: Estimated functional forms related to the three covariates considered, obtained with the

GAMLSS model (solid line). Dashed: 95% confidence intervals. X-axis: value of the covariate. Y-axis:

log(θ̂(j)(X)), θ ∈ {λ, σ, γ} and j = 1, 2.
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