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Abstract

This paper considers testing the adequacy of parametric specifications of conditional distri-

butions for Structured Additive Distributional Regression estimated in a Bayesian framework.
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1 Introduction

One quintessential assumption made by Structured Additive Distributional Regression (SADR) is

the use of a parametric form for the conditional distributions. This assumption may be tested by

considering the following null-hypothesis H0 against the alternative hypothesis H1:

H0: The conditional distributions can be modelled by parametric form, p(y | ✓), for all observed
values of y and some values of ✓ derived for the corresponding covariates, x.

vs.

H1: The conditional distributions cannot be modelled by parametric form, p(y | ✓), for all ob-

served values of y and any values of ✓ derived for the corresponding covariates, x.

2 Theory and Algorithm

In order to test these hypotheses one can use an adaptation of the well known Kolmogorov-Smirnov

test. Our adaptation is based on the work of Andrews (1997) and Rothe and Wied (2013) who
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proposed a frequentist framework for the testing of conditional distributions. Using their idea

to transform the conditional moment restrictions imposed by the parametric specification of our

structured additive distributional regression model into unconditional ones (see Rothe and Wied,

2013), we are able to specify the test statistic Tn as

Tn =
p
n sup

(y,x)
| Ĥn(y,x)� Ĥ0

n(y,x) |, (1)

where Ĥn(y,x) and Ĥ0
n(y,x) constitute estimates of the joint cumulative distribution function of

both dependent and independent variable for n observations integrated up with respect to the

marginal distribution of the conditioning variables:

Ĥn(y,x) = n�1
X

{Yiy} {Xix}

and

Ĥ0
n(y,x) = n�1

X
P̂n {Xix},

where P̂n denotes the estimated cumulative density function based on n samples using structured

additive regression while again denotes an indicator function.

As the asymptotic distribution of Tn under the null hypothesis depends on the data-generating

process in a complex fashion we propose to use a bootstrap procedure to simulate it. In order to

incorporate the uncertainty attached to the parameter estimates we use draws from the MCMC

realisations and contrast it with simulated realisations of Y for a set of randomly selected covariate

combinations of X. Our bootstrap algorithm thus as follows:

Step 1 Draw a bootstrap sample of covariates {Xb,i; 1  i  n} with replacement from the

obtained values in the sample {Xi; 1  i  n}.
Step 2 Randomly select the m-th MCMC draw from set M for the parameter estimates,

yielding ✓
(m)
b,1 (x), . . . , ✓(m)

b,K (x).

Step 3 Use {✓b,k(x); 1  k  K} and {Xb,i; 1  i  n} to simulate {Yb,i; 1  i  n} in

accordance with the parametrically specified conditional distributions.

Step 4 Use bootstrapped data {Yb,i; 1  i  n}, {Xb,i; 1  i  n} and {✓b,k(x); 1  k  K} to

compute estimates Ĥb,n and Ĥ0
b,n yielding the bootstrap realisation of the test statistic:

Tb,n =
p
n sup

(y,x)
| Ĥb,n(y,x)� Ĥ0

b,n(y,x) |.

Using the simulated distribution of Tn we can then derive the corresponding p-value and or critical
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values to assess the test statistic.

3 An Application Scenario

As an application let us consider earnings distributions, which are conditioned on a set of covariates

(like education, age, etc.). These distributions are often assumed to follow a Dagum Type II

distribution, as is done in Sohn (2016). The Dagum Type II distribution is given by

p(y | ⇡0, a, b, c) = ⇡0 {y=0} + (1� ⇡0)p+(y | a, b, c),

where ⇡0 yields a point mass for zero earnings, while the positive domain is modelled by a Type I

Dagum distribution that takes the following form:

p+(y | a, b, c) = acyac�1

bac(1 + (y/b)a)p+1
, a 2 R>0, b 2 R>0, c 2 R>0.

The adequacy of modelling the conditional earnings distributions may thus be judged on the basis

of assessing the following hypotheses:

H0: The conditional earnings distributions can be modelled by a Dagum Type II distribution,

p(y | ⇡0, a, b, c), for all observed earnings y and some values of ⇡0, a, b, c derived for the

corresponding covariates, x.

vs.

H1: The conditional earnings distributions cannot be modelled by a Dagum Type II distribu-

tion, p(y | ⇡0, a, b, c), for all observed earnings y and any values of ⇡0, a, b, c derived for the

corresponding covariates, x.

Following the algorithm described in the previous section, this hypothesis may be tested as follows:

The Dagum Type II distribution usually features two independent MCMC smaples, one for ⇡0 and

one for a, b and c. Supposing that we have 1,000 MCMC draws each, we have a two dimensional

sample set M = (1, . . . ,M1) ⇥ (1, . . . ,M2), with M1 = M2 = 1000. A given random bootstrap

sample b thus takes a random set of realisations from the MCMC output {m1;m2} = m 2 M to

yield ⇡m1
b , am2

b , bm2
b and cm2

b .
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4 Simulation Study

In order to assess the misspecification test we consider three simple simulation studies in order

to validate its performance. In each simulation study, we consider a simple framework with one

explanatory variable which has a linear e↵ect on all the predictors of the Dagum distribution, i.e.

g(⌘✓k) = �✓k
0 + �✓k

1 x, (2)

where x is an integer from the interval [1, 10] and g is the log-link.

For the simulations we use 1,000 observations and 1000 bootstrap repetitions and contrast the

results for a true specification, as specified above, with a misspecified parametric model. For the

misspecification we use a log-normal distribution with mean and coe�cient of variation equivalent

to that of the Dagum specification.

The result from our simulation studies are displayed in Table 1. The p-value for each simulation

run as well as the mean of the p-values of all simulation runs (µ), their standard deviation (�) as

well as the three quartiles (Q1, Q2, Q3).

In Simulation Study 1 entails a for the a scenario where we have negligible parameter uncertainty

such that the standard deviation of the posterior distribution is 1% of its expectation. The results

are displayed in the first and second column. As can be observed the p-values in the first column

roughly follow a uniform distribution, as we would expect, while the second column repeatedly

rejects the null.

Simulation Study 2 features moderate parameter uncertainty such that the standard deviation of

the posterior distribution is 5% of its expectation. The results are displayed in the third and fourth

column. As for the first two columns we see that the results are able to clearly distinguish between

the correct and the false specification.

For Simulation Study 3, we assume considerable parameter uncertainty with the standard deviation

of the posterior distribution is 50% of its expectation. The results are displayed in the last two

columns. Given this large uncertainty, the model specification test is less likely to reject the false

hypothesis. With higher parameter uncertainty, the test is thus conservative.

Overall, the simulation study indicates that the test generally works although its power is mitigated

by large parameter uncertainty.
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Sim. Study 1 Sim. Study 2 Sim. Study 3

Sim.Run H0 TRUE H0FALSE H0 TRUE H0FALSE H0 TRUE H0FALSE

1 0.30 0.00 0.02 0.00 0.76 0.12

2 0.58 0.00 0.60 0.00 0.66 0.09

3 0.40 0.00 0.60 0.00 0.40 0.03

4 0.21 0.00 0.82 0.00 0.84 0.07

5 0.71 0.00 0.64 0.00 0.45 0.08

6 0.40 0.00 0.92 0.00 0.63 0.07

7 0.07 0.00 0.05 0.00 0.95 0.10

8 0.92 0.00 0.98 0.00 0.81 0.09

9 0.28 0.00 0.45 0.00 0.54 0.10

10 0.10 0.00 0.80 0.00 0.92 0.08

11 0.91 0.00 0.57 0.00 0.62 0.09

12 0.21 0.00 0.50 0.00 0.59 0.09

13 0.47 0.00 0.00 0.00 0.90 0.09

14 0.29 0.00 0.71 0.00 0.37 0.12

15 0.66 0.00 0.15 0.00 0.72 0.10

16 0.15 0.00 0.13 0.00 0.48 0.09

17 0.92 0.00 0.15 0.00 0.48 0.10

18 0.73 0.00 0.23 0.00 0.92 0.12

19 0.49 0.00 0.41 0.00 0.46 0.10

20 0.98 0.00 0.21 0.00 0.67 0.09

21 0.06 0.00 0.31 0.00 0.80 0.09

22 0.29 0.00 0.68 0.00 0.82 0.10

23 0.26 0.00 0.73 0.00 0.84 0.11

24 0.49 0.00 0.82 0.00 0.97 0.10

25 0.39 0.00 0.57 0.00 0.57 0.11

26 0.79 0.00 0.40 0.00 0.60 0.11

27 0.91 0.00 0.06 0.00 0.80 0.10

28 0.20 0.00 0.54 0.00 0.44 0.10

29 0.35 0.00 0.92 0.00 0.56 0.09

30 0.43 0.00 0.05 0.00 0.42 0.16

µ 0.47 0.00 0.47 0.00 0.67 0.10

� 0.28 0.00 0.31 0.00 0.18 0.02

Q1 0.26 0.00 0.17 0.00 0.50 0.09

Q2 0.40 0.00 0.52 0.00 0.64 0.10

Q3 0.70 0.00 0.70 0.00 0.82 0.10

Table 1: Results from Simulation Studies for Misspecificaiton Test

5 Conclusion

This paper describes and assesses a misspecification test for conditional distributions as estimated

by SADR. To this end we outline required modifications to the test by Rothe and Wied (2013).

Subsequently, we consider a short simulation study and find that the test generally identifies

misspecification although its power is mitigated by large parameter uncertainty.
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