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Abstract

Several recently developed identification techniques for structural VAR models are based on

the assumption of non-Gaussianity. So-called independence based identification provides unique

structural shocks (up to scaling and ordering) under the assumption of at most one Gaussian

component. While non-Gaussianity of certain interesting shocks, e.g., a monetary policy shock,

appears rather natural, not all macroeconomic shocks in the system might show this clear dif-

ference from Gaussianity. We generalize identifiability by noting that even in the presence of

multiple Gaussian shocks the non-Gaussian ones are still unique. Consequently, independence

based identification allows to uniquely determine the (non-Gaussian) shocks of interest irre-

spective of the distribution of the remaining system. In an illustrative macroeconomic model

the identified structural shocks confirm the results of previous studies on the early millennium

slowdown. Furthermore, extending the time horizon provides full identification under the non-

Gaussianity assumption.
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1 Introduction

Structural vector autoregressive (SVAR) models are frequently applied to identify the fundamental

economic driving forces in macroeconomic systems. In this framework, diverse approaches aim at

tracing macroeconomic variables back to orthogonal shocks (see Kilian and Lütkepohl, 2017, for

an overview). While the identification procedures handle non-uniqueness of the structural matrix

by building on certain statistical or economic assumptions, the views on the adequacy of these

restrictions are diverging. Under Gaussianity, additional economic restrictions help to reduce the

set of uncorrelated structural shocks, derived by any decomposition of the covariance matrix, to

those in line with common economic beliefs (Sims, 1980; Blanchard and Quah, 1989; Faust, 1998;

Uhlig, 2005). However, uncorrelated non-Gaussian structural shocks can still incorporate diverse

forms of dependence. In order to separate the shocks and the associated responses completely, in-

dependent component analysis (ICA) methods uniquely identify the instantaneous response matrix

for independent structural shocks under non-Gaussianity. These approaches base on the prominent

theorem of Comon (1994) which indicates the existence of a unique structural matrix if the model

contains at most one Gaussian structural shock (see, for instance, Moneta et al., 2013; Gouriéroux

et al., 2017; Lanne et al., 2017).

When applying a structural VAR model the analyst is mostly interested in studying the re-

sponses to certain shocks only. For instance, the macroeconomic implications of monetary policy

shocks have been widely analyzed by means of SVAR techniques. The distribution of the change in

interest rates, estimated by a kernel density in Figure 1 (cf. Chiu et al., 2016), leads to the rather

natural assumption that an unanticipated shock in monetary policy comes from a non-Gaussian

distribution. However, different macroeconomic variables might be more ‘balanced’ in that they

follow a distribution which is closer to Gaussianity (e.g. a supply or demand shock). In order

to identify only parts of the system, we allow the K-dimensional vector of structural shocks εt

to contain 1 < k1 < K Gaussian components. In this setting, neither Gaussianity implies inde-

pendence of all shocks nor ICA methods can just identify the whole system. We show that the

K−k1 non-Gaussian components of εt can still be uniquely identified by ICA methods. This result

introduces flexibility by allowing for partial identification of the system after diagnosing (non-)

Gaussianity of the structural shocks. Especially, when the effect of only certain structural shocks

is of interest (and they are non-Gaussian), the distribution of the remaining system is irrelevant

for their identification.
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Figure 1: Kernel density estimate of the change in nominal interest rate in 1984–2002 (for a more detailed

description of the data see Section 3).

We illustrate partial identification by re-investigating a four dimensional macroeconomic model

in the spirit of Peersman (2005) who intended to identify the causes of the early millennium slow-

down. More specifically, we identify two of four possible independent shocks by relying on a

nonparametric dependence measure, the distance covariance. Studying quarterly data for 1980–

2002, we interpret the identified oil price and monetary policy shocks in light of former replication

studies. For an extended sample, more pronounced differences from Gaussianity arise. This allows

full identification of the system and the interpretation of the response to all structural shocks.

In Section 2, we describe the model setting and the identification techniques for at most one and

multiple Gaussian components. Section 3 contains the description and discussion of the estimation

results for a four dimensional macroeconomic model. Section 4 concludes.

2 Model and identification

We consider a K−dimensional macroeconomic VAR model formulated as

yt = ct +A1yt−1 + . . .+Apyt−p + ut,

= ct +A1yt−1 + . . .+Apyt−p + Bεt = µ+
∞∑
i=0

ΦiBεt−i t = 1, . . . , T, (1)

where ct is a matrix of deterministic terms, yt is K × 1 dimensional and A1, . . . , Ap and Φi are

K × K matrices. For paraphrasing (1) we assume causality of the model, i.e., det Φ(z) 6= 0 for

all |z| ≤ 1 with Φ(z) =
∑∞

i=0 Φiz
i and Φ0 = IK . Reduced form residuals correspond to error
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terms ut ∼ (0,Σu) with non-singular covariance matrix Σu = BB′. The main interest of the

following study is the identification of matrix B and the associated structural shocks εt = B−1ut

with E(εt) = 0 and Σε = B−1ΣuB
−1 = IK . For this purpose, the literature on SVAR models

incorporates numerous approaches to identify the non-unique factor B properly relying on either

statistical or economic a-priori assumptions (for a textbook treatment of SVARs see Kilian and

Lütkepohl, 2017).

2.1 Independence based identification

Recently developed statistical identification procedures exploit the non-normality of structural

shocks building on results from independent component analysis (Moneta et al., 2013; Lanne et al.,

2017; Gouriéroux et al., 2017). For the vector of reduced form errors ut ∈ RK , ICA aims at de-

termining the so-called mixing matrix B for which the components of B−1ut = εt are independent.

Following the fundamental result of Comon (1994), ICA uniquely identifies matrix B up to col-

umn signs and ordering by allowing the vector of independently distributed structural shocks εt to

contain at most one Gaussian component εt,k.

In the following, we describe identification in the case of one and multiple Gaussian components

on the basis of an ICA procedure adapted from Matteson and Tsay (2017). The distance covariance,

a nonparametric dependence measure introduced in Székely et al. (2007), is applied to determine

least dependent shocks and thereby, to identify the associated matrix B. It might be noteworthy

that similar ICA-based identification procedures lead to the same theoretical results in the case of

multiple Gaussian components.

2.1.1 Identification with at most one Gaussian structural shock

Moneta et al. (2013) have adopted ICA to determine optimal variable orderings in recursive systems

of non-Gaussian structural shocks. However, the a-priori focus on triangular schemes appears

restrictive in an economic context. Determining the underlying distribution family a-priori, Lanne

et al. (2017) apply ML estimation to determine the matrix B. Moreover, nonparametric dependence

measures provide an alternative tool for identification avoiding any restrictive assumption on the

distribution of εt. In this work, we rely on the so-called distance covariance of Székely et al. (2007)

applied in the course of ICA by Matteson and Tsay (2017).1 The set of possible decompositions

1Diverse alternative criteria have been studied in preliminary analyses (avalaible on request) where especially the

Cramér-von Mises distance turns out as a robust alternative to measure dependence nonparametrically.
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of the least squares covariance estimator B(θ) = DQ(θ) is defined with respect to Choleski factor

D and the vector of rotation angles θ of the Givens matrices Q(θ). We estimate the covariance

matrix once by least squares and different decompositions evolve by drawing from the set of all

rotation angles θ. Accordingly, the distance covariance UT (ε̂t(θ)) can be calculated from ε̂t(θ) =

B(θ)−1ût where ût are the least squares residuals. Minimization of the distance covariance θ̂ =

argminθ UT (ε̂t(θ)) consequently determines the estimated matrix B̂ = B(θ̂) and the associated

least dependent shocks ε̂t(θ̂). For details on the exact minimization procedure and the empirical

definition of the dependence measure we refer to Matteson and Tsay (2017). In this study, we

apply the function steadyICA from the R package steadyICA (Risk et al., 2015) to determine Q(θ̂)

and thus, B̂dCov = B(θ̂).

2.1.2 Identification with multiple Gaussian structural shocks

More generally, let the vector εt contain 1 ≤ k1 ≤ K Gaussian random variables. If the number of

Gaussian components exceeds one, i.e. k1 > 1, matrix B can no longer be uniquely identified and

consequently, the structural shocks εt = B−1ut can not be separated by means of ICA. However, by

an intuitive generalization of Comon’s theorem the K − k1 non-Gaussian components of εt remain

unique. We formulate this result in the following proposition for two random vectors ε1, ε2 ∈ RK ,

representative for vectors with independent components not distinguishable by means of ICA.

Within these vectors the Gaussian components are ordered first.

Proposition 1. Let ε1 be a vector with independent components of which only w.l.o.g. the first

k1 components are Gaussian. Let C be an orthogonal K ×K matrix and ε2 = Cε1 such that the

first k1 entries of ε2 are Gaussian. The components of ε2 are mutually independent if and only

if C =

Q 0

0 ΛP

 where matrix Q is an orthogonal k1 × k1 matrix, Λ is a (K − k1) × (K − k1)

diagonal matrix and P is a permutation matrix.

The proof is given in the Appendix and represents an alternative to Boscolo et al. (2002). For

matrix C as defined in Proposition 1, ICA can not distinguish between BC and B, in other words

εt = (BC)−1ut also comprises independent components. In the following, we apply the ICA proce-

dure of Matteson and Tsay (2017) to models with several Gaussian structural shocks. Statistical

properties, as consistency, of the steadyICA algorithm under multiple Gaussian components trans-

fer to the subsample of non-Gaussian variables. Leaving the formal derivation aside we assume

that the first k1 columns of B̂dCov (if Gaussian components are ordered first) are not uniquely de-
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termined as the Gaussian variables can not be distinguished (Hyvärinen et al., 2001). In contrast,

the remaining K − k1 columns of B̂dCov are unique. Along these lines, for at most one Gaussian

component all columns of B̂dCov are unique. For applicability of the identification technique it is

essential to decide on the number of Gaussian components first.

Decide on the number of Gaussian components

Various alternative uni- and multivariate tests for normality are present in the literature. A selection

of tests is, for instance, implemented in the R package normtest (Gavrilov and Pusev, 2015).

Moreover, diverse strategies can be pursued to assess normality of a multivariate vector of structural

shocks ε̂t. In the following, we choose two alternative approaches. First, we test separately on

Gaussianity of the components and secondly, we apply a test which decides on the number of non-

Gaussian components in ICA. The results of separate univariate Jarque-Bera (JB) tests provide

evidence for Gaussianity of the structural shocks determined by independence based identification,

e.g. ε̂t = B̂
−1
dCovût. Note that the results from alternative univariate tests provide similar test

outcomes and are not displayed here. Under the null hypothesis of the JB test the shock exhibits a

Gaussian distribution. Thus, if the null hypothesis is rejected we assume that the associated shock

can be uniquely identified by means of ICA.

However, the estimated structural shocks ε̂t and their distribution might depend on the under-

lying identification procedure. To evaluate robustness of the JB test decisions, we apply techniques

based on fourth order blind identification (FOBI) which have evolved in the course of non-Gaussian

component analysis (NGCA) to isolate non-Gaussian from Gaussian components. In their R pack-

age ICtest, Nordhausen et al. (2016) have implemented several tests to decide on the number of

non-Gaussian, so-called interesting, components within a set of variables. We apply the version

implemented in the function FOBIboot which uses a bootstrap procedure. The test applies FOBI

to trace the vector of reduced form residuals back to Gaussian and non-Gaussian sources. The cor-

responding null hypothesis states that there are k1 Gaussian components and K−k1 non-Gaussian

components. For further details on the test and the implementation we refer to the manual of the

R package (Nordhausen et al., 2016).

It might be noteworthy that the JB tests on Gaussianity of the structural shocks and the

application of one overall test for Gaussian components provide a test decision derived under

different significance levels. Either four separate tests on a certain level are performed or one

single test helps, for instance, to decide about two Gaussian components on one level. We apply
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and compare both approaches in the subsequent application to a four dimensional macroeconomic

model.

3 Reassessing causes of the early millennium slowdown

We consider the model in (1) where now yt = (∆oilt,∆yt,∆pt, st) contains first differences of

oil prices ∆oilt, output growth ∆yt, consumer inflation ∆pt and the short term interest rate st.

Peersman (2005) applies this model setting to study the causes of the early millennium slowdown

in 2001. In the following, we will consider the model in two variations of the sample period. First,

we replicate the study of Peersman (2005) for the original sample 1980Q1–2002Q2. An extended

sample includes data until 2007Q4 to further assess causes of the slowdown in 2001.2 For the two

samples we examine applicability of independence based identification by assessing Gaussianity of

the shocks. Furthermore, we analyze the impulse responses estimated by means of the technique

which relies on the distance covariance.

ε̂1 ε̂2 ε̂3 ε̂4 H0 : k1 = 2 k1 = 3

JB 56.225 1.045 0.060 23.686 Test Stat. 16.312 491.88

p-value 0.000 0.527 0.969 0.005 p-value 0.915 0.035

Table 1: JB test results for ε̂t = B̂
−1

dCovût for sample 1980Q1–2002Q2 (left-hand side table). Tests on non-

Gaussian components in ût: we can reject that there are k1 = 3 Gaussian components but we can not reject

that there are k1 = 2 Gaussian components at a reasonable significance level.

Table 1 and 2 display the outcome of separate JB tests for the structural shocks ε̂t = B̂
−1
dCovût

and sample periods 1980Q1–2002Q2 and 1980Q1–2007Q4, respectively.3 Alongside, we display

statistics and p-values of the tests on interesting, i.e. non-Gaussian, components. The JB test

results hint at the presence of two Gaussian components ε2 and ε3 on the shorter horizon (Table

1). In the larger sample we reject normality of three of the four components at 10% significance

level based on the JB tests (Table 2). By means of the test on interesting components we obtain

2It might be noteworthy that Peersman (2005) studies data for the US, the Euro area and the industrialized world.

He argues that the effects appear the most pronounced in the US. As noted by Grant (2015) differences between the

results and Peersman (2005) may occur due to data deviations.
3Note that slight differences to exact p-values might be caused by the Monte Carlo simulation used for calculation

of the test distribution. However, we assume that the main conclusions remain unchanged.
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the same result in the smaller sample. However, relying on this test, we might still assume the

presence of two Gaussian components in the larger sample.

ε̂1 ε̂2 ε̂3 ε̂4 H0 : k1 = 2 k1 = 3

JB 63.272 3.623 0.476 70.257 Test Stat. 69.288 1369

p-value 0.000 0.099 0.76 0.000 p-value 0.602 0.005

Table 2: JB test results for ε̂t = B̂
−1

dCovût for sample 1980Q1–2007Q4. Tests on non-Gaussian components

in ût: we can reject that there are k1 = 3 Gaussian components but we can not reject that there are k1 = 2

Gaussian components at 10% significance level.

Following Section 2.1.2, we assume that the distance covariance uniquely identifies the non-

Gaussian shocks in the smaller and all shocks in the larger sample (relying on the JB test results).

Further differences caused by the sample choice are reflected in the impulse responses in Figure 2

calculated using independence based identification. The displayed confidence intervals are calcu-

lated from a wild bootstrap procedure as, for instance, described in Herwartz and Plödt (2016).

First, we notice that the confidence intervals in the shorter sample are mostly wider. This seems an

intuitive consequence of the larger and more likely identified (because of non-Gaussianity) model

exhibiting smaller estimation uncertainty. Furthermore, the point estimates of the dynamic re-

sponses are partly shifted which we attribute to a change in the data (i.e. the relations between

variables) as well as the adequacy of the identification approach. However, in both cases we obtain

two uniquely identified shocks, the first and the fourth, and can observe that the corresponding

impulse responses appear very similar in both samples. Based on the reasoning of the following

paragraph we label the first shock an oil price and the fourth a monetary policy shock. For these

derivations we proceed with the model including data up to 2007Q4, merely to overcome the identi-

fication issues. However, it might be noteworthy that the results for the oil price and the monetary

policy shock hold similar in the smaller sample period.

In order to label the shocks adequately based on Figure 2, we rely on former replication studies

by Herwartz and Lütkepohl (2014) and Lanne and Luoto (2016). In the last column of Figure 2

we almost exactly replicate the responses to a monetary policy shock obtained by the method of

Herwartz and Lütkepohl (2014). Also in line with the results of Uhlig (2005) and Lanne and Luoto

(2016), the sign pattern suggested in Peersman (2005) is thereby not replicated. Furthermore,
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Figure 2: Impulse response functions based on identification by means of distance covariance for samples

1980Q1-2002Q2 (green, dashed confidence intervals) and 1980Q1-2007Q4 (blue, dotdashed confidence inter-

vals).
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Lanne and Luoto (2016) argue that only the oil price shock can be fully reproduced holding the

suggested signs in the on-impact matrix. Acknowledging higher uncertainty in the instantaneous

responses, we therefore label the first shock an oil price shock. The supply and demand shock

both lead to insignificant responses in the associated variables and thus, might not be identifiable.

However, the assigned labels appear economically reasonable and further support the results of

Herwartz and Lütkepohl (2014) and Lanne and Luoto (2016). Overall, the impulse responses

displayed in Figure 2 still indicate that a combination of shocks causes the slowdown in the short

as well as in the long run. However, output does not seem to respond significantly to a monetary

policy shock.

Decomposing output growth into the contribution of structural shocks in each time period

provides further evidence on the causes of negative economic growth in 2001. Figure 3 shows the

corresponding historical decompositions starting in 1995 up to 2007 (calculated as described in

Lütkepohl, 2011). Based on Figure 3, the recession in 2001 is attributed to a combination of shocks

which is in line with the conclusions drawn in Peersman (2005). Yet the size and direction of the

contributions vary throughout the time periods of output declines. While in the third quarter of

2001 all shocks dampen output growth with roughly the same impact, their contributions in early

2001 differs. The aggregate demand shock provokes the largest negative contribution in quarter

1 of 2001 which is subsequently slightly positive in quarters 2 and 4. Throughout 2001 monetary

policy further reduces output growth while the contribution becomes positive not before early 2002.

Furthermore, the demand shock boosts output growth showing a positive contribution in early

2001 while the oil price shock contributes slightly negative in these periods. Overall, the historical

decompositions show slight differences to the ones based on sign and traditional restrictions (results

are displayed in Table I of Peersman, 2005). While the results appear reasonable, they still might

be handled with care because of the weak validation of the non-normality assumption during the

observed time period until 2007.

To avoid these sources of identification weaknesses and check robustness of the model, it might

be worth to consider an extended sample until 2014Q2 including the period of the Great Recession.

While this sample extension leads to non-Gaussianity of the structural shocks, we might argue that

further variables are necessary to properly identify causes of economic slowdowns, in particular of

the Great Recession. Furthermore, according to the replication study in Grant (2015) time varying

parameter estimation might be better suited to derive at profound inferences on this extended time

period. As an interesting aim for future research we leave these elaborated model modifications
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behind the scope of this paper.
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Figure 3: Historical decomposition of output growth attributed to the four shocks (oil price, aggregate

supply, demand and monetary policy) based on independence based identification for sample 1995 to 2007.

4 Conclusions

Independence based identification by means of a nonparametric dependence measure allows for

identification of a non-Gaussian SVAR model. We formulate identifiability in a more flexible way

to overcome the limitations of this approach in the presence of multiple Gaussian structural shocks.

In particular, besides identification of the whole system with at most one Gaussian component, the

non-Gaussian shocks can be identified in systems which are closer to Gaussianity. Uniqueness of

independence based identification of non-Gaussian structural shocks is proved theoretically. Ex-

tensions to higher dimensional systems are straightforward and might be of special interest if the

analyst aims to derive economic conclusions about the response to specific shocks only (and these

are non-Gaussian in their structural form).
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Moreover, we retrieve these characteristics in a four dimensional macroeconomic VAR model.

We revisit the study of Peersman (2005) to gain conclusive insights on macroeconomic causes of the

early millennium slowdown over two different time horizons. We can uniquely identify two shocks,

an oil price and a monetary policy shock, in the original sample until 2002. However, for inferences

on the early millennium slowdown we advocate to consider the model ending in 2007Q4 because

of non-Gaussianity of the structural shocks and a larger sample size compared to the original

sample 1980Q1–2002Q2. Based on the extended sample, we obtain similar results as derived in

the studies of Herwartz and Lütkepohl (2014) and Lanne and Luoto (2016). Furthermore, based

on the historical decomposition of output growth into separate structural shocks we infer that a

combination of shocks contributes to negative economic growth in 2001.

Appendix

Proof of Proposition 1. “⇐=” The proof of this implication is straightforward and, therefore, omit-

ted.

“=⇒” We reformulate the K ×K matrix C block wise by setting

C =

C1 C2

C3 C4

 ,

where, for instance, C1 is a k1 × k1 matrix. Consequently, the first k1 Gaussian entries of ε2

correspond to ε2,1,...,k1 =
(
C1 C2

)
ε1.

Suppose that one of the entries of the second block matrix C2 would differ from zero. Following

Lemma 9 of Comon (1994), the entry in ε1 which is related to ε2,1,...,k1 by this non zero entry

in C2 is Gaussian. This contradicts the assumption that the last K − k1 components of ε2 are

non-Gaussian. Thus, C2 = 0k1,K−k1 and C1 projects the first k1 variables of ε1 onto the first k1

components of ε2, i.e. ε2,1,...,k1 = C1ε1,1,...,k1 . Assuming that the components of ε1 are independent

and its first k1 entries are normally distributed, matrix C1 corresponds to an orthogonal matrix Q

to preserve independence of the components in ε2,1,...,k1 = Qε1,1,...,k1 (see, for instance, Hyvärinen

et al., 2001).

The matrix C is assumed to be orthogonal, i.e. CC ′ = IK . Setting C2 = 0k1,K−k1 and C1 = Q
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the block wise formulation of this product corresponds to

CC ′ =

C1 C2

C3 C4

C ′1 C ′3

C ′2 C ′4


=

C1C
′
1 + C2C

′
2 C1C

′
3 + C2C

′
4

C3C
′
1 + C4C

′
2 C3C

′
3 + C4C

′
4

 =

QQ′ QC ′3

C3Q
′ C3C

′
3 + C4C

′
4

 .

Accordingly, all entries of the block matrices C3Q
′ and QC ′3 need to equal zero in order to obtain

the identity matrix, CC ′ = IK . As Q is orthogonal it has full rank. It follows C3Q
′ = 0K−k1,k1

and QC ′3 = 0k1,K−k1 if and only if C3 = 0K−k1,k1 with 0K−k1,k1 and 0K−k1,k1 corresponding to the

(K − k1)× k1 and k1 × (K − k1) zero matrices, respectively.

Hence, the product CC ′ can be written as

CC ′ =

QQ′ 0

0 C4C
′
4

 .

Lastly, we consider the second part of ε2 to determine the last block matrix C4, i.e. ε2,k1+1,...,K =(
0 C4

)
ε1. Matrix C4 maps the non-Gaussian entries of ε1 to the non-Gaussian entries of ε2. Thus,

this is an application of Comon’s theorem: for independent components in ε2, the matrix C4 is the

product of a diagonal and a permutation matrix ΛP following the derivations in Theorem 11 of

Comon (1994). Finally,

C =

Q 0

0 ΛP

 and CC ′ =

QQ′ 0

0 (ΛP )(ΛP )′

 =

Ik1 0

0 IK−k1

 = IK .
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